- 1College of Science and Mathematics, University of the Virgin Islands, St. Thomas, VI, United States
- 2Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- 3Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
- 4Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- 5Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Macaé, Brazil
- 6Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- 7Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- 8Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
- 9Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- 10Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil
- 11Instituto de Ciências da Sociedade e Desenvolvimento Regional, Universidade Federal Fluminense, Campos dos Goytacazes, Brazil
- 12Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, Brazil
- 13Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
- 14Departamento de Engenharia de Pesca e Aquicultura, Universidade Federal de Sergipe, São Cristóvão, Brazil
- 15Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil
- 16Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil
- 17Departamento de Oceanografia, Universidade Federal do Espirito Santo, Vitória, Brazil
- 18Instituto de Geociências, Universidade Federal do Pará, Belém, Brazil
- 19Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Sul, Brazil
- 20Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- 21Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, Brazil
- 22Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, Brazil
1 Introduction
Sandy beaches are the most ubiquitous coastal ecosystem and provide essential benefits for people. However, they remain the least studied coastal environment (Lercari, 2023). To maintain the sandy beaches’ role in promoting societal welfare, researchers have highlighted critical scientific gaps, governance and regulatory issues that prevent us from developing appropriate management and conservation strategies. For instance, Amaral et al. (2016) prioritized six research areas to assess the influence of environmental changes on Brazilian sandy beaches, while Fanini et al. (2020) highlighted 21 knowledge gaps that preclude beach conservation worldwide.
Brazilian researchers have stood out in the scientific production on beaches in the last decade (Lercari, 2023). Nevertheless, this scientific knowledge is not enough if there are no changes in governance, regulations and culture of stakeholders and society. Herein, we combined the priority research areas and knowledge gaps identified by Amaral et al. (2016) and Fanini et al. (2020) into four major research topics (Table 1). Then, we presented ecological research performed on Brazilian sandy beaches over the last decade to assess the advances (or lack of) in each of these topics. Finally, we highlighted ongoing research and promising topics in sandy beach research in Brazil.
Table 1 Priority research areas highlighted by Amaral et al. (2016) and Fanini et al. (2020) combined into the four broad topics, and considerations on the advances (or lack of) in each of these areas during the previous decade.
2 Ecological research on Brazilian sandy beaches
2.1 Topic 1. Knowledge of biodiversity, ecological links, and genetic connectivity
Brazilian sandy beaches are distributed along 9000 km of coastline and encompass all beach types, from wide tide-dominated flats in the North to microtidal wave-dominated beaches in the Southeast and South (Klein and Short, 2016). During the past decade, most studies were performed in Southeast and South Brazil. However, we found a recent increase in studies in North Brazil, with investigations showing that the local sandy beach fauna is strongly influenced by riverine discharge, rainfall, morphodynamics, and human activities (Santos and Aviz, 2018; Baia and Venekey, 2019; Santos and Aviz, 2020; Baia et al., 2021; Santos et al., 2021a; Santos et al., 2021b; Santos et al., 2022; Cardoso et al., 2023; Checon et al., 2023a). Information on population attributes of typical beach species, such as Ocypode quadrata (Souza et al., 2021) and Clibanarius symmetricus (Danin et al., 2020), has just been made available for the Amazon coast.
Studies were also spatially restricted to supratidal and intertidal zones, with only a few studies sampling the subtidal or the whole across-shore gradient (e.g., Corte et al., 2019; Corte et al., 2020; Corte et al., 2022). Investigations mainly focused on macrobenthos, despite recent contributions to fish (Shah Esmaeili et al., 2022) and bird ecology (da Rosa Leal et al., 2013; Linhares et al., 2021; Rangel et al., 2022). There is incipient information on microorganisms and few studies assessed the ecology of meiofauna (reviewed in Maria et al., 2016). The number of investigations on primary producers was also higher in Southeast and South Brazil. Conversely, Brazil was probably the country with the highest number of studies on the secondary production of beach species (Petracco et al., 2013).
Few studies simultaneously investigated multiple biological components and their connectivity (e.g., Lacerda et al., 2014; Corte et al., 2017a). Costa et al. (2017) modeled a sandy beach food web including detritus, phytoplankton, macroinvertebrates, fish, and seabirds, while Pinotti et al. (2014) reviewed macrobenthic trophic relationships along subtropical sandy shores. Data using molecular markers that provide information regarding genetic connectivity and cryptic diversity remain scarce. Hurtado et al. (2016) detected high levels of cryptic diversity for the isopod Excirolana braziliensis, warning about potential biases in latitudinal gradient studies. Similarly, Seixas et al. (2021) found new species within the Diopatra cuprea complex, while Silva et al. (2017) found new species within the Capitella capitata complex. Hernáez et al. (2022) described the ghost shrimp Callichirus corruptus. Furthermore, Mattos et al. (2019) showed how contrasting dispersal potentials can affect crustacean genetic structure and connectivity along the entire Brazilian coast.
2.2 Topic 2. Standardized methods, long-term data, and findable, accessible, interoperable and reusable principles
Despite efforts to produce monitoring protocols (e.g., ReBentos and MBON Pole-to-Pole), long-term ecological studies on Brazilian sandy beaches remain scarce. In one of the few examples, Costa et al. (2022b) compiled data from 2013–2021 and showed that the abundance of the ghost crab Ocypode quadrata increased during beach closures due to the COVID-19 pandemic. The only current long-term (> 20 years) ecological investigation is being performed at Cassino Beach, South Brazil (Odebrecht et al., 2017). FAIR principles are still hardly applied to sandy beach research in Brazil, and most raw data remain restricted even after the publication of scientific papers.
2.3 Topic 3. Ecological impacts related to climate change and anthropic activities
Brazilian beaches have been jeopardized by oil spills (Marques et al., 2017; Sills et al., 2020; da Rosa, 2022), sewage discharges (Roth et al., 2016), marine litter (Neves et al., 2022), overfishing (Bender et al., 2014), chemical contamination (Cabrini et al., 2017; Cabrini et al., 2018; Ragagnin and Turra, 2022), trampling and vehicles traffic (Bom and Colling, 2020; Santos et al., 2021b; Bom and Colling, 2022; Santos et al., 2022) and coastal urbanization (Rêgo et al., 2018; Corte et al., 2022; Laurino et al., 2022; Shah Esmaeili et al., 2022). Furthermore, researchers have shown that urbanization may increase parasitism in invertebrates and fishes (Corte, 2015; Shah Esmaeili et al., 2021a). Investigation of plastic pollution has advanced significantly (Costa et al., 2022b; Mengatto and Nagai, 2022), and studies suggested that assessments should consider the physical variables that regulate beach dynamics such as wave action and tidal cycles (Balthazar-Silva et al., 2020; Tsukada et al., 2021).
Investigations on the effects of climate change focused mainly on high-intensity storms (Machado et al., 2016; Turra et al., 2016; Corte et al., 2017b; Corte et al., 2018; Oliveira and Yokoyama, 2021). Experiments to assess anthropogenic and climate change impacts are still scarce (but see Laurino et al., 2020; Izar et al., 2022; Laurino et al., 2022, Laurino et al., 2023; Laurino and Turra, 2021). Nevertheless, Brazilian researchers advanced in the use of biodiversity as tools for environmental monitoring and assessment (Pombo and Turra, 2013; Cardoso et al., 2016; Gorman et al., 2017; Pombo and Turra, 2017; Checon et al., 2018a; Checon et al., 2018b; Costa and Zalmon, 2019; Costa et al., 2020b; Barboza et al., 2021; Costa and Zalmon, 2021; Costa et al., 2022a; Checon et al., 2023b; Checon et al., 2023c).
2.4 Topic 4. Sandy beach as socio-ecological systems and management strategies based on the ecosystem
While sandy beaches ecosystems provide regulating, cultural, supporting, and provisioning services (Harris and Defeo, 2022), studies in Brazil were mostly focused on cultural services such as tourism activities (Checon et al., 2022b). Accordingly, Brazilian sandy beach management remains overwhelmingly focused on social-economic aspects such as engineering interventions to mitigate erosion (e.g., armoring and nourishment), cleaning, and tourism support (e.g., Simões et al., 2022, Borges et al., 2023). To improve management practices, Xavier et al. (2020) and Corrêa et al. (2021) highlighted the need for a more holistic understanding of the beach environment, including the diversity and interactions of ecological and social components. Moreover, Araújo et al. (2021) adapted the conceptual model DPSWIR (Driving Force-Pressure-State-Impact-Well-being-Response) to assess the effects of coastal ecosystem services loss on human well-being.
Efforts have been also made to propose an Ecosystem-Based Management (EBM) approach for Brazilian sandy beaches (e.g. Bombana et al., 2022), but empirical and theoretical research on sandy beach management is still incipient (Xavier et al., 2020; Corrêa et al., 2021). Most studies aim to understand the anthropogenic drivers associated with social and ecological deterioration rather than assess the performance of management interventions (Xavier et al., 2020). Corrêa et al. (2020) identified two barriers to EBM implementation at the local level: overcoming current undesirable governance structures and fitting governance to multilevel ecosystem dynamics.
Nature-based solutions (NbS) assume that natural processes can solve management failures and have been proposed to mitigate the degradation and vulnerability of coastal environments to erosion (Slinger et al., 2021). Manes et al. (2023) estimated that nature-based shoreline protection can reduce the risks of climate-induced hazards to the Brazilian coastline by 2.5 times. Costa et al. (2020a) suggested the addition of natural obstructions in the supralittoral and reforestation to prevent ghost crabs and turtle hatchlings from being killed by vehicles on the sand.
3 Future directions
Sandy beach ecological studies performed in Brazil increased over the past decade; however, these advances do not ensure the preservation of our beaches. While ecological knowledge is crucial to preserve our beaches, it alone is insufficient since successful management is largely contingent upon changes in the environment, governance, and new technologies.
Management and governance have a key role in maintaining sustainable ecosystem services and their benefits (Harris and Defeo, 2022), and it is essential to use scientific knowledge to subsidize the decision-making process by developing evidence-based management strategies to reduce the harmful consequences of anthropic activities and mitigate climate change effects.
Collaborative and multidisciplinary networks are crucial for ensuring that the knowledge produced leads to effective changes in governance and cultural aspects towards beach ecosystems conservation. EBM should be fostered, integrating both social and natural systems in a transdisciplinary way, considering the temporal and spatial scales of processes, the benefits from beaches to people, and attempting to build socioecological models that support decision-making (Gonçalves et al., 2020; Corrêa et al., 2021; Xavier et al., 2022).
Incorporating ecological principles into engineering can improve management practices and foster the development of mechanisms to address complex challenges threatening beach conservation, such as the synergic effects of coastal urbanization and climate change. Emerging technologies such as eDNA, Remote Sensing (RS), and unmanned aerial vehicles for imaging are promising tools for evaluating sandy beach biodiversity and ecological processes, which can reduce the costs and effort associated with biodiversity assessment and monitoring (Barboza et al., 2021; Shah Esmaeili et al., 2021a; Checon et al., 2022a).
Long-term data are necessary to comprehend how climate change is affecting sandy beach ecosystems and may compromise their goods and services, as well as to understand the population dynamics of exploited species, changes in species distribution, storage and turnover of organic carbon, and impacts of human activities and harmful algal blooms (Fanini et al., 2020). Expanding knowledge about larval dispersion, settlement, and resilience to environmental changes is also needed to understand the dynamics of beach biodiversity. We have limited information on the diversity and ecological role of microorganisms (viruses, bacteria, fungi, parasites) and meiofaunal species, and beaches from North and Northeast Brazil remain largely understudied. Similarly, sublittoral communities and the backshore remain overlooked. Stable isotope analysis may help elucidate the connection between sandy beaches and adjacent habitats. Studies on the whole Littoral Active Zone are essential to identifying key physical and ecological processes and their boundary areas (Fanini et al., 2020). It is also urgent to conduct studies on the effects of heat waves on beach species and assemblages.
We strongly recommend that data collation/curation follow the FAIR principles that lead to legislation focused on advances in EBM. For example, data should be published in open-access databases (e.g., GBIF and OBIS) and made available using a CC-BY license.
Importantly, the effort for knowledge production should consider societal demands, and assist managers in providing assertive and applicable responses to such a complex system in a changing environment. In addition, an effort should be made to congregate the science we are doing and to implement the science we need for the beaches we want (e.g., ABC, 2021), promoting a better dialogue with the Sustainable Development Goals of the United Nations 2030 Agenda for Sustainable Development (UNGA, 2015) and the outcomes and challenges of the United Nations Decade of Ocean Science for Sustainable Development (IOC/UNESCO, 2020; Claudet et al., 2020).
Author contributions
GC and CaB led the analyses and writing of the manuscript. YSE, TM, LCos, GM, HC, NM, PP, PD, TC, VS, EB, JR, LCol, LR, LY, RC, MPo, PM, LX, TS, MPe, LB, IL, MD, CO, AK, CrB, AS-G, IZ, AA, and AT contributed critically to the drafts and gave final approval for publication. All authors contributed to the article and approved the submitted version.
Funding
This work was supported by Fundaç ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) with grant number E-26/210.571/2021, and E-26/201.382/2021, Maré-Limpa: Pesquisas e Divulgação para redução do lixo no oceano” under the Grant TAC ALSUB Project contract 265/2022. “The TAC ALSUB Project is an environmental offset measure established through a Consent Decree/Conduct Adjustment Agreement between the Federal Public Ministry and the company PETROBRAS (process 1.30.001.000486/2019-08)”. YSE is supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2018/0955-5), TFM is supported by Research Department of UNIRIO, LLC is supported by FAPERJ (E 26/200.620/2022 and E-26/210.384/2022), PCP is supported by FAPERJ (E-26/200.375/2023) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (306788/2021-7), TC is supported by FAPERJ (E-26/210.527/2019 and E-26/211.433/2021), JSRF is supported by CNPq (303609/2022-2), PLM is supported by CAPES (code 001, PNPD scholarship), LYX is supported by USPSusten post-doctoral program, AS-G is supported by CNPq (301475/ 2017-2), ACZA is supported by CNPq (301551/2019-7), AT is supported by FAPESP (2018/19776-2), Fundação Grupo Boticário (1133_20182), and CNPq (310553/2019-9), and CAMB is supported by FAPERJ (E-26/201.382/2021).
Acknowledgments
We thank Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro for supporting the Ecology and Conservation of Sandy Beaches from Rio de Janeiro Symposium within the scope of the Programa de Apoio à Organização de Eventos Científicos, Tecnológicos e de Inovação no Estado do Rio de Janeiro – 2021 (E-26/210.571/2021). We thank Diego Lercari for his valuable comments that helped improve the manuscript.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
ABC (2021). Academia Brasileira de Ciências. Declaração da Academia Brasileira de Ciências sobre a Década da Ciência Oceânica para o Desenvolvimento Sustentável.
Amaral A. C. Z., Corte G. N., Filho J. S. R., Denadai M. R., Colling L. A., Borzone C., et al. (2016). Brazilian Sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities. Braz. J. Oceanogr 64 (Special Issue 2), 5–16. doi: 10.1590/S1679875920160933064sp2
Araújo C. P. S., Santos D. S., Lins-de-Barros F., Hacon S. S. (2021). Linking ecosystem services and human health in coastal urban planning by DPSIWR framework. Ocean Coast. Manage. 210, 105728. doi: 10.1016/j.ocecoaman.2021.105728
Baia E., Rollnic M., Venekey V. (2021). Seasonality of pluviosity and saline intrusion drive meiofauna and nematodes on an Amazon freshwater-oligohaline beach. J. Sea Res. 170, 102022. doi: 10.1016/j.seares.2021.102022
Baia E., Venekey V. (2019). Distribution patterns of meiofauna on a tropical macrotidal sandy beach, with special focus on nematodes (Caixa d’Água, Amazon coast, Brazil). Braz. J. Oceanography 67. doi: 10.1590/S1679-87592019023006701
Balthazar-Silva D., Turra A., Moreira F. T., Camargo R. M., Oliveira A. L., Barbosa L., et al. (2020). Rainfall and tidal cycle regulate seasonal inputs of microplastic pellets to sandy beaches. Front. Environ. Sci. 8. doi: 10.3389/fenvs.2020.00123
Barboza C. A. M., Mattos G., Soares-Gomes A., Zalmon I. R., Costa L. L. (2021). Low densities of the ghost crab Ocypode quadrata related to large scale human modification of sandy shores. Front. Environ. Sci. 8. doi: 10.3389/fmars.2021.589542
Bender M. G., Machado G. R., Silva P. J. A., Floeter S. R., Monteiro-Netto C., Luiz O. J., et al. (2014). Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the southwestern Atlantic. PloS One 9, e110332. doi: 10.1371/journal.pone.0110332
Bom F. C., Colling L. A. (2020). Impact of vehicles on benthic macrofauna on a subtropical sand beach. Mar. Ecol. 41, e12595. doi: 10.1111/maec.12595
Bom F. L., Colling L. A. (2022). The bivalves amarilladesma mactroides and donax hanleyanus as bioindicators of the impact of vehicles on cassino beach, southern Brazil. An. Acad. Bras. Ciênc. 94, e20211265. doi: 10.1590/0001-3765202220211265
Bombana B. A., Turra A., Polette M. (2022). Gestão de praias: do conceito à prática Vol. 1 (São Paulo: Instituto de Estudos Avançados da Universidade de São Paulo), 441.
Borges J. A., de Moura Pereira J., Fernandes L. S., de Souza Z. M., de Araújo M. C.B., Silva-Cavalcanti J. S., et al. (2023). Temporal analysis of environmental quality of Ponta Negra beach (Natal-RN) related to coastal erosion: what has changed in 10 years? Environ Monit Assess 195 (1), 156. doi: 10.1007/s10661-022-10724-2
Cabrini T. M. B., Barboza C. A. M., Skinner V. B., Hauser-Davis R. A., Rocha R. C., Saint’Pierre T. D., et al. (2017). Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, southeastern Brazil. Environ. pollut. 221, 116–129. doi: 10.1016/j.envpol.2016.11.053
Cabrini T. M. B., Barboza C. A. M., Skinner V. B., Hauser-Davis R. A., Rocha R. C., Saint’Pierre T. D., et al. (2018). Investigating heavy metal bioaccumulation by macrofauna species from different feeding guilds from sandy beaches in Rio de Janeiro, Brazil. Ecotoxicol. Environ. Saf. 162, 655–662. doi: 10.1016/j.ecoenv.2018.06.077
Cardoso R. S., Barboza C. A., Skinner V. B., Cabrini T. M. (2016). Crustaceans as ecological indicators of metropolitan sandy beaches health. Ecol. Indic. 62, 154–162. doi: 10.1016/j.ecolind.2015.11.039
Cardoso E. M. P., Petracco M., Santos T., Venekey V., Aviz D. (2023). Effects of the ridge-and-runnel system on macrofaunal spatial distribution on a macrotidal sandy beach in the Brazilian Amazon coast. Mar. Ecol. 00, e12755. doi: 10.1111/maec.12755
Checon H. H., Corte G. N., Muniz P., Brauko K. M., Domenico M. D., Bícego M. C., et al. (2018a). Unraveling the performance of the benthic index AMBI in a subtropical bay: the effects of data transformations and exclusion of low-reliability sites. Mar. pollut. Bull. 126, 438–448. doi: 10.1016/j.marpolbul.2017.11.059
Checon H. H., Corte G. N., Shah Esmaeili Y., Laurino I. R. A., Turra A. (2023c). Sandy beach bioindicators: how each benthic taxon tells its own story. Ocean Coast. Manage. 240, 106645. doi: 10.1016/j.ocecoaman.2023.106645
Checon H. H., Corte G. N., Shah Esmaeili Y., Muniz P., Turra A. (2023b). The efficacy of benthic indices to evaluate the ecological quality and urbanization effects on sandy beach ecosystems. Sci.Total Environ. 856, 159190. doi: 10.1016/j.scitotenv.2022.159190
Checon H. H., Costa H. H. R., Corte G. N., Souza F. M., Pombo M. (2023a). Rainfall influences the patterns of diversity and species distribution in sandy beaches of the Amazon coast. Sustainability 15, 5417. doi: 10.3390/su15065417
Checon H. H., Shah Esmaeili Y., Corte G. N., Malinconico N., Turra A. (2022a). Locally developed models improve the accuracy of remotely assessed metrics as a rapid tool to classify sandy beach morphodynamics. PeerJ 10, e13413. doi: 10.7717/peerj.13413
Checon H. H., Vieira D. C., Corte G. N., Sousa E. C. P. M., Fonseca G., Amaral A. C. Z. (2018b). Defining soft bottom habitats and potential indicator species as tools for monitoring coastal systems: a case study in a subtropical bay. Ocean Coast. Manage. 164, 68–78. doi: 10.1016/j.ocecoaman.2018.03.035
Checon H. H., Xavier L. Y., Gonçalves L. R., Carrilho C. D., da Silva A. G. (2022b). Beach market: what have we been computing in Brazil? Ocean Coast. Res. 69, e21038. doi: 10.1590/2675-2824069.21031hhc
Claudet J., Bopp L., Cheung W. W. L., Devillers R., Escobar-Briones E., Haugan P., et al. (2020). A roadmap for using the UN decade of ocean science for sustainable development in support of science, policy, and action. One Earth 2 (1), 34–42.
Corrêa M. R., Xavier L. Y., Goncalves L. R., Andrade M. M., Oliveira M., Malinconico N., et al. (2021). Desafios para promoção da abordagem ecossistêmica à gestão de praias na América Latina e Caribe. Estudos Avançados 35, 219–236. doi: 10.1590/s0103-4014.2021.35103.012
Corrêa M. R., Xavier L. Y., Holzkämper E., Martins De Andrade M., Turra A., Glaser M. (2020). Shifting shores and shoring shifts-how can beach managers lead transformative change? A Study Challenges Opportunities Ecosystem-Based Management. Hum. Ecol. Rev. 26, 59–84. doi: 10.22459/HER.26.02.2020.04
Corte G. N. (2015). Reproductive cycle and parasitism in the clam Anomalocardia brasiliana (Bivalvia: Veneridae). Invertebr. Reprod. Dev. 59 (2), 66–80. doi: 10.1080/07924259.2015.1007215
Corte G. N., Checon H. H., Fonseca G., Vieira D. C., Gallucci F., Domenico M. D., et al. (2017a). Cross-taxon congruence in benthic communities: searching for surrogates in marine sediments. Ecol. Indic 78, 173–182. doi: 10.1016/j.ecolind.2017.03.031
Corte G. N., Checon H. H., Shah Esmaeili Y., Defeo O., Turra A. (2022). Evaluation of the effects of urbanization and environmental features on sandy beach macrobenthos highlights the importance of submerged zones. Mar. pollut. Bull. 182, 113962. doi: 10.1016/j.marpolbul.2022.113962
Corte G. N., Gonçalves-Souza T., Checon H. H., Siegle E., Coleman R. A., Amaral A. C. Z. (2018). When time affects space: dispersal ability and extreme weather events determine metacommunity organization in marine sediments. Mar. Environ. Res. 136, 139–152. doi: 10.1016/j.marenvres.2018.02.009
Corte G. N., Schlacher T. A., Checon H. H., Barboza C. A. M., Siegle E., Coelman R. A., et al. (2017b). Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species. PeerJ 2017 (5), e3360. doi: 10.7717/peerj.3360
Corte G. N., Yokoyama L. Q., Checon H. H., Turra A. (2019). Spatial and temporal variation in the diet of the sandy beach gastropod Olivella minuta. Invertebr. Biol. 138, e12269. doi: 10.1111/ivb.12269
Corte G. N., Yokoyama L. Q., Tardelli D. T., Checon H. H., Turra A. (2020). Spatial patterns of the gastropod Olivella minuta reveal the importance of tide-dominated beaches and the subtidal zone for sandy beach populations. Reg. Stud. Mar. Sci. 39, 101454. doi: 10.1016/j.rsma.2020.101454
Costa L. L., Fanini L., Zalmon I. R., Defeo O., McLachlan A. (2022a). Cumulative stressors impact macrofauna differentially according to sandy beach type: a meta-analysis. J. Environ. Manage. 307, 114594. doi: 10.1016/j.jenvman.2022.114594
Costa L. L., Machado P. M., Barboza C.A. M., Soares-Gomes A., Zalmon I. R. (2022b). Recovery of ghost crabs metapopulations on urban beaches during the covid-19 “anthropause”. Mar. Environ. Res. 180, 105733. doi: 10.1016/j.marenvres.2022.105733
Costa L. L., Secco H., Arueira V. F., Zalmon I. R. (2020a). Mortality of the Atlantic ghost crab Ocypode quadrata (Fabricius 1787) due to vehicle traffic on sandy beaches: a road ecology approach. J. Environ. Manage. 260, 110168. doi: 10.1016/j.jenvman.2020.110168
Costa L. L., Tavares D. C., Suciu M. C., Rangel D. F., Zalmon I. R. (2017). Human-induced changes in the trophic functioning of sandy beaches. Ecol. Indic. 82, 304–315. doi: 10.1016/j.ecolind.2017.07.016
Costa L. L., Zalmon I. R. (2019). Multiple metrics of the ghost crab Ocypode quadrata (Fabricius 1787) for impact assessments on sandy beaches. Estuar. Coast. Shelf Sci. 218, 237–245. doi: 10.1016/j.ecss.2018.12.013
Costa L. L., Zalmon I. R. (2021). Macroinvertebrates as umbrella species on sandy beaches. Biol. Conserv. 253, 108922. doi: 10.1016/j.biocon.2020.108922
Costa L. L., Zalmon I. R., Fanini L., Defeo O. (2020b). Macroinvertebrates as indicators of human disturbances on sandy beaches: a global review. Ecol. Indic. 118, 106764. doi: 10.1016/j.ecolind.2020.106764
Danin A. P. F., Pombo M., Martinelli-Lemos J. M., Santos C. R. M., Aviz D., Petracco M. (2020). Population ecology of the hermit crab Clibanarius symmetricus (Anomura: Diogenidae) on an exposed beach of the Brazilian Amazon coast. Reg. Stud. Mar. Sci. 33, 100944. doi: 10.1016/j.rsma.2019.100944
da Rosa L. C. (2022). Sandy beach macroinfauna response to the worst oil spill in Brazilian coast: no evidence of an acute impact. Mar. pollut. Bull. 180, 113753. doi: 10.1016/j.marpolbul.2022.113753
da Rosa Leal G., Efe M. A., Ozorio C. P. (2013). Use of sandy beaches by shorebirds in southern Brazil. Ornithologia 6 (1), 14–21.
Fanini L., Defeo O., Elliott M. (2020). Advances in sandy beach research – local and global perspectives. Estuar. Coast. Shelf Sci. 234, 106646. doi: 10.1016/j.ecss.2020.106646
Gonçalves L. R., Oliveira M., Turra A. (2020). Assessing the complexity of social-ecological systems: taking stock of the cross-scale dependence. Sustainability 12, 6236. doi: 10.3390/su12156236
Gorman D., Corte G. N., Checon H. H., Amaral A. C. Z., Turra A. (2017). Optimizing coastal and marine spatial planning through the use of high-resolution benthic sensitivity models. Ecol. Indic. 82, 23–31. doi: 10.1016/j.ecolind.2017.06.031
Harris L. R., Defeo O. (2022). Sandy shore ecosystem services, ecological infrastructure, and bundles: new insights and perspectives. Ecosyst. Serv. 57, 101477. doi: 10.1016/j.ecoser.2022.101477
Hernáez P., Miranda M. S., Rio J. P., Pinheiro M. A. (2022). A new Callichirus ghost shrimp species from the south-western Atlantic, long confounded with C. major (Say 1818)(Decapoda: Axiidea: Callichiridae). J. Natural History 56 (9-12), 533–563. doi: 10.1080/00222933.2022.2067016
Hurtado L. A., Mateos M., Mattos G., Liu S., Haye P. A., Paiva P. C. (2016). Multiple transisthmian divergences, extensive cryptic diversity, occasional long-distance dispersal, and biogeographic patterns in a marine coastal isopod with an amphi-American distribution. Ecol. Evol. 6, 7794–7808. doi: 10.1002/ece3.2397
IOC (Intergovernmental Oceanographic Commission). (2015). UNESCO (United Nations Educational, Scientific and Cultural Organization). 2020. The science we need for the ocean we want: the United Nations Decade of Ocean Science for Sustainable Development (2021-2030). Paris: IOC Publishing.
Izar G. M., Laurino I. R. A., Tan T. Y., Nobe C. R., Gusso-houeri P. K., Moreno B. B., et al. (2022). Plastic pellets make Excirolana armata more aggressive: intraspecific interactions and mortality in field and laboratory ecotoxicological assays. Mar. pollut. Bull. 185, 114325. doi: 10.1016/j.marpolbul.2022.114325
Klein A. H. F., Short A. D. (2016). “Brazilian Beach Systems: Introduction” in Brazilian Beach systems. Eds. Short A. D., Klein A. H. F. (Cham: Springer International Publishing), 1–35. doi: 10.1007/978-3-319-30394-9_1
Lacerda C. H. F., Barletta M., Dantas D. V. (2014). Temporal patterns in the intertidal faunal community at the mouth of a tropical estuary. J. Fish Biol. 85, 1571–1602. doi: 10.1111/jfb.12518
Laurino I. R. A., Checon H. H., Corte G. N., Turra A. (2020). Flooding affects vertical displacement of intertidal macrofauna: a proxy for the potential impacts of environmental changes on sandy beaches. Estuar. Coast. Shelf Sci. 245, 106882. doi: 10.1016/j.ecss.2020.106882
Laurino I. R. A, Lima T. P., Turra A. (2023). Effects of natural and anthropogenic storm-stranded debris in upper-beach arthropods: Is wrack a prey hotspot for birds? Sci. Total Environ. 857, 159468.
Laurino I. R. A., Checon H. H., Corte G. N., Turra A. (2022). Does coastal armoring affect biodiversity and its functional composition on sandy beaches? Mar. Environ. Res. 181, 105760. doi: 10.1016/j.marenvres.2022.105760
Laurino I. R. A., Turra A. (2021). The threat of freshwater input on sandy beaches: a small-scale approach to assess macrofaunal changes related to salinity reduction. Mar. Environ. Res. 171, 105459. doi: 10.1016/j.marenvres.2021.105459
Lercari D. (2023). Sandy beaches: publication features, thematic areas and collaborative networks between 2009 and 2019. Estuar Coast. Shelf Sci. 281, 108211. doi: 10.1016/j.ecss.2023.108211
Linhares B. D. A., Bordin J., Nunes G. T., Ott P. H. (2021). Breeding biology of the American oystercatcher Haematopus palliatus on a key site for conservation in southern Brazil. Ornithol. Res. 29, 16–21. doi: 10.1007/s43388-021-00042-5
Machado P. M., Costa L. L., Suciu M. C., Tavares D. C., Zalmon I. R. (2016). Extreme storm wave influence on sandy beach macrofauna with distinct human pressures. Mar. pollut. Bull. 107, 125–135. doi: 10.1016/j.marpolbul.2016.04.009
Manes S., Gama-Maia D., Vaz S., Pires A. P. F., Tardin R. H., Maricato G., et al. (2023). Nature as a solution for shoreline protection against coastal risks associated with ongoing sea-level rise. Ocean Coast. Manage. 235, 106487. doi: 10.1016/j.ocecoaman.2023.106487
Maria T. F., Vanaverbeke J., Vanreusel A., Esteves A. M. (2016). Sandy beaches: state of the art of nematode ecology. An. Acad. Bras. Cienc. 88 (3), 1635–1653. doi: 10.1590/0001-3765201620150282
Marques W. C., Stringari C. E., Kirinus E. P., Möller O. O., Toldo E. E., Andrade M. M. (2017). Numerical modeling of the tramandaí beach oil spill, Brazil–case study for January 2012 event. Appl. Ocean Res. 65, 178–191. doi: 10.1016/j.apor.2017.04.007
Mattos G., Seixas V. C., Paiva P. C. (2019). Comparative phylogeography and genetic connectivity of two crustacean species with contrasting life histories on south Atlantic sandy beaches. Hydrobiologia 826, 319. doi: 10.1007/s10750-018-3744-3
Mengatto M. F., Nagai R. H. (2022). A first assessment of microplastic abundance in sandy beach sediments of the Paranaguá estuarine complex, south Brazil (RAMSAR site). Mar. pollut. Bull. 177, 113530. doi: 10.1016/j.marpolbul.2022.113530
Neves R. A. F., Seixas J. T. C., Rodrigues N., Santos L. N. (2022). Impacts of the COVID-19 pandemic restrictions on solid waste pollution in the worldwide iconic Copacabana beach (Rio de Janeiro, Brazil). Mar. pollut. Bull. 181, 113865. doi: 10.1016/j.marpolbul.2022.113865
Odebrecht C., Secchi E. R., Abreu P. C., Muelbert J. H., Uiblein F. (2017). Biota of the patos lagoon estuary and adjacent marine coast: long-term changes induced by natural and human-related factors. Mar. Biol. Res. 13, 3–8. doi: 10.1080/17451000.2016.1258714
Oliveira F. R. F., Yokoyama L. Q. (2021). Response of Ocypode quadrata to storm waves on an urbanized sandy beach. Ocean Coast. Res. 69, v69:e21005. doi: 10.1590/2675-2824069.20-339FRFO
Petracco M., Cardoso R. C., Turra A. (2013). Patterns of sandy-beach macrofauna production. J. Mar. Biol. Assoc. U.K. 93, 1717–1725. doi: 10.1017/S0025315413000246
Pinotti R. M., Minasi D. M., Colling L. A., Bemvenuti C. E. (2014). A review on macrobenthic trophic relationships along subtropical sandy shores in southernmost Brazil. Biota Neotrop. 14(3):e20140069. doi: 10.1590/1676-06032014006914
Pombo M., Turra A. (2013). Issues to be considered in counting burrows as a measure of Atlantic ghost crab populations, an important bioindicator of sandy beaches. PloS One 8, e83792. doi: 10.1371/journal.pone.0083792
Pombo M., Turra A. (2017). Variation in the body growth parameters of the ghost crab ocypode quadrata from morphodynamically distinct sandy beaches. Braz. J. Oceanogr. 65, 656–665. doi: 10.1590/s1679-87592017114606504
Ragagnin M. N., Turra A. (2022). Imposex incidence in the sandy beach snail Hastula cinerea reveals continued and widespread tributyltin contamination after its international ban. Reg. Stud. Mar. Sci. 49, 102118. doi: 10.1016/j.rsma.2021.102118
Rangel D. F., Silva E. F. N., Da and Costa L. L. (2022). Occurrence and behaviour of shorebirds depend on food availability and distance of beaches from urban settlements. Acta Ornithol. 56, 217–226. doi: 10.3161/00016454AO2021.56.2.008
Rêgo J. C. L., Soares-Gomes A., da Silva F. S. (2018). Loss of vegetation cover in a tropical island of the Amazon coastal zone (Maranhão island, Brazil). Land Use Policy 71, 593–601. doi: 10.1016/j.landusepol.2017.10.055
Roth F., Lessa G. C., Wild C., Kikuchi R. K. P., Naumann M. S. (2016). Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil). Mar. pollut. Bull. 106 (1), 43–48. doi: 10.1016/j.marpolbul.2016.03.048
Santos T. M. T., Almeida M. F., Aviz D., Rosa Filho J. S. (2021a). Patterns of spatial and temporal distribution of the macrobenthic fauna on an estuarine macrotidal sandy beach on the Amazon coast (Brazil). Mar. Ecol. Evol. Persp. 42 (5), e12675. doi: 10.1111/maec.12675
Santos T. M. T., Aviz D. (2018). Macrobenthic fauna associated with Diopatra cuprea (Onuphidae: Polychaeta) tubes on a macrotidal sandy beach of the Brazilian Amazon coast. J. Mar. Biol. Assoc. U. K. 99, 751–759. doi: 10.1017/S0025315418000711
Santos T. M. T., Aviz D. (2020). Effects of a fish weir on the structure of the macrobenthic community of a tropical sandy beach on the Amazon coast. J. Mar. Biol. Assoc. U. K. 100 (2), 211–219. doi: 10.1017/S0025315419001231
Santos T. M. T., Petracco M., Venekey V. (2021b). Recreational activities trigger changes in meiofauna and free-living nematodes on Amazonian macrotidal sandy beaches. Mar. Environ. Res. 167, 105289. doi: 10.1016/j.marenvres.2021.105289
Santos T. M. T., Petracco M., Venekey V. (2022). Effects of vehicle traffic and trampling on the macrobenthic community of Amazonian macrotidal sandy beaches. J. Mar. Biol. Assoc. U. K. 102 (3-4), 285–307. doi: 10.1017/S0025315422000480
Seixas V. C., Steiner T. M., Solé-Cava A. M., Amaral A. C. Z., Paiva P. C. (2021). Hidden diversity within the Diopatra cuprea complex (Annelida: Onuphidae): morphological and genetics analyses reveal four new species in the south-west Atlantic. Zool. J. Linn. Soc 191 (3), 637–671. doi: 10.1093/zoolinnean/zlaa032
Shah Esmaeili Y., Checon H. H., Corte G. N., Turra A. (2021b). Parasitism by isopods in sandy beach fish assemblages: role of urbanization and environmental characteristics. Hydrobiologia 848 (20), 4885–4901. doi: 10.1007/s10750-021-04680-0
Shah Esmaeili Y., Corte G. N., Checon H. H., Bilatto C. G., Lefcheck J. S., Amaral A. C. Z., et al. (2022). Revealing the drivers of taxonomic and functional diversity of nearshore fish assemblages: implications for conservation priorities. Divers. Distrib. 28, 1597–1609. doi: 10.1111/ddi.13453
Shah Esmaeili Y., Corte G. N., Checon H. H., Gomes T., Lefcheck J., Amaral A. C. Z., et al. (2021a). Comprehensive assessment of shallow surf zone fish biodiversity requires a combination of sampling methods. Mar. Ecol. Prog. Ser. 667, 131–144. doi: 10.3354/meps13711
Sills J., Soares M. O., Teixeira C. E. P., Bezerra L. E. A., Rossi S., Tavares T., et al. (2020). Brazil Oil spill response: time for coordination. Science 367, 155. doi: 10.1126/science.aaz9993
Silva C. F., Seixas V. C., Barroso R., Di Domenico M., Amaral A. C., Paiva P. C. (2017). Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian coast. PloS One 12 (5), e0177760. doi: 10.1371/journal.pone.0177760
Simões R. S., Calliari L. J., de Figueiredo S. A., de Oliveira U. R., de Almeida L. P. M. (2022). Coastline dynamics in the extreme south of Brazil and their socio-environmental impacts. Ocean Coast. Manage. 230, 106373. doi: 10.1016/j.ocecoaman.2022.106373
Slinger J., Stive M., Luijendijk A. (2021). Nature-based solutions for coastal engineering and management. Water 13 (7), 976. doi: 10.3390/w13070976
Soares M. O., Campos C. C., Carneiro P. M. B., Barroso H. S., Marins R. V., Teixeira C. E. P., et al. (2021). Challenges and perspectives for the Brazilian semi-arid coast under global environmental changes. Perspect. Ecol. Conserv. 19 (3), 267–278. doi: 10.1016/j.pecon.2021.06.001
Souza D. G. C., Petracco M., Danin A. P. F., Pombo M. (2021). Population structure and use of space by ghost crabs (Brachyura: Ocypodidae) on an equatorial, macrotidal sandy beach. Estuar. Coast. Shelf Sci. 258, 107376. doi: 10.1016/j.ecss.2021.107376
Tsukada E., Fernandes E., Vidal C., Salla R. F. (2021). Beach morphodynamics and its relationship with the deposition of plastic particles: a preliminary study in southeastern Brazil. Mar. pollut. Bull. 172, 112809. doi: 10.1016/j.marpolbul.2021.112809
Turra A., Pombo M., Petracco M., Siegle E., Fonseca M., Denadai M. R. (2016). Frequency, magnitude, and possible causes of stranding and mass-mortality events of the beach clam tivela mactroides (Bivalvia: veneridae). PloS One 11(1), e0146323. doi: 10.1371/journal.pone.0146323
UNGA (United Nations General Assembly). (2015). Transforming our world: the 2030 agenda for sustainable development. New York: UNGA.
Xavier L. Y., Gonçalves L. R., Checon H. H., Corte G. N., Turra A. (2020). Are we missing the bigger picture? an analysis of how science can contribute to an ecosystem-based approach for beach management on the são paulo macrometropolis. Ambiente Sociedade 23, e01411. doi: 10.1590/1809-4422asoc20190141r1vu2020L2DE
Keywords: anthropocene, biodiversity, socio-ecological systems, conservation, management, ecosystem-based management
Citation: Corte GN, Shah Esmaeili Y, Maria TF, Costa LL, Mattos G, Checon HH, Malinconico N, Paiva PC, Debiasi P, Cabrini T, Seixas VC, Bulhões E, Rosa Filho JS, Colling LA, da Rosa LC, Yokoyama LQ, Cardoso R, Pombo M, Mancini PL, Xavier LY, Santos T, Petracco M, Bechara LS, Laurino IRA, Di Domenico M, Odebrecht C, Klein AHdF, Rocha-Barreira CdA, Soares-Gomes A, Zalmon IR, Amaral ACZ, Turra A and Barboza CAdM (2023) The science we need for the beaches we want: frontiers of the flourishing Brazilian ecological sandy beach research. Front. Mar. Sci. 10:1200979. doi: 10.3389/fmars.2023.1200979
Received: 05 April 2023; Accepted: 13 June 2023;
Published: 07 July 2023.
Edited by:
Salvatore Siciliano, Fundação Oswaldo Cruz (Fiocruz), BrazilReviewed by:
Diego Lercari, Faculty of Science, Marine Science Unit, Universidad de la República, UruguayCopyright © 2023 Corte, Shah Esmaeili, Maria, Costa, Mattos, Checon, Malinconico, Paiva, Debiasi, Cabrini, Seixas, Bulhões, Rosa Filho, Colling, da Rosa, Yokoyama, Cardoso, Pombo, Mancini, Xavier, Santos, Petracco, Bechara, Laurino, Di Domenico, Odebrecht, Klein, Rocha-Barreira, Soares-Gomes, Zalmon, Amaral, Turra and Barboza. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Guilherme Nascimento Corte, Z3VpbGhlcm1lY29ydGVAeWFob28uY29tLmJy; Carlos Alberto de Moura Barboza, Y2FybG9zYW1iYXJib3phQGdtYWlsLmNvbQ==