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Pseudoalteromonas is a ubiquitous and abundant genus of marine bacteria

commonly associated with algae. In this study, a novel siphoviral-

morphological bacteriophage, vB_PhoS_XC, was isolated from the coastal

seawaters of Qingdao (China) during a bloom of the Ulva prolifera (U. prolifera)

green tide. The morphology of this phage (icosahedron head 51 ± 1 nm in

diameter; a tail length of 86 ± 1 nm) was characterized through transmission

electron microscope. The biological properties of this virus showed a short latent

period (45 minutes), a large burst size (241 virions per cell) and a relatively wide

range of temperatures/pH level tolerance (-20°C to 45°C and pH 4 to pH 10,

respectively). The vB_PhoS_XC has a 46,490-bp double-stranded DNA genome

with a G+C content of 40.0%, and encodes 72 open reading frames (ORFs).

Thirty-five of these ORFs were assigned into known functions based on BLAST-

based algorithm against NR database of GenBank. In addition, eco-genomic

analysis provides the evidence of vB_PhoS_XC accompanied by bloom of U.

prolifera, and confirmed the high expression of two phosphatase-metabolism-

related auxiliary metabolic genes (AMGs). This study provides new insights into

the functional and ecological roles of the Pseudoalteromonas phage

vB_PhoS_XC, shedding light on the virological study approach combined with

traditional isolation and meta-omics data.
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Introduction

In coastal marine ecosystems, algae are a naturally abundant

food source for marine organisms and contribute to the production

of polysaccharide-rich detritus (Jain et al., 2020; Akter et al., 2022).

However, macroalgae blooms create great pressure on these

ecosystems, resulting in hypoxia and acidification (Zhang et al.,

2019). The largest causal agent of green tides is the macroalgae Ulva

prolifera (U. prolifera), which has been affecting Qingdao since

2007. Following a bloom, huge amounts of dissolved organic matter

(DOM) are produced due to the degradation of U. prolifera (Zhang

and Wang, 2017). This leads to serious negative economic impacts

and complex ecological consequences, most notably on the

structure of the microbial community (Xiao et al., 2021; Zhang

et al., 2021). Nevertheless, the majority of studies on U. prolifera

control and microenvironment typically concentrated on the

relationships between U. prolifera and bacteria, for instance,

changes in bacterial communities and responses to U. prolifera

without taking into consideration the potential contribution of

viruses (Qu et al., 2020; Liang et al., 2021; Qu et al., 2021; Zhao

et al., 2022).

Viruses are the most abundant and diverse biological entities in

the ocean (Culley et al., 2006), playing an important role in global

biogeochemical cycles (Fuhrman, 1999). They are also the most

abundant and genetically diverse “life forms” on Earth (Fuhrman,

1999). Viruses mediate horizontal gene transfer by infecting host

cells, and they also play a key role in the formation of bacterial

community structure. Moreover, they can reduce the abundance of

the major host by infecting and inducing the community structure

into homeostasis (Zhang et al., 2007). The largest community of

viruses in marine ecosystems are bacteriophages, which are

bacterial specific. It is estimated that abundance of bacteriophages

is around 10-15 times higher than bacteria (Culley et al., 2006), and

the expression of phage-encoded auxiliary metabolic genes (AMGs)

can influence bacterial host with reprogramming metabolic

progress and improves their adaptability to environmental

changes (Gregory et al., 2019; Zimmerman et al., 2020).

Pseudoalteromonas is the most abundant bacteria genus found

in coastal seawater and is dominant during U. prolifera blooms

(Wang et al., 2020; Qu et al., 2021). Metabolically, this species

exhibits high productivity and can effectively use a variety of

carbon sources, providing a competitive advantage over other

microorganisms. Further, it has been explored to secrete a range

of extracellular substances, including enzymes, toxins, antibiotics

and polysaccharides (Ivanova et al., 2003), and found to make

significant contributions to dissolved algae through the action of

alginate lyases. This organism’s strong capacity to produce

extracellular degrading enzymes, as well as a variety of

bioactive substances, leads to its important role in marine

b i og eochemi c a l c y c l e s (Bowman , 2007 ) . A l t hough

Pseudoalteromonas is a significant alginate-degrading group in the

ocean, with its presence being particularly prominent in coastal

seawater (Rong et a l . , 2018 ; Ren et al . , 2022) , few

Pseudoalteromonas phages have been isolated. Thus, we sought to

explore the possible regulatory role of viruses in the U. prolifera

blooms in the coastal marine ecosystems of Qingdao in this study.
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To do this, the Pseudoalteromonas phage vB_PhoS_XC was isolated

from these waters, its biological characteristics were investigated,

and its genome was analyzed. Additionally, the metagenome and

metatranscriptome outcomes of the phage-host interaction were

used as models to suggest that the virus could influence the dynamic

population of U. prolifera. This work thus adds to our

understanding of U. prolifera blooms and provides a framework

for further studies on the complex interactions between U. prolifera,

Pseudoalteromonas, and their phages.
Materials and methods

Sampling and virion enrichment

Seven samples were collected from the coastal seawaters of

Qingdao between July to December in 2020 year. Eighty-liters of

surface seawater were sampled from the coast of Qingdao (36.06° N,

120.31° E), and then pre-filtered on nylon sieves with a mesh of 200

mm and 20 mm to remove large zooplankton. Seawater samples were

pre-filtered 3 mm filters and then followed by filtration through 0.22

mm Polycarbonate Membranes filters (Millipore, MA, USA) using a

peristaltic pump (Stewart et al., 2012; Pesant et al., 2015). Filters

were transferred immediately to DNase/RNase-Free tubes with

RNAlater and stored at -80°C for RNA extraction. To further

concentrate the filtered seawater containing viruses, tangential

flow filtration (laboratory scale, 50 kDa; Millipore) was used to

reduce samples to 100 mL for DNA extraction. The samples and the

original seawater were stored at 4°C in the dark until

experimentation (Wang et al., 2015).
Preparation of bacterial strain

Host bacterial strain was isolated from the original seawater at

the coast seawaters of Qingdao during the U. prolifera blooms in

2020 year, and then incubated in liquid Zobell medium at 28°C for

next experiments (Liu et al., 2018). The 16S rRNA gene of host was

amplified by PCR. The phylogenetic tree was calculated on the bias

of the 16S rRNA sequences using IQ-TREE with MFP model as the

best-fitted substitution model undergoing 1,000 bootstraps

(Supplementary Figure S1).
Isolation, purification of bacteriophage

The phage vB_PhoS_XC was prepared using the standard virus

enrichment approach and doubled-layer agar methods

(Jamalludeen et al., 2007), followed by using the soft-agar overlay

method for plaque analysis (Hyman and Abedon, 2010). Briefly, 1

mL host cell culture was incubated with 0.2 mL seawater, and then

was filtered through 0.22 mm pore-size membranes (Millipore) for

20min. The mixture was placed into 5 mL of soft and warm agar

(0.6%), and poured onto petri dishes to form plaques. Phages were

purified by picking a single plaque, suspending it in SM buffer (100

mM NaCl, 81.2 mM MgSO4, 50 mM Tris HCl [pH 7.5], 0.01%
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gelatin) for 1 h at 37°C. The suspension was filtered through 0.22

mm pore-size membranes (Millipore), and was used to obtain the

plaque through double-layer plate method. The purification step

was repeated for three times. Then the purified phages were

amplified and stored at 4°C.
Morphological study by transmission
electron microscopy

20 µL viral suspension was negatively stained with 2% uranyl

acetate, and was examined by energy-filtering transmission electron

microscopy (TEM, JEOLModel JEM-1200EX) at 100 kV at NICEM

to obtain the viral morphological data (Li Y et al., 2016). The

average size of virion was determined by measuring three phage

particles within the same field of vision.
One-step growth assay

The one-step growth curve assay was used to identify the burst

size of the phage vB_PhoS_XC following the previous method with

some modifications (Middelboe et al., 2010; Ma et al., 2021). The

burst size was calculated by dividing the final number of virions by

the initial number of infected host cells at the beginning of assay

(Wang et al., 2017). A bacterial culture in the exponential growth

phase (2 x 108 CFU/mL) was mixed with 1 mL of the phage

suspension (MOI=0.01) at 25°C for 20 min. After centrifugation

at 12,800 g for 30 seconds to remove unabsorbed phage, samples

were re-suspended to 50 mL liquid Zobell medium. The re-

suspended virions were used to infect bacteria with the 5-min/10-

min/30-min interval in first/second/third hour, respectively (Gong

et al., 2017). This assay was re-performed by three times (Li et al.,

2016). The virion/bacteria co-culture was plated on a double-layer

plate to incubate overnight. The number of phage plaques were

counted to determine the titers of the phage at different time points

to assess its growth states.
pH/thermal stability

We tested pH/thermal stability to gain the information on the

biological properties of the phage vB_PhoS_XC. Briefly, to test

capsid tolerance to pH, 100 µL phage suspension mixed with 900 mL
SM buffer with a range of pH from 3 to 12 at 30 °C for 2 h. To test

the capsid tolerance to temperature, the phage suspension was

incubated at -20°C, 4°C, 25°C, 35°C, 45°C, 55°C, 65°C, and 75°C for

2 h, then incubated with host at 25°C for 20min. The double-layer

plate method was used to calculate the loss of virus titer of each

sample. Each sample was performed in triplicate.
Genome sequencing and function analysis

Bacteriophage DNA was extracted by Virus DNA Kit

(OMEGA) and sequenced using the Illumina HiSeq PE150
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paired-end sequence method by Novogene (Tianjin, China)

company (Ma et al., 2021). The gaps between the remaining

contigs were closed using GapCloser and GapFiller, with purified

genomic DNA as the template (Nadalin et al., 2012; Xu et al., 2020).

Open reading frames (ORFs) were predicted by GeneMarkS (http://

topaz.gatech.edu/GeneMark/) and RAST (http://rast.nmpdr.org/).

The protein function and homology of ORFs were predicted

through the BLASTP-algorithm and Hidden-Markov-Module

(HMM) based algorithm against NR (2023/02) and Pfam (v.35)

database with 1e-5 as the E-value threshold (Jacob et al., 2008;

Katoh and Standley, 2013; Mistry et al., 2013; Mistry et al., 2021).

The genomic organization diagram was visualized by the CLCMain

Workbench 20. The tRNAscan-SE (http://lowelab.ucsc.edu/

tRNAscan-SE/) was used to detect tRNA sequences is in the viral

genome (Chan et al., 2021). The complete viral genome sequence of

vB_PhoS_XC is now available to access under the accession number

MT002874.2 in GenBank. The auxiliary metabolic genes (AMGs)

were blast through the Integrated Microbial Genomes/Virus 4

database with the E-value 1e-5, high search quality genes were

chosen for homologous genes, and details were given in

Supplementary Table 1.
Metagenome, metatranscriptome
sequencing and analysis

Total viral DNA was extracted using QIAamp DNA MiniKit

(QIAGEN) according to the manufacturer’s instructions. Library

construction and high-throughput sequencing were carried out by

Novogene (Tianjin, China) using Illumina NovaSeq 6000 (pair-end

sequencing, 2 × 150 bp). Raw reads were quality-controlled by

removing the adapters using Cutadapt (Kechin et al., 2017). The

high-quality paired-end reads were filtered by Perl scripts following

these criteria: 1) without N; 2) no more than 20% bases with a

quality score less than 20 (Q20); 3) no more than 30% bases with a

quality score less than 30 (Q30) (Yang et al., 2019). To calculate the

relative abundances of the vB_PhoS_XC in all meta-omics samples,

clean reads were mapped to the vB_PhoS_XC contig using the

contig section of CoverM v0.6.1 (https://github.com/wwood/

CoverM) with default parameter. The relative abundance of the

vB_PhoS_XC was quantified as reads per kilobase million mapped

reads (RPKM) (Zhang et al., 2023). We also calculated the relative

abundance of other representative phages abundant in the ocean

including those infecting Pelagibacter (Zhao et al., 2013; Chen

et al. , 2019), Cyanobacteria (Labrie et al. , 2013), and

all Pseudoalteromonas which belong to the same subfamily as

vB_PhoS_XC (Table 1).

Total RNA extraction, library construction and next-generation

sequencing of viral RNA was carried out by Novogene (Tianjin,

China) using Illumina NovaSeq 6000 (pair-end sequencing, 2 × 150

bp). Clean reads were picked from the raw reads by Novagene.

Clean reads were then quality trimmed using Trimmomatic v0.39

(Bolger et al . , 2014) , and then were dropped below

SLIDINGWINDOW:4:30, MINLEN:70. The potential rRNA-

associated reads were removed using the SortMeRNA v4.3.2

against all databases (Kopylova et al., 2012). Then we got the
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high-quality reads. The relative abundances of the genes encoded by

vB_PhoS_XC were calculated on the basis of all meta-omics

samples through CoverM v0.6.1 with default parameter (Salazar

et al., 2019). The relative abundances of these genes were then

determined as reads per kilobase million mapped reads (RPKM).
Correlation analysis of the phage
vB_PhoS_XC with environmental
parameters

Temperature, salinity, Dissolved Oxygen (DO) and pH were

measured at the sampling site using a YSI proplus multi-parameter

water quality analyzer (YSI, Yellow Springs, OH, USA). Seawater

filtered through membranes, The concentrations of nitrate (NO3
-),

nitrite (NO2
-), ammonium (NH4

+) and phosphate (PO43-) were

measured with a QuAAtro nutrient auto analyzer (Seal Analytical

Ltd., King’s Lynn, UK). Picoplankton (Pico), Synechococcus (Syn),

Bacterioplankton (Bac) counting using flow cytometry (Beckman

Coulter Inc, USA). All environmental parameters described in

Supplementary Table S2. Pearson correlation coefficient (R-value)

was used to describe the correlation between vB_PhoS_XC and

environmental parameters, including biological parameters (such as

Pico, Syn, Bac) and non-biological parameters (such as NH4:

Ammonium (NH3-N), Nitrite (NO2-N), Phoshate (PO4
3-), pH

value, Nitrate (NO3-N), Salinity and Dissolved Oxygen (DO)).

The analysis was performed by psych and vegan which are both

powered by R (Dixon, 2003).
Result and discussion

Morphological and biological properties of
phage vB_PhoS_XC

A novel marine phage, vB_PhoS_XC, was isolated from the

coastal waters of Qingdao during an U. prolifera bloom (Figure 1A).

By the 16srRNA analysis, we determined that the host of the phage

vB_PhoS_XC is Pseudoalteromonas hodoensis strain H7

(Supplementary Figure S1). Characterization of vB_PhoS_XC

revealed an icosahedral head (~51 ± 1 nm in diameter) with a

long non-contractile tail (~86 ± 1 nm) (Figures 1B, C), combined

with previous research, indicating that it could be classified into the

Sipovirus subfamily (Zheng et al., 2023).

The phage vB_PhoS_XC demonstrated a stable titer across a

range of pH levels, from 4 to 10. While it could withstand

environments of slightly lower (pH3) and higher (pH10-12)

acidity, damage did occur in both cases (Figure 2A). Moreover,

the phage displayed a more resistance to acidic environments over

alkaline. In addition, thermal stability was observed from -20°C to

45°C, although a rapid decrease in phage titer occurred at

temperatures of 55°C or higher, with a maximum tolerance of 65°

C (Figure 2B). Overall, the phage vB_PhoS_XC displayed a wide

range of tolerance to pH and temperature.

The one-step growth curve of phage vB_Phos_XC

demonstrated a latent period of approximately 45 minutes,
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reaching a plateau stage after 120 minutes (Figure 2C). The final

count of released phage particles was 5.0×1012 PFU/mL, indicating

a burst size of approximately 241 virions per cell. This suggests that

VB_PHOS_XC has a lytic activity and a relatively short replication

cycle (Yuan et al., 2022).
Overall genome features of the phage
vB_PhoS_XC

The genome of the phage vB_PhoS_XC consisted a double-

stranded DNA (dsDNA) molecule with a GC content of 40.0% and

a total length of 46,490 bp (Figure 3). The genome contained 72

open reading frames (ORFs) and one tRNA. Of the ORFs, 37 had no

homologous proteins in current public databases, and 35 had

known functions, which were grouped into three functional

modules: DNA replication and nucleotide metabolism, phage

packing and lysis, and phage structure (Table 2).In these 35

known genes, two auxiliary metabolic genes (AMGs) were also

predicted to be associated with its host (ORF 11 and ORF 51).
Phage structure and packing genes of the
phage vB_PhoS_XC

Most of the ORFs associated with the phage structure in the

VB_PHOS_XC genome. In addition to common structure proteins
Frontiers in Marine Science 05
of Pseudoalteromonas phage, the genome contained two unique

ORFs associated with Siphovirus structure proteins, namely Tail

Tape Measure Proteins (TMPs; ORF 65 and ORF 66). This family of

proteins is characterized by short repeats and its function is related

to the assembly of the phage, as it participates in determining tail

length (Pedersen et al., 2000). TMPs are also known to assist in

phage genome delivery into the host cell cytoplasm by interacting

with a cognate receptor on the cells surface (Mahony et al., 2016).

Studies on the mechanisms of host infection by the Myoviridae

phage T4 and Siphoviridae phage T5 have revealed the role of TMP

in forming a transmembrane channel that allows the passage of

phage DNA into the cell cytoplasm (Boulanger et al., 2008; Hu et al.,

2015). Moreover, it has been found that the TMP is a multifunction

protein responsible for both tail length determination and viral

genome delivery. Consequently, the bacteriophage vB_PhoS_XC

containing a TMPs may be used as a model to further investigate the

mechanism of Pseudoalternomonas infection. Genes related to the

packing of the genome in the vB_PhoS_XC were identified. The

terminase, composed of two unique subunits (TerS and TerL), was

found to be responsible for this process (Esterman et al., 2021). TerS

(ORF 35) was found to be responsible for recognizing and binding

to the packaging initiation site, as well as regulating the ATPase

activity of the TerL (Dixit et al., 2019; Lokareddy et al., 2022b).

Additionally, TerL (ORF 36) acted as an ATP-driven molecular

motor that transferred viral DNA into the capsid regions, and as an

endonuclease that cut the viral genome from the concatemer
A

B C

FIGURE 1

Sampling area of Qingdao and Morphology of phage vB_PhoS_XC. (A) Sampling region bounded by the yellow box. (B) Transmission electron
micrograph (TEM) of Pseudoalteromonas phage vB_PhoS_XC. The scale bar is 100 nm. (C) The phage plaques of Pseudoalteromonas phage
vB_PhoS_XC. The scale bar is 10 mm.
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(Esterman et al., 2021; Lokareddy et al., 2022a). Finally, these two

genes were docked on the portal protein (ORF 8) to facilitate the

generation of circular phage heads (Al-Zahrani et al., 2009).
Phage metabolic genes of the phage
vB_PhoS_XC

Analysis of the vB_PhoS_XC genome revealed the presence of

genes related to some important metabolic processes. ORF 2 was

predicted to encode a member of the M15 family metallopeptidase,

which is involved in bacterial cell wall biosynthesis and metabolism

(Rawlings and Barrett, 2004). Additionally, ORF 15 was observed to
Frontiers in Marine Science 06
encode a phosphoadenosine phosphosulfate (PAPS) reductase

enzyme, a member of sulfonucleotide reductases (SRs) that

catalyzes the reduction of adenylated sulfate to sulfite and an

essential part of the cysteine biosynthesis pathway (Chartron

et al., 2007). PAPS reductase was an important enzyme found in

many organisms and played a crucial role in bacteria as it is

involved in the metabolism of sulfur-containing compounds such

as cysteine and methionine (Kredich and Tomkins, 1966, Chartron

et al., 2007). PAPS reductase regulates these compounds by

reducing PAPS to 3’-phosphoadenosine-5’-phosphate (PAP). This

process involves NADPH (nicotinamide adenine dinucleotide

phosphate) as a cofactor and helps maintain proper levels of

sulfur-containing compounds within bacterial cells (Murray-Rust

et al., 2001).

ORF 17 encodes a DNA-binding transcriptional regulator, which

regulates gene transcription by recognizing promoters and enhancers

near the transcription initiation site (Wang et al., 2013). ORF 18 is a

protein with the catalytic structural domain of GIY-YIG, used to

catalyze phosphodiester bond breaking, DNA repair, recombination

and genetic element transfer (Truglio et al., 2005; Dunin-Horkawicz

et al., 2006). ORF 19 is a DEAD/DEAH box helicase belonging to the

family of SvB_ValS_NF2, containing sequence motifs similar to those

of DNA helicase proteins; involved in various aspects of transcriptional

regulation, recombination and DNA repair (Xu et al., 2021).

Additionally, Exodeoxyribonuclease VIII (ORF 25) acts to break

dsDNA on both 5’ ends, allowing kinked and abnormal portions of

the genome to be straightened and repaired through homologous

recombination. Interestingly, Exodeoxyribonuclease VIII facilitates

genomic repair even in low energy environments and remains stable

(Sharma et al., 2019; Kumar et al., 2021).

ORF 28 encodes a bifunctional DNA primase-polymerase,

which is widespread in diverse bacteria, archaea, and viruses

(Lipps et al., 2003; Geibel et al., 2009; Halgasova et al., 2012).

This enzyme has the capacity to act as a primase and a polymerase,

and can synthesize long DNA from dNTPs without a preexisting

primer bound to the DNA template (Zhu et al., 2017). ORF 57 is

predicted to encode a DNA methylase that modifies the DNA of the

phage, ultimately avoiding degradation of enzymes from the host

cell, as well as protecting phage marked with methylation from its

own nucleases which degrade host DNA during the early period of

infection (Aravind et al., 2013). Therefore, it may play an important

role in the lytic life cycle of the phage (Aravind et al., 2013). The

phage vB_PhoS_XC has a relatively well-developed functional

composition of the genome. In addition to structural, packing

and metabolic genes, some other genes also contribute to its

independent survival strategy, such as DNA polymerase (ORF

21), Nucleic acid-binding (ORF22), transcriptional regulator

(ORF 27) and ATPase (ORF 40) and most nucleotide

metabolism genes.
Two phosphatase genome-biosynthetic-
related AMGs

Two host-derived auxiliary metabolic genes (AMGs) were

identified in the genome of phage vB_PhoS_XC: a nucleotide
A

B

C

FIGURE 2

Biological properties of phage vB_PhoS_XC. (A) pH stability of
Pseudoalteromonas phage vB_PhoS_XC. Y-axis shows the log of
plaque-forming units per milliliter (PFU/mL). (B) Temperature
stability of Pseudoalteromonas phage vB_PhoS_XC. Y-axis shows
the log of plaque-forming units per milliliter (PFU/mL). (C) One-step
growth curve of Pseudoalteromonas phage vB_PhoS_XC. Y-axis
shows the log of plaque-forming units per milliliter (PFU/mL).
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TABLE 2 The conserved domains information of Pseudoalteromonas phage vB_PhoS_XC genome.

ORF Start Stop Strand Function Match phage Accession E
value

1 35084 35154 +

2 504 112 – M15 family metallopeptidase Pseudoalteromonas sp. MCP4060181.1 2e-37

7 2541 1468 –
putative minor head protein

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655240.1
0

8 3916 2522 –
portal protein

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655241.1
0

11 4966 4499 – nucleotide pyrophosphohydrolase Pseudoalteromonas phage TW1 YP_010655192.1 1e-36

15 6502 5750 –

phosphoadenosine phosphosulfate reductase family
protein

Vibrio phage 1.047.O._10N.286.55.F2 AUR84066.1 2e-138

17 6886 6716 – DNA-binding transcriptional regulator Oceanospirillum phage vB_OliS_GJ44 QSM00634.1 6.00e-10

18 7523 6888 – GIY-YIG nuclease family protein Pseudomonas paracarnis WP_220381685.1 1e-32

19 9018 7681 – DEAD/DEAH box helicase Pseudoalteromonas phage AL QIG62466.1 0

20 9280 9005 – resolvase Pseudoalteromonas phage PHS21 AQN32316.2 1e-57

21 11048 9273 – putative DNA polymerase Pseudoalteromonas phage AL QIG62464.1 0

22 11667 11140 –
nucleic acid-binding, OB-fold protein

Vibrio phage
1.017.O._10N.286.55.C11

AUR82036.1 2e-68

23 12365 11754 – coil containing protein Vibrio phage 1.133.O._10N.222.51.E4 AUR89805.1 3e-31

25 14123 13557 – exodeoxyribonuclease VIII Pseudoalteromonas phage PHS21 AQN32313.1 3e-106

26 14584 14126 – coil containing protein Vibrio phage LP.1 AZU97906.1 2e-07

27 14683 14862 + transcriptional regulator Pseudoalteromonas phage AL QIG62460.1 9e-22

28 14862 17090 + bifunctional DNA primase/polymerase Vibrio phage LP.1 AZU97904.1 0

35 18918 19385 + terminase small subunit protein Cupriavidus lacunae WP_208647650.1 3e-39

(Continued)
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FIGURE 3

Genome map of Pseudoalteromonas phage vB_PhoS_XC. Putative functional categories were defined according to annotation and are represented
by different colors. The length of each arrow represents the length of each gene.
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pyrophosphohydrolase gene (ORF 11) and a metallo-dependent

phosphatase-like protein gene (ORF 51). These genes were found to

contribute to enhanced viral replication through regulation of the

host metabolism (Hurwitz and U'Ren, 2016).

ORF 11 encodes nucleotide pyrophosphohydrolase

(NTPPHase), a protein found in many marine bacteriophages,

suggesting it has an important role in phage proliferation (Bryan

et al., 2008; Duhaime et al., 2011). Studies on bacteria have shown

NTPPHase is involved in stress responses and removal of

noncanonical nucleotides (Lu et al., 2010; Gonçalves et al., 2011),

potentially improving the survival of its host in nutrient-depleted

environments (Duhaime et al., 2011; Kang et al., 2013; Wang et al.,

2021). In addition, ORF 51 encodes a metallo-dependent

phosphatase-like protein (PPM). This protein was highly

conserved in its sequence and structure with homologous genes

identified from prokaryotes, animals, and plants (Kamada et al.,

2020). It also regulates the activity of other proteins involved in

glycolysis and amino acid biosynthesis (Kamada et al., 2020).

Evidence also indicates that PPM has an important role in

signaling processes, such as proliferation, apoptosis and
Frontiers in Marine Science 08
metabolism (Tamura et al., 2006; Lammers and Lavi, 2007, Lu

and Wang, 2008). As the viral AMG, it is particularly crucial for

bacterial survival and growth under certain conditions (Aravind

and Koonin, 1998). Furthermore, its homologs were also found to

facilitate viral replication by manipulating host cell metabolism

(Wang et al., 2021).
Abundance and ecological function of
phage vB_PhoS_XC

The temporal abundance of the phage vB_PhoS_XC was

characterized in several viral metagenome data from the coastal

seawaters of Qingdao in 2020 year. After analysis of viral

community structure in each viral metagenome and together with

other common ocean bacteriophages. The results revealed that the

relative abundance of Pelagibacter phages was consistently high

because it was the most abundance phages in the ocean (Zhao et al.,

2019), while the relative abundance of Pseudoalternomonas

vB_PhoS_XC phage increased in July (Figure 4). This finding
TABLE 2 Continued

ORF Start Stop Strand Function Match phage Accession E
value

36 19385 21028 + phage terminase large subunit Candidatus Enterovibrio escacola WP_150137941.1 0

40 22880 23671 +
ATPase

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655271.1 7e-35

45 24631 25638 + coat protein Pseudoalteromonas phage H103 YP_009200228.1 1e-55

46 25650 26099 + head decoration Pseudoalteromonas phage H103 YP_009200227.1 4.00e-85

47 26110 27144 + virion structural protein Pseudoalteromonas phage H103 YP_009200226.1 0

51 29555 28323 – metallo-dependent phosphatase-like protein Vibrio phage 1.106.O._10N.286.51.F7 AUR87948.1 4e-141

57 31145 32050 +
DNA methylase

Vibrio phage
1.160.O._10N.261.48.B11

AUR91427.1 6e-173

58 32083 32649 +
minor head protein

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655287.1 1.00e-68

61 33532 33888 + head-closure protein Vibrio phage 1.122.A._10N.286.46.F8 AUR89308.1 4e-05

62 33890 34285 + neck protein Vibrio phage 1.076.O._10N.286.51.B7 AUR85547.1 3e-16

64 35564 36079 +
major tail protein

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655294.1 9e-110

65 36683 36066 – tail tape measure domain-containing protein Pseudoalteromonas phage XCL1123 QGJ84348.1 3e-32

66 36747 38858 +
tail length tape measure protein

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655297.1 0

68 39455 40000 + minor tail protein L Pelagibacter phage HTVC112P QGZ18222.1 3e-21

69 40000 43962 + putative tip attachment protein J Prokaryotic dsDNA virus sp. QDP59295.1 0

71 44309 45286 +
tail fiber protein

Alteromonas phage vB_AmeM_PT11-
V22

YP_009855710.1 3e-08

72 45286 45801 +
tail fiber protein

Pseudoalteromonas phage vB_PspS-
H40/1

YP_010655232.1 2e-15

73 46303 45860 – TMhelix containing protein Vibrio phage LP.2 AZU97851.1 1e-26
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correlated with an observed outbreak and extinction process of U.

prolifera green tide in the seawater region of Qingdao in the same

time period (Figure 5A). This suggests that the increase in

availability of Pseudoalternomonas species likely resulted in the

corresponding increase in abundance of its specific phage

vB_PhoS_XC. These results demonstrate the dynamic relationship

between prokaryotic and eukaryotic components of the coastal

ecological system. The abundance of this phage significantly

increased might be with the accumulation of high amounts of

algal-derived DOM after the bloom arrival (Han et al., 2023). By the

end of the bloom termination stage, most of the labile DOM had

been utilized by bacteria, it might result the decrease of viral

abundance like phage vB_PhoS_XC. Although there was no

obvious correlation between the phage vB_PhoS_XC and

environment factors (Supplementary Figure S2), further implied

that there might be a complex interaction between the phage

vB_PhoS_XC and its host.

Thus, we also analyzed the expression of AMGs and other

functional genes in the corresponding metatranscriptome data to

explore the correlation between the phage vB_PhoS_XC and its

host. Figure 5B demonstrates that ORF 11 and ORF 51 and ORF 57

(AMGs or accessory metabolic genes) had a high relative abundance

in the phage on July 4th and December 25th (Figure 5B). ORF 11 is

largely involved in proliferation, stress response, and increasing the

survival rate of the host. This may assist the host cells in preventing

programmed cell death resulting from rapid changes in abiotic

factors caused by U. prolifera blooms. ORF 51 regulates the activity

of proteins associated with a variety of metabolic pathways. Every

year from June to July, a large-scale U. prolifera bloom typically

occurs in Qingdao. This bloom rapidly causes a decline in inorganic

carbon, increasing the pH of the seawater (Han et al., 2023). When
Frontiers in Marine Science 09
the bloom terminates, pH, DOM, DOC, and nutrients are

significantly altered to an extent that disrupts the dynamic

balance of bacterial community structure and function (Li H

et al., 2016; Zhang and Wang, 2017; Chen et al., 2020; Liang

et al., 2021). Environmental changes result in the increased

expression of these AMGs, which helps the host to survive and

maximizes their own replication.

Interestingly, the relative abundance of some genes had a higher

expression in December (ORF 22, ORF 36, ORF 40, ORF57 and ORF

8) (Figure 5B). At this time, concentration of nutrients is poor, the

water temperature is low and the abundance of bacterioplankton are

significantly reduced (Uyà et al., 2017; Guo et al., 2020; Zhao et al.,

2022). We speculated that during this period the phage vB_PhoS_XC

is manipulating the host through AMGs to improve metabolic

efficiency and survival. It may also improve its replication efficiency

by repacking genes and increasing nucleotide metabolism, helping

create a “virus factory” in the host cells to maximize the output when

favorable conditions return.
Conclusion

Isolating and culturing viruses that infect bacteria provides a new

and valuable insight into novel viral sequences from metagenomic

and metatranscriptomic data. Few Pseudoalteromonas phages have

been isolated from the bacterial hosts and research on them is limited.

This study aimed to isolate the phage vB_PhoS_XC from coastal

seawaters of Qingdao during a U. prolifera bloom. Results indicate

that the phage has a short latent period and a large burst size, as well

as being active in a wide range of environmental conditions.

Additionally, abundance of the phage was observed to be higher
FIGURE 4

Temporal changes of Pseudoalteromonas phage vB_PhoS_XC. Bubble size shows relative abundance on Pseudoalteromonas phage vB_PhoS_XC of
different time series, expressed by RPKM (reads per kilobase per million mapped reads) values.
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during U. prolifera blooms and winter, two AMGs and nucleotide

metabolism system were also expressed a higher abundance in these

periods. This suggests that the phage may be able to improve the

host’s survival rate and enhance its metabolic efficiency to improve its

own replication. Consequently, further research will enable a better

understanding of the role of phages in marine ecosystems, as well as

their interactions with their hosts.
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SUPPLEMENTARY FIGURE 1

Phylogenetic tree of the Pseudoalteromonas genus.
Frontiers in Marine Science 11
SUPPLEMENTARY FIGURE 2

Pearson correlation coefficients among the phage vB_PhoS_XC,
Picoplankton (Pico), Synechococcus (Syn), Bacterioplankton (Bac), NH4:

Ammonium (NH3-N), Nitrite (NO2-N), Phoshate (PO4
3-), pH value, Nitrate

(NO3-N), Salinity and Dissolved Oxygen (DO). *Correlation is significant at the
0.05 level, ** Correlation is significant at the 0.01 level, *** Correlation is

significant at the 0.001 level.

SUPPLEMENTARY TABLE 1

Homologous genes of auxiliary metabolic genes (AMGs).

SUPPLEMENTARY TABLE 2

The sampling environmental parameters.

FILTER_NO_SINGLE.PL.ZIP

The perl script can be used for removing N from the data.

FILTER_NO_SINGLE2030.PL.ZIP

The perl script can be used for removing less than 20% and 30% bases with a
quality score.
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Gonçalves, A. M. D., de Sanctis, D., and McSweeney, S. M. (2011). Structural and
functional insights into DR2231 protein, the MazG-like nucleoside triphosphate
pyrophosphohydrolase from deinococcus radiodurans. J. Biol. Chem. 286 (35),
30691–30705. doi: 10.1074/jbc.M111.247999

Gong, Z., Wang, M., Yang, Q., Li, Z., Xia, J., Gao, Y., et al. (2017). Isolation and
complete genome sequence of a novel pseudoalteromonas phage PH357 from the
Yangtze river estuary. Curr. Microbiol. 74 (7), 832–839. doi: 10.1007/s00284-017-1244-8

Gregory, A. C., Zayed, A. A., Conceição-Neto, N., Temperton, B., Bolduc, B., Alberti,
A., et al. (2019). Marine DNA viral macro- and microdiversity from pole to pole. Cell
177 (5), 1109–1123.e1114. doi: 10.1016/j.cell.2019.03.040

Guo, J., Yuan, H., Song, J., Li, X., and Duan, L. (2020). Hypoxia, acidification and
nutrient accumulation in the yellow Sea cold water of the south yellow Sea. Sci. Total
Environ. 745, 141050. doi: 10.1016/j.scitotenv.2020.141050

Halgasova, N., Mesarosova, I., and Bukovska, G. (2012). Identification of a
bifunctional primase-polymerase domain of corynephage BFK20 replication protein
gp43. Virus Res. 163 (2), 454–460. doi: 10.1016/j.virusres.2011.11.005

Han, M., Sun, J., Yang, Q., Liang, Y., Jiang, Y., Gao, C., et al. (2023). Spatiotemporal
dynamics of coastal viral community structure and potential biogeochemical roles
affected by an ulva prolifera green tide. mSystems 8 (2), e0121122. doi: 10.1128/
msystems.01211-22

Hu, B., Margolin, W., Molineux, I. J., and Liu, J. (2015). Structural remodeling of
bacteriophage T4 and host membranes during infection initiation. Proc. Natl. Acad. Sci.
U.S.A. 112 (35), E4919–E4928. doi: 10.1073/pnas.1501064112

Hurwitz, B. L., and U'Ren, J. M. (2016). Viral metabolic reprogramming in marine
ecosystems. Curr. Opin. Microbiol. 31, 161–168. doi: 10.1016/j.mib.2016.04.002

Hyman, P., and Abedon, S. T. (2010). Bacteriophage host range and bacterial
resistance. Adv. Appl. Microbiol. 70, 217–248. doi: 10.1016/S0065-2164(10)70007-1

Ivanova, E. P., Bakunina, I. Y., Nedashkovskaya, O. I., Gorshkova, N. M., Alexeeva,
Y. V., Zelepuga, E. A., et al. (2003). Ecophysiological variabilities in ectohydrolytic
enzyme activities of some pseudoalteromonas species, p. citrea, p. issachenkonii and p.
nigrifaciens. Curr. Microbiol. 46 (1), 6–10.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmars.2023.1201434/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2023.1201434/full#supplementary-material
https://doi.org/10.3390/biology11091335
https://doi.org/10.1074/jbc.M109.025007
https://doi.org/10.1186/1745-6150-8-20
https://doi.org/10.1016/S0968-0004(98)01293-6
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1074/jbc.M800052200
https://doi.org/10.3390/md504220
https://doi.org/10.1371/journal.pone.0002048
https://doi.org/10.1021/bi700130e
https://doi.org/10.1016/j.watres.2020.116268
https://doi.org/10.1128/mSystems.00410-19
https://doi.org/10.1016/j.virol.2019.07.021
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1038/ismej.2010.94
https://doi.org/10.1186/1471-2164-7-98
https://doi.org/10.1186/1471-2164-7-98
https://doi.org/10.1093/ve/veab015
https://doi.org/10.1073/pnas.0902910106
https://doi.org/10.1074/jbc.M111.247999
https://doi.org/10.1007/s00284-017-1244-8
https://doi.org/10.1016/j.cell.2019.03.040
https://doi.org/10.1016/j.scitotenv.2020.141050
https://doi.org/10.1016/j.virusres.2011.11.005
https://doi.org/10.1128/msystems.01211-22
https://doi.org/10.1128/msystems.01211-22
https://doi.org/10.1073/pnas.1501064112
https://doi.org/10.1016/j.mib.2016.04.002
https://doi.org/10.1016/S0065-2164(10)70007-1
https://doi.org/10.3389/fmars.2023.1201434
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2023.1201434
Jacob, A., Lancaster, J., Buhler, J., Harris, B., and Chamberlain, R. D. (2008). Mercury
BLASTP: accelerating protein sequence alignment. ACM Trans. Reconfigurable
Technol. Syst. 1 (2), 9. doi: 10.1145/1371579.1371581

Jain, A., Krishnan, K. P., Begum, N., Singh, A., Thomas, F. A., and Gopinath, A.
(2020). Response of bacterial communities from kongsfjorden (Svalbard, Arctic ocean)
to macroalgal polysaccharide amendments. Mar. Environ. Res. 155, 104874. doi:
10.1016/j.marenvres.2020.104874

Jamalludeen, N., Johnson, R. P., Friendship, R., Kropinski, A. M., Lingohr, E. J., and
Gyles, C. L. (2007). Isolation and characterization of nine bacteriophages that lyse O149
enterotoxigenic escherichia coli. Vet. Microbiol. 124 (1-2), 47–57. doi: 10.1016/
j.vetmic.2007.03.028

Kamada, R., Kudoh, F., Ito, S., Tani, I., Janairo, J. I. B., Omichinski, J. G., et al. (2020).
Metal-dependent Ser/Thr protein phosphatase PPM family: evolution, structures, diseases
and inhibitors. Pharmacol. Ther. 215, 107622. doi: 10.1016/j.pharmthera.2020.107622

Kang, I., Oh, H. M., Kang, D., and Cho, J. C. (2013). Genome of a SAR116
bacteriophage shows the prevalence of this phage type in the oceans. Proc. Natl.
Acad. Sci. U.S.A. 110 (30), 12343–12348. doi: 10.1073/pnas.1219930110

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment
software version 7: improvements in performance and usability. Mol. Biol. Evol. 30
(4), 772–780. doi: 10.1093/molbev/mst010

Kechin, A., Boyarskikh, U., Kel, A., and Filipenko, M. (2017). cutPrimers: a new tool
for accurate cutting of primers from reads of targeted next generation sequencing. J.
Comput. Biol. 24 (11), 1138–1143. doi: 10.1089/cmb.2017.0096
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