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Our understanding of cross-disciplinary connections for Antarctica’s role in the

Earth system remains incomplete, especially around its coastal margins. The

focus here is on sea-ice, oceanic, and atmospheric drivers in the joint Ross Sea-

far East Antarctic Region (RSfEAR)—one which spans a large longitudinal range

and connects a number of ice shelves and polynyas promoting sea-ice growth

and underpinning a diverse and rich ecosystem. Here, we present a minireview of

recent case studies and how these inform the design for a future integrated

ocean–sea ice–atmosphere observing system. The review is built around five

themes: i) regional setting, ii) recent studies in the region and current strategies,

iii) gap analysis, iv) future observing system design, and v) wider implications

for stakeholders.

KEYWORDS

Antarctic Earth-system science, Ross Sea-far East Antarctic Region, cross-disciplinary
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1 Introduction

Polar processes are critical in shaping our climate and overall Earth system. Large

annual cycles, like that of sea ice, significantly impact aspects of the Earth’s climate system

(Ayres et al., 2022) and ecosystems (Swadling et al., 2023) as well as the global radiation

balance, air–sea heat exchange, and light penetration. Sea-ice formation and melt alter the

buoyancy structure of the ocean, cloud properties, and consequently, the surface-radiation

budget. Seawater freezing and the associated brine rejection result in salty, oxygenated

water draining to the seafloor on a millennium-long global journey. Through advection, the

almost salt-free sea ice drifts net-northward to eventually melt, stratifying the surface ocean
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elsewhere. The associated marine biogenic activity enhances trace-

gas emissions into the atmosphere, modulating aerosols and thus

cloud properties over the Southern Ocean (Mace et al., 2021;

McFarquhar et al., 2021; Mace et al., 2023; Mallet et al., 2023).

Our understanding of cross-disciplinary connections for the

polar system remains incomplete, especially around its coastal

margins. This is largely due to low visitation, highly variable

atmospheric drivers, ice–ocean interactions, varied coastal

interactions, and the complex physical nature of various forms of

ice and snow. The joint Ross Sea-far East Antarctic Region

(RSfEAR) extends latitudinally from 85° to 65°S and spans a

broad longitudinal range from 110°E to 155°W (Figure 1A, black

dashed lines), connecting the wide Ross continental shelf to the

narrower Far East continental shelf region around Cape Adare.

RSfEAR is home to major ice shelves (Ross, Nansen), glacier

tongues (Drygalski, Mertz, Dalton), and polynyas [Ross,

McMurdo, Terra Nova Bay (TNB), Mertz, Ninnis, Dalton]

(Figure 1A). The fate of sea ice here is linked to the integrity of

these features and the ecosystems they support.

This review uses recent studies in the RSfEAR as the basis for a

conceptual design (Figure 1A) for an integrated regional ice–ocean

observing system that spans the geographical domain while

connecting basic properties to ecosystem response and societal

usage and value (Figure 2A).
2 Motivation

Recent extremes in Antarctic sea-ice extent (Stuecker et al.,

2017; Raphael and Handcock, 2022; Turner et al., 2022), record
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cryospheric melt (Bell et al., 2017; Adusumilli et al., 2020), and

reduction in bottom-water oxygen (Gunn et al., 2023) precipitated

this work. Freshwater generated by the substantial melting in the

West Antarctic is moving further west. This is superimposed on the

long-term oceanic changes around Antarctica’s margins and

accentuated by atmospheric changes (Jacobs et al., 2022).

Our contextual timeline for the region relates events to major

milestones in exploration and stakeholder perspectives (Figure 2B).

This reveals that, with the exception of southern McMurdo Sound

(e.g., Langhorne et al., 2015; Lubin et al., 2020), TNB (e.g.,

Sansiviero et al., 2017; Bracci et al., 2022), the Windmill Islands

(e.g., Clark et al., 2017), and the Dumont d’Urville Sea (e.g.,

Barbraud et al., 2015; Grazioli et al., 2017; Vignon et al., 2020),

the RSfEAR is poorly observed. Hence, understanding these

changes and their future trajectory requires renewed thinking in

terms of information requirements.
2.1 Recent studies in the region

Several recent studies set the scene for identifying future

initiatives. These include changes in sea-ice extent (Comiso et al.,

2011), ice season length (Stammerjohn et al., 2012), and thickness

(Rack et al., 2021) as well as subsurface ocean forcing (Zhang et al.,

2022). Critical for the Antarctic are large ice shelves and the

associated production of ice-shelf water and platelet-ice crystals

(Hoppmann et al., 2020; Stevens et al., 2023). Declining summer

and autumn sea-ice cover in the western Ross Sea and far eastern

East Antarctic has increased the length of the coastline left

unprotected at this time (Reid and Massom, 2022). With an
FIGURE 1

(A) The RSfEAR region of interest spanning between 110°E and 155°W (bold dashed lines) superimposed over sea-ice concentration (September
2022). EAIS and WAIS are East and West Antarctic Ice Sheet; CS, Casey Station; LD, Law Dome; CA, Cape Adare; ER, Eastern Ross; NIS, Nansen Ice
Shelf; RIS, Ross Ice Shelf; TG, Totten Glacier; NG, Ninnis Glacier; MUIS, Moscow University Ice Shelf; DaIT, Dalton Iceberg Tongue; HG, Holmes
Glacier; DiG, Dibble Glacier; DG, Dalton Glacier; DIT, Drygalski Ice Tongue; MP, Mertz Polynya; TNBP, Terra Nova Bay Polynya; MSP, McMurdo Ice
Shelf Polynya; RSP, Ross Sea Polynya; WI, Windmill Islands; Dd’US, Dumont d’Urville Sea; MIZ, Marginal Ice Zone. The continental shelf-break is
marked by a dash-dot line. The figure also shows potential locations for key elements of an observing system including hydrographic stations,
ecosystem monitoring, nominal biogeochemical (BGC) float coverage, automatic weather stations (AWS), and ocean–sea ice–atmosphere transect
information either from vessel or air. (B) Sea ice is highly varied: a mosaic of different sea-ice conditions including (i) sparse pack, (ii) active polynya,
(iii) marginal ice zone, (iv) fast ice, (v) platelet underside, and (vi) significant under ice productivity.
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evolving climate, the loss of sea ice and fast ice will increase the

exposure to open ocean and waves (Voermans et al., 2021).

Polynyas, although overlooked in a recent horizon scan

(Kennicutt et al., 2015), play a vital role in the Antarctic margin

by interconnecting the atmosphere, ice, and ocean (Knuth and

Cassano, 2014). They serve as an important nutrient source (Arrigo

and van Dijken, 2003; Arrigo et al., 2015), fostering the production

of sea ice (Tamura et al., 2008) and high-salinity shelf water

(Tamura et al., 2016). Polynya activity and glacier-tongue and

iceberg evolution are entwined (Barber and Massom, 2007; Yoon

et al., 2020). For example, the collapse of the Mertz Glacier Tongue

resulted in decades-long changes in near-coastal sea-ice formation

(Tamura et al., 2012; Tamura et al., 2016).

Regional salinity trends show a long-term salinity reduction in

deeper waters (Silvano et al., 2020; Bowen et al., 2021; Jacobs et al.,

2022) and associated impacts on bottom-water formation (e.g., Gunn

et al., 2023; Li et al., 2023). However, in recent years, this trend has

reversed (Castagno et al., 2019). Tracking and projecting this trend is a
Frontiers in Marine Science 03
major objective for the RSfEAR observing system design. Acquisition

of upper ocean stratification and mixing data is operationally

challenging. Furthermore, enhanced sea-ice production in coastal

polynya increases Antarctic bottom-water formation. However,

calving events and changing configurations of ice-shelf fronts,

icebergs, and fast ice play a major role in reducing sea-ice

production near the Ross Sea andMertz glaciers (Tamura et al., 2016).

Ice shelves are a critical endemic component of the Antarctic

margin. The large Ross Ice Shelf is essentially stable at present.

However, the recent Conger Ice Shelf collapse to the west of the

RSfEAR, as well as the Cook Ice Shelf collapse in the 1970s (Miles

et al., 2018), suggests that stability is not sector-wide. The Cook

glacier-shelf system, part of the Wilkes Basin drainage, provided

evidence of subglacial flood events with dramatic velocity changes.

However, “in terms of observations of subsurface ocean

temperatures, bathymetry, and bed topography, it is one of the

least studied” (Miles et al., 2018) and makes a central focal point for

the RSfEAR observing system.
A

B

FIGURE 2

(A) Key integrated observing system components with a spatial element and then themes moving from underpinning through ecosystem to
stakeholder focus underpinned by international coordinated efforts. (B) A timeline for the RSfEAR spanning three centuries (note the non-linear time
dimension) including key observational initiatives from the early discovery voyages (James Clark Ross, Gauss, IGY) to modern technological
approaches (Argo, satellite, SOCCOM). Modern era time series such as the sea-ice extent and Southern Oscillation strength and salinity of the region
are included. Significant cryospheric events in the form of the calving of giant icebergs B15 and C28 are also included along with policy
developments (MPA, IPCC AR5 and AR6, and Southern Ocean Decade—SOD).
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Sea-ice cover in the Ross Sea has increased over the satellite

record, but trend reversals since 2014 have markedly reduced the

statistical significance of this general increase (Parkinson, 2019).

The seasonal cycle in the Ross Sea has a consistent minimum in

February, but the winter maximum varies between July and

November, consistent with the wider RSfEAR region (Parkinson,

2019). High winter maxima can be followed by either high or low

February sea-ice extents, and it is clear that the surrounding

atmospheric and oceanic conditions play a major role in shaping

the decay. The El Niño Southern Oscillation and the Southern

Annular Mode have a significant impact on the sea-ice trends across

the RSfEAR (Gloersen, 1995; Simmonds and Jacka, 1995; Kwok and

Comiso, 2002; Turner, 2004; Yuan, 2004; Simpkins et al., 2012;

Matear et al., 2015; Hobbs et al., 2016). Recently, Zhang et al. (2022)

showed that subsurface warming can destabilize the ocean from

below and lead to years of low sea-ice cover. Analysis shows that

anomalous southwesterly winds moved the Ross Sea sea ice offshore

and northward, decreasing sea ice in the Ross Sea but increasing it

to the north of the Ross Sea (Zhang and Li, 2023).

There is growing evidence that wave–ice interactions are

important in the sea-ice evolution. However, wave dispersion and

attenuation in sea ice, including the Marginal Ice Zone (MIZ), are

poorly understood (Squire, 2022), let alone the importance of wave–ice

interactions under future sea-ice states (Bennetts et al., 2022). Wave

attenuation depends on local ice, wave, and wind conditions (Montiel

et al., 2022), and year-round, high-quality observations for different ice

types are needed. A lack of observations of air–sea ice–sea fluxes (Swart

et al., 2019) constrains both understanding and forecasting.
2.2 Current strategies

Developments in sea-ice and ocean science in the RSfEAR are

set within a number of strategies from national and international

perspectives, and the proposed observing system design needs to

work in this context:
Fron
• The United Nations’ Southern Ocean Decade (Janssen et al.,

2022) identifies outcomes (e.g., clean, productive, predicted,

safe oceans), all of which require science and data as central

pillars.

• The Southern Ocean Observing System (SOOS)

Implementation Plan (Newman et al., 2019) focuses on

data access and future observational opportunities.

• The World Meteorological Organization’s Antarctic

Regional Climate Center (Ma and Qin, 2018) is in pre-

implementation planning to support agencies with regional

products.

• The Fifth International Polar Year 2032/33 will fill the need

for coordinated international research to address the biggest

challenges of polar research, for both the polar regions

themselves and for the Earth as a whole (World-

Meteorological-Organization, 2022).

• National programs express interest in, and support for,

Southern Ocean research and thus implicitly the RSfEAR

including:
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• New Zealand’s Foreign Affairs and Trade Ministry’s 2020-

2030 Strategy (MFAT, 2021) provides a national perspective

on Antarctica and the Southern Ocean regarding science,

operations, and motivations with an emphasis on Scott Base

and maritime operations.

• The Australian Department of Foreign Affairs and Trade’s

Australian Antarctic Science Strategy (DCCEEW, 2022)

updates a national perspective in the context of the

Antarctic Treaty highlighting the large area of

responsibility.

• The Australian Antarctic Science Program requires

participants to deliver on key government policy and

international obligations, science, and management

outcomes, with the Australian Antarctic Science Decadal

Plan (under development) to iterate on this.

• The Republic of Korea’s governmental Antarctic plan

outlines the importance of understanding the impacts of

glacial melt and collapse on the Southern Ocean and

beyond, including for sea-level rise and storage of

anthropogenic carbon; research funding has been made

available for this.

• The Ross Sea Marine Protected Area (MPA), developed by

the Commission for the Conservation of Antarctic Marine

Living Resources, was designed for the ongoing protection

of a subregion within the RSfEAR (Brooks et al., 2021).

From 2027, the MPA will undergo formal decadal reviews

of its efficacy toward meeting its specific objectives based on

cross-disciplinary observations (Brooks et al., 2021).
These strategies are unanimous in identifying the lack of data as

being the leading issue due to remoteness, harshness, and scale.

Collectively, the major research gaps identified are consistent. Sea-

ice and oceanic connections sit centrally in these gap analyses, with

implications for sea-level rise, thermohaline evolution, ecosystem

functions and survivability, and operational considerations.
3 Knowledge gaps

These motivations raise the following questions: a) Are we able to

sufficiently describe the present sea-ice–ocean system in the RSfEAR?

b) What are the connections between the Ross and far East Antarctic

sectors? c) What are the key cross-disciplinary transfers connecting

physics to biodiversity and ecosystem outcomes? d) What are the

future projected trajectories for the critical components of the

RSfEAR ocean–sea ice–atmosphere system?
3.1 Present-day ocean–sea ice–
atmosphere system in the RSfEAR

There is a general lack of process knowledge for the RSfEAR

other than the identified focal areas. Beyond process understanding,

there is also a general paucity of sustained Southern Ocean/

Antarctic observing especially in the RSfEAR, where few

sustained sea-ice/ocean observing programs exist contrary to the
frontiersin.org
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West Antarctic. Antarctic sea ice is very challenging to observe. It

spreads over a very large area with regional variability, yet it is

annual and largely disappears every year. This is an impediment to

any ocean observing technique. A lack of understanding of the role

of snow in modulating ocean–sea ice–atmosphere processes further

complicates the situation.

There are a number of environment categories that the

proposed RSfEAR observing system needs to encapsulate,

including polynya, fast ice, MIZ, and open ocean (Figure 1B).

Furthermore, boundary conditions need to be identified for the

Southern Ocean, ice-shelf margins, glacial ice tongues, and

terrestrial boundaries. Stratification and mixing rate data,

especially for the upper ocean, on the continental shelf (Porter

et al., 2019) and near the coast (Yoon et al., 2020) are limited.

Autonomous observing systems would ameliorate this although

profiling floats are presently limited by their inability to surface

through sea-ice cover (Porter et al., 2019; Oke et al., 2022).

Enhanced designs and analysis improve these limitations where

feasible. There is the potential to expand the acquisition of essential

climate variables (Lavergne et al., 2022) in order to raise awareness

of the breadth of climate and ecosystem processes and interactions

that pertain to the RSfEAR.

Other observations rely on interdisciplinary field campaigns to

fill fundamental knowledge gaps, i.e., of atmospheric processes and

links to the ocean, sea ice, and biology (Mallet et al., 2023). Field-

based research in the RSfEAR region will address these, including

pathways and characteristics of aerosols, clouds, and precipitation

near coastal Antarctica, which differ substantially from those in the

warmer Southern Ocean to the north (Mace et al., 2021).
3.2 Connections between the Ross and far
East Antarctic sectors

The RSfEAR geographical focus highlights the connection

between regional change in West and East Antarctica. Recent

overview sea-ice and ocean studies in the region include work on

ocean salinity (Castagno et al., 2019), sea-ice deformation (Kousal

et al., 2022), and ice–wave interaction (Horvat and Roach, 2022).

However, there have been disconnects, both geographically and in

terms of discipline. Geographically, there has been a separation

between Ross Sea and far East Antarctic sectors due to the limited

overlap in foci of the various national programs. Furthermore, as

with many aspects of sea-ice and ocean science, disciplinary

boundaries have constrained advances in what needs to be highly

integrated research.
3.3 Key cross-disciplinary transfers

Bringing together a range of disciplines and scales is clearly

required (Gutt et al., 2018). Evidence for the nature of tightly

coupled ice–ocean biophysics is emerging through Argo float-based

sampling with under-ice positioning methods as well as enhanced

biogeochemical sensors (Hague and Vichi, 2021) developed

through the Southern Ocean Carbon and Climate Observations
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and Modeling project. These initiatives improved the quantification

of the timing and strength of phytoplankton blooms relative to local

sea-ice structure (Figure 1B).
3.4 Future trajectories

There also needs to be an activity supporting the understanding

of a future, largely ice-free RSfEAR. While this is likely primarily

through modeling, observational approaches underpinning these

projections will be affected by changing conditions that will largely

be outside recent direct experience. Studies in the Arctic emphasize

the regional variability in sea-ice coverage and wider impacts (Årthun

et al., 2021). Gutt et al. (2018) also identify the need to understand

potential future trajectories for the sea ice–ocean system. This

requires continued effort around modeling tools and underpinning

data streams. Notably, projections are typically at large scales relative

to biophysical observations and processes, calling for down-/

upscaling of both biophysical quantities and processes.
4 Future directions
and implementation

Historical regional foci have resulted in a disconnect between

the eastern and western RSfEAR sectors. While coincident case

studies (e.g., SIPEX and SIMBA) sought to overcome this, only

sustained distributed observatories can systematically address this.

This review provides motivation for a system design rethink focused

on the RSfEAR. Figure 1A shows the suggested locations for data-

informed sentinel sites, an observing program, and key process

studies, all in a time of great technological advances with remote

sensing, robotics, and enhanced sensor capabilities. This review

provides motivation for a system design rethink focused on the

RSfEAR. A framework for observations and process studies

(Figure 2A) should provide a consistent, sustainable time series of

EOVs, as well as other regionally relevant quantities, from locations

that provide the best sentinel conditions (Figure 1A).

The pathway to high-latitude observing system design is

described in Newman et al. (2019) with options for components

for optimal results. This SOOS program overview highlights the

benefits of observing system design methods, the need and benefit

for international coordination, and the potential for new

technologies to revolutionize data pipelines from acquisition to

delivery. The RSfEAR Integrated Observing System would directly

deliver results to SOOS and downstream users and build on FAIR

data principles (Wilkinson et al., 2016).

This review seeks to build on existing and ongoing activities to

generate a sustained, resilient, adaptive RSfEAR observing system.

Emerging in many stakeholder plans is a focus on the human

dimension of the activity including justice, diversity, equity, and

inclusivity both in terms of who is doing the work and to whom the

benefits are aimed at (Meyer-Gutbrod et al., 2023). In conjunction

with supporting the people enabling the processes, key observing

system components should be built around the following:
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4.1 Ocean

a. Hydrographic moorings and transects at key locations in

RSfEAR (Figure 1A) to i) continue records and ii) provide a basis

for sector connection (Bowen et al., 2021). Recommendation: Maintain

a. (continue) key hydrographic time series stations at locations such as

Ross Polynya, TNB, Cape Adare, and Mertz to maintain a continual

presence, preferably augmented by annual transects for hydrographic

and particle flux measurements as well as meteorological data.

b. Enhance the nascent BioGeoChemical (BGC) float network

(Figure 1A). This presently encounters challenges, i.e., sea-ice cover

and the relatively shallow continental shelf (Schallenberg et al., 2022).
4.2 Sea ice

a. Improved remotely sensed metrics including essential climate

variables (Lavergne et al., 2022) and derived sea-ice drift.

Recommendation: Obtain high-resolution satellite imagery to

generate improved estimates of coastal ice drift and deformation

(Farooq et al., 2020).

b. Improve technology for ice and snow freeboard detection as a

proxy for thickness (Kacimi and Kwok, 2020; Tan et al., 2021).

Recommendation: Deploy upward-looking sonars from drifting

buoys and autonomous underwater vehicles (Williams et al.,

2015) to derive ice draft and airborne transects 1a for ice and

snow thickness and the sub-ice platelet layer (Rack et al., 2021;

Langhorne et al., 2023).

c. Develop improved understanding and data streams of

biological productivity and associated sea-ice, ocean, and

atmosphere behaviors. Recommendation: Integrate biophysical

sentinel sites 1a with ongoing sea-ice, upper ocean, and

atmospheric observing and process studies (Cummings et al.,

2019; Mallet et al., 2023).
4.3 Integration

a. Integration of observations with regional-scale coupled

modeling (Malyarenko et al., 2022). Recommendation: Extend

physical models to include biogeochemical processes and higher

tropic level outcomes (Cavanagh et al., 2021) and to better elucidate

connectivity across the RSfEAR.

b. Implementation of advanced data techniques, including the use

of machine learning (Horvat and Roach, 2022) to project future sea-ice

coverage in the RSfEAR. Recommendation: Produce and promote

regular updates on ice–ocean metrics for RSfEAR, potentially as EOVs.

Clearly, there is a significant element of aspiration, and

continuing effort will be required to develop and maintain these

resources. However, as a counter, this work is overlaid by a sense of

urgency from most stakeholder viewpoints around Antarctic sea ice

in the coming decades. A range of studies, as well as the policy

documents listed here, point to the next few years as critical for

determining future conditions for one of the least understood

regions of the Earth system (Holmes et al., 2022; Stokes et al., 2022).
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