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Accurate prediction of ship trajectories is crucial to guarantee the safety of

maritime navigation. In this paper, a matrix neural network-based online ship

track cleaning and prediction algorithm called M-STCP is suggested to forecast

ship tracks. Firstly, the GPS-provided historical ship trajectory data is cleaned, and

the data cleaning process is finished using the anomaly point algorithm.

Secondly, the trajectory is input into the matrix neural network for training and

prediction, and the algorithm is improved by using Kalman filtering, which

reduces the influence of noise on the prediction results and improves the

prediction accuracy. In the end, the effectiveness of the method is verified

using real GPS trajectory data, and compared with the GRU model and long-

short-term memory networks. The M-STCP method can improve the prediction

accuracy of ship trajectory to 89.44%, which is 5.17% higher than LSTM and 1.82%

higher than GRU, effectively improving the prediction accuracy and

time efficiency.

KEYWORDS
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1 Introduction

Due to the contemporary information technology’s quick development, more and more

physical devices are connected across a variety of available networks, realizing the concept

of the Internet of Things (Koohang et al., 2022). Besides smart home (Lu, 2018), intelligent

transportation (Zhou et al., 2017), smart medical care (Nguyen et al., 2017), the Internet of

Things has also extended development in the marine field, and various marine sensors are

connected to serve smart ocean projects. Current data shows that the total value of marine

trade accounts for nine percent of China’s GDP, about 8.9415 trillion yuan (Li et al., 2021),

we are gradually aware of the importance of marine trade, vigorously developing the
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marine economy (Lam et al., 2018) improve the country’s economic

development level. To vigorously develop the marine economy, our

requirements for the transportation capacity and travel speed of

marine ships are getting higher and higher, and marine ships are

gradually developing towards large-scale, intelligent, and high-

speed, and the number of ships on the sea is also growing rapidly.

Because the sea ecosystem is so complicated and unstable, the

increase in the number of marine sensor equipment required,

unstable signals, and expensive maintenance costs, the probability

of potential safety hazards such as ship breakdowns and deviations

from the course (Zhang et al., 2021) has increased, making the

marine economic development unable to become more intelligent

and convenient.

To reduce the rate of ship accidents, we recognize the

importance of dynamic monitoring of ships (Roy, 2021). A key

step in the dynamic monitoring of the vessel’s motion status is to

predict the vessel’s future course. Nowadays, the navigation and

positioning system (Hu et al., 2015) installed on ships can use the

ship’s position, speed, heading, and other trajectory information at

a certain moment to predict the future trajectory of the ship.

Various positioning systems such as the Global Positioning

System (GPS) of the United States (El-Rabbany, 2002; Tetreault,

2005), China’s Beidou satellite navigation system (Yang et al., 2019),

European Union’s Galileo system, Russia’s GLONASS, etc. have

been widely used in the field of maritime transportation. GPS is

currently the most widely used civil navigation tool, which has the

advantages of global coverage, all-weather, error-free accumulation,

etc. The principle of GPS ship navigation information system is to

use orbital satellites to locate the ship, obtain relevant information

such as the longitude and latitude of the ship, GPS ship navigation

system is the use of satellites, ground receivers to send and receive

satellite signals, the use of the ship’s GPS receiver to convert the

received satellite signals into the ship’s real-time position

information (Nguyen, 2020). Predicting the trajectory of the ship

is an important part of navigation technology, and the historical

trajectory data collected by the GPS can be utilized to analyze and

predict the subsequent position, heading, and other information of

the ship, to achieve the purpose of controlling the ship’s route, and

provide strong support for port management of ships and reducing

the risk of collision.

Although the GPS navigation system can provide a large

amount of ship trajectory information, it is often subjective for

humans to rely only on the trajectory data provided by GPS to judge

the direction of the ship in the dynamic monitoring of the ship.

Therefore, GPS navigation data should be combined with various

predictive models to predict ship trajectories (Liu et al., 2022). So

far, the methods of trajectory prediction at home and abroad have

been gradually transformed from statistical methods such as

Kalman filter (Perera et al., 2010), Markov model (Zhang et al.,

2019), Gaussian mixture model (Dalsnes et al., 2018) to deep

learning methods and neural network methods such as BP neural

network (Xu et al., 2011), RNN (recurrent neural network) (Suo

et al., 2020), LSTM (long short-termmemory neural network)(Tang

et al., 2022) and hybrid model methods (Sun et al., 2022). Although

the results of ship trajectory prediction using the above methods are

promising, due to the spatial deviation of ship real-time trajectory,
Frontiers in Marine Science 02
that is, the different starting positions of ships in different ports

(longitude and latitude deviation), the prediction results are biased.

Therefore, we can consider using the image recognition machine

learning method that can maintain the spatial nature of the vessel’s

path. Over the last few years, it has been proposed to apply a Matrix

Neural Network (MNN) (Gao et al., 2017) to image recognition

tasks. As a feed forward neural network, MNN processes the

information of lower-level units through bilinear mapping. The

difference is that MNN (Popa, 2015) takes the input matrix straight

away. Some articles show that the matrix neural networks are

superior to convolutional neural networks in cyclone prediction

results (Zhang et al., 2018), so we can propose an online cleaning

and prediction algorithm for ship tracks based on matrix neural

network. In ship trajectory prediction, the ship trajectory

information is a time series data defined by longitude and

latitude, while the matrix neural network can easily input the ship

trajectory data set, without the need to vectorize the data set before

input, so it can reduce the loss of spatial information correlation

caused in the process of data set vectorization. In this paper, we use

real ship trajectory data to compare the prediction results of GRU

(Gated Recurrent Unit) model (Han et al., 2019) and LSTM (Tang

et al., 2022) to verify the good performance of matrix neural

network in trajectory prediction results.

The contributions in this article are outlined below:
• An online ship trajectory prediction algorithm based on

multi-parameter fusion M-STCP is proposed. The M-STCP

method based on matrix neural network for ship trajectory

prediction has better robustness and accuracy than

traditional methods, and can effectively deal with the

diversity and uncertainty in ship trajectory.

• For outliers and missing from the original data, analyze the

motion status and trajectory characteristics to clean the

data. We propose a fusion algorithm for data cleaning,

which can process ship trajectory data with multiple

parameters step by step. The cleansed data is processed

using a new encoding strategy and then predicted by using a

matrix neural network. The MNN method can solve the

complex relationship between several ship path data

variables and better store spatial information in time

series data.

• Using a large number of experiments using real datasets, we

verify the effectiveness of matrix neural networks in

trajectory prediction, which raises the prediction accuracy

by 1.82% percent versus GRU and 5.17% percent versus

LSTM, respectively.
The remaining portions of the essay are structured as follows:

Section 2 covers the literature on predicting ship trajectories.

Section 3 provides a summary of the M-STCP (Ship trajectory

cleaning prediction method based on matrix neural network) ship

trajectory prediction method framework and introduces the data

cleaning process, prediction process, and optimization process of

Kalman filtering. Section 4 describes our experimental method and

forecast analysis. Section 5 summarizes the paper and briefly

describes the boundaries and other work of this study.
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2 Related Work

The principle of probability and statistics is to assume that the

variables in the data set follow a certain probability distribution, and

then model the variables’ uncertainty using statistical techniques.

Kalman Filtering Algorithm (KF) is a filtering algorithm that can

make trajectory predictions by observing the probabilistic and

statistical characteristics of noise and then recursive calculations.

Jiang (Jiang et al., 2019) et al. used polynomial Kalman filtering for

trajectory prediction. Sindre (Fossen and Fossen, 2018) et al. used the

extended Kalman filter to process the sensor data to observe the vessel’s

state in real time and predict the vessel’s future motion. While

Kalman’s filtering method takes several iterations, it uses very little

storage space. Its disadvantage is that it can only realize short-term

predictions, and the setting of the initial state has a great impact on the

precision of the forecast outcomes. Among the probabilistic and

statistical methods, Gaussian process regression models (Roberts

et al., 2013) are the most common. Rong (Rong et al., 2019)

decomposed the ship’s trajectory into horizontal and vertical

directions. In transverse, Modeling the unpredictability of lateral

movement employs Gaussian processes, and in longitudinal through

acceleration changes. By assessing the mean and covariance matrices,

one can estimate the expected trajectory. The advantage of Gaussian

process regression is that it is highly applicable and easily

understandable. However, the drawbacks of excessive calculation are

also evident, and the accuracy of the prediction results decreases

noticeably as the prediction time grows. The Markov prediction

model (Chen et al., 2021) is a method for trajectory prediction using

the changing trend of the state transition probability matrix sequence.

Qiao (Qiao et al., 2014) et al. proposed a hidden Markov model that

can automatically adapt to the change of ship speed and select the

corresponding parameters and adopted the trajectory partitioning

algorithm to improve the efficiency of the hidden Markov model.

Guo (Guo et al., 2018) et al. improved the hidden Markov model and

proposed to construct a state transition matrix by using a high-order

multivariate Markov model to predict trajectories. The advantages of

theMarkovmodel are high accuracy and small error. The disadvantage

is that the prediction findings’ correctness will be strongly influenced

by the threshold that is selected.

A neural network (Aggarwal et al., 2018) is a technique that

mimics interconnected neurons in the human brain and is trained to

solve simple linear problems and complex nonlinear problems.

Neural networks have started being utilized to solve issues in the

field of maritime navigation (Noel et al., 2019; Volkova et al., 2021;

Imran et al., 2022) as artificial intelligence has advanced. Zhou (Zhou

et al., 2019) et al. trained the BP neural network to predict the

movement state of the ship, and the algorithm had a short running

time and high accuracy. Suo (Suo et al., 2020) et al. used the RNN

combined with the prediction framework of the GRU model, and

experiments proved that the prediction framework has good

prediction accuracy and higher computational efficiency. The

disadvantage is that it cannot effectively predict long-distance

trajectories and the computational cost is still high. Liu (Liu et al.,

2021) et al. developed an enhanced convolutional neural network

method, which can more effectively detect ship types in bad weather

to effectively ensure maritime traffic safety. Gao (Gao et al., 2021)
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et al. used a new path forecasting method based on the multiple

fusion function and the LSTMmodel to predict ship tracks. Although

this approach is highly accurate, the complexity of the calculations is

high and the results are influenced by the quality and size of the

dataset. Bao (Bao et al., 2022) et al. used the MHA-BiGRU method

based on the multi-head self-attention mechanism and the

bidirectional gated cyclic unit model, which was experimentally

proved to be effective in reducing the error of trajectory prediction,

but the quality requirements of the data were high, and the

interpretability was poor, which was difficult to understand.

The advantage of traditional statistical methods is that the storage

space occupied in the calculation process is small, and the accuracy of

ship trajectory prediction throughout a brief period. However, the

obvious disadvantage is that the accuracy of the prediction findings is

significantly impacted by the assumption of the beginning state and

ideal circumstances of the prediction model. Deep learning methods

can learn the simple linear or complex nonlinear relationships

between various factors that affect the ship’s trajectory and the

ship’s trajectory to make more accurate predictions. We want to

find a prediction method that can maintain the spatial correlation of

ship trajectory data, so we use an online cleaning and prediction

algorithm for ship tracks based on matrix neural networks (Popa,

2015), consider the influencing factors such as latitude and longitude

and speed in the ship trajectory, and reduce the impact of data noise

to increase the predictive model’s accuracy, which will be covered in

the next chapters.
3 Methodology

The M-STCP architecture diagram consists of three parts: track

data cleaning, model training, results analysis, and other intermediate

processes, as shown in Figure 1. Track data cleaning is the basis for

the smooth progress of the experiment, and the extraction of effective

trajectory sequences can ensure the smooth progress of the

experiment. Preprocessing data is crucial for removing anomalies,

and using preprocessed data can enhance predictions’ accuracy.

Model training is a crucial step in the entire framework, and after

clustering ship trajectories, select a trajectory with a more typical

motion mode for training. After training the data, the M-STCP

method is used for prediction, and the Kalman filter is used to

optimize the prediction. Result analysis is utilized to evaluate the

prediction results of matrix neural networks and compare them with

other prediction methods to verify the performance of matrix neural

networks. New ship track data can be directly predicted by the M-

STCP method following data clean-up.
3.1 Data preprocessing

Due to the complex maritime environment in real scenarios, the

sensor equipment carried by fishing vessels often has problems such

as signal loss and equipment failure, which will lead to problems

such as incorrect reporting coordinates, reported data loss, and even

crazy reporting of some equipment. Therefore, we need to

preprocess the collected data and clean up the unwanted data.
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The original GPS trajectory data contains rich types of information,

including ship ID, longitude (LON), latitude (LAT), heading, speed,

time, ship type, tonnage, etc. For the ship trajectory prediction task,

we want to carry out, only part of the information data is used, so

we need to extract the trajectory of the ship. The extraction process

of our required ship trajectory is as follows:
Fron
Step 1: Remove small fishing boat data. The results are more

skewed because smaller boats are more susceptible to the

environmental factors such as ocean weather;

Step 2: Remove the data of ship status as anchored and docked;

Step 3: Remove the same information in the data set due to

repeated receipt of the same ship ID;

Step 4: Remove irrelevant data in the trajectory data to obtain

the final trajectory.
Suppose the characteristics of the ship’s navigation trajectory at

a certain time t can be expressed as:

M( t ) = xt , yt , vt , atf g (1)

The target ship’s longitude, latitude, speed over the ground, and

course over the ground are represented by the variables xt, yt, vt, at
respectively, at time t.
3.1.1 Remove GPS drift track points
When the GPS collects the longitude and latitude position

information data of the ship back to the background server, there

will often be abnormal points due to positioning abnormalities, that

is, the ship’s trajectory has a large offset phenomenon in a short

period, as shown in Figure 2, this phenomenon is GPS drift, and the

point generated by GPS drift is called drift point.

We detect drift points by whether the average velocity of the

trajectory point and its neighboring trajectory point exceeds the

threshold, and algorithm 1 displays the algorithmic procedure.
Input: Longitude, latitude, time of point Alat, Alon,

t3;Longitude, latitude, time of point B, Blat, Blon, t2;
tiers in Marine Science 04
Longitude, latitude, time of point P Plat, Plon, t1;

Output: The track point’s latitude and longitude after

correction;

1: int count=0;

2: Based on the latitude and longitude(lon1,lat1),

(lon2,lat2) between the two points and the radius r of

the earth, the Haversine formula is used to calculate

the distance d between the two points;

3: �V = d
Dt =1000=1:852

4: Find the velocity V 1, V 2, and V 3 of A, P, and B;

5: if (v1 > 50&&v2 > 50&&v3< 50) then

6: Drift point correction is performed using cubic

spline interpolation;

7: else if

8: then (v1 > 50 &&v2< 50)

9: if (count< 5) then

10: Drift point correction is performed using cubic

spline interpolation;

11: elseDelete the segment track;

12: end if

13: end if
Algorithm 1. Remove drift points where GPS positioning is inaccurate.

Here is the precise procedure:

Step 1: Calculate the distance between adjacent volume track

points. Through the Haversine formula in Eq(2), the distance can be

directly calculated by the latitude and longitude coordinates of the

two track points.

d = 2r sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

l a t2 − l a t1
2

� �
+ cos ( l a t1 ) cos ( l a t2 ) sin2

l a t2 − l a t1
2

� �s !

(2)

Where d represents the distance between two points (unit:

meters), r is the radius of the earth (take 6371km), (lon1,lat1) and

(lon2,lat2)represent the latitude and longitude coordinates of the

front and rear points, respectively.
FIGURE 1

The M-STCP method architecture diagram consists of three parts: track data cleaning, model training, results analysis, and other intermediate processes.
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Step 2: Average speed calculation. The average velocity between

the two trajectory points is calculated by Eq(3).

�V =
d
Dt

=1000=1:852 (3)

Where �V is the average speed (unit: knots) between the two

points, and dt is the time interval between the two points.

Step 3: Drift point judgment. The speed of ships near the port

is about 30-40 knots, generally not exceeding 50 knots, so we set

the normal speed threshold to 50 knots. Let the average speed

between points A and P1 be V1, the average speed between points

P1 and B be V2, and the average speed between points, A and B

be V3. If V1> 50, V2> 50 and V3< 50, only p is a drift point, and

the point is corrected by the cubic spline interpolation method; if

V1> 50, V2< 50, P1 and point B are both drift points, then

traverse the subsequent trajectory points to see if there are any

drift points in the subsequent nodes, Stop traversing until the last

point that is not a drift point. Count the number of continuous

drift points. If it is less than 5, use cubic spline interpolation to

correct the drift points. If it is greater than 5, delete this

track directly.

3.1.2 Remove track points with abnormal velocity
Interpolation technology is a method that can effectively correct

trajectory outliers and fill in missing data values and is widely used

in various fields. The current interpolation techniques include

piecewise linear interpolation, linear interpolation depending on

speed and heading, piecewise cubic Hermite interpolation, cubic

spline interpolation, etc. Because the time interval of the GPS

receiving ship-related data is not uniform, the method of

processing data into a sequence of equal time intervals by

interpolation method not only has a huge workload but also may

change the original data structure. Therefore, we use the basic

principles of kinematics to correct the abnormal speed point, which

is more accurate than the linear interpolation method. The

algorithm is shown in algorithm 2.
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Specific steps are as follows:

Step 1: Let the speed at the detection point be V. Calculate the

average speed of a point before the detection point by Eq(3),

denoted as Vm, and calculate the average speed of the next point,

denoted as Vn.

Step 2: If the value of V is between Vm and Vn, it indicates that the

detection point is normal; otherwise, it is determined that the detection

point is an abnormal point, and the corresponding threshold is set by

the value of V, and the abnormal point is corrected by Eq(4).
Input: Longitude, latitude, time of point Alat, Alon,

t3;Longitude, latitude, time of point B, Blat, Blon, t2;

Longitude, latitude, time of point P Plat, Plon, t1;

Output: Corrected speed;

1: int count=0;

2: Based on the latitude and longitude(lon1,lat1),

(lon2,lat2) between the two points and the radius r of

the earth, the Haversine formula is used to calculate

the distance d between the two points;

3: Use formula �V = d
Dt =1000=1:852 to calculate the average

velocity between two points;

4: Find the velocity V 1, V 2, and V 3 of A, P, and B;

5: if ((v1 − v > F)||(v − v2 > F)) then

6: if (!(vm< v&&v< vn)) then

7: if (String.valueOf(0.1).equals(v)) then

8: double q = 0.1;

9: if (0.1< v&&v< 0.2) then

10: double q =

0.5;

11: if (v > 2)

then

12: double q = 1;

13: double vmid = (vm+vn)/2;

14: end if

15: end if

16: end if

17: end if

18: end if
Algorithm 2. Remove abnormal speed points.

Vmid =
Vm + Vn

2
(4)

Step 3: Traverse all trajectory sequences to complete the

detection and correction of abnormal speed.
3.2 M-STCP core method

M-STCP (Matrix-Based Ship trajectory Cleaning and

Prediction) is a data cleaning and trajectory prediction method

based on matrix neural networks. It leverages the advantages of

matrix neural networks to efficiently clean ship trajectory data and

accurately predict future ship trajectories. By applying matrix
FIGURE 2

Schematic diagram of trajectory drift point.It shows the originally
smooth points in a track, such as points A, B, C, P1, P2, and drift

points due to GPS reception problems, such as points P
0
1 and P

0
2.

What we want to remove is these drift points.
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neural networks to the fields of data cleaning and trajectory

prediction, M-STCP demonstrates capabilities in enhancing data

processing efficiency and accuracy. The flow chart is shown in

Figure 3. The core method of this method is described as follows.

Each ship trajectory has its initial position ((af0, bf0)), even if

the trajectory shape of the ship trajectory is different, it will be

interpreted as a different trajectory due to the difference in the

initial position. This also shows that there is a spatial bias in the

trajectory dataset because the ship coordinates are described by

latitude and longitude coordinates. To eliminate the spatial

deviation, in the ship trajectory prediction, we can perform a

phase shift reconstruction of the coordinates of all samples, and

after the reconstruction, all the trajectory points are moved to the

(0,0) point relative to the starting position of the trajectory,

thereby eliminating the spatial deviation. For each time step t

and each sample f from the original position (af , bf )(f >= 0)

reconstructed to the same starting point (0,0), the process is as

in Eq (5):

aft , b
f
t

� �
= aft − af0, b

f
t − bf0

� �
(5)

where (af0, b
f
0) represents the latitude and longitude coordinates

of the fth sample in the first time step.

In this way, we can unify the starting point of all trajectories to

the same location, eliminating the spatial bias caused by different

starting point locations, to make trajectory prediction

more efficient.
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In ship trajectory prediction, we use matrix neural networks for

autoregressive or sliding window prediction frameworks. Data

embedding reconstruction for time series is also referred to as

Taken’s theorem. According to Taken’s theorem, the size is chosen

to be a and a regular interval of b to reconstruct the time series, thus

the original time series’ properties are preserved in the

reconstructed time series. The given ship trajectories are binary

sequences, and each trajectory data is embedded as a matrix of size

(Tf − a)� (a � 2), and each data point contains two feature

information of latitude and longitude (at,bt). The time series data

takes the location coordinate information as an input point in

chronological order, and then forms an input matrix mf
t . Each row

of the input matrix contains two eigenvalues, latitude and longitude.

Starting from the a + 1st position coordinate to the last position

coordinate as a data point, the output matrix is formed. Each row of

the output matrix also contains two eigenvalues. The input matrix

and output matrix form are shown in Eq(6): (t ≥ 0)

mf
t =

aft+1 aft+1

aft+2 bft+2

⋮ ⋮

aft+a bft+a

2
666664

3
777775,n

f
t =

aft+(a+1) b
f
t+(a+1)

⋮ ⋮

" #
(6)

In this way, we can convert the trajectory data into matrix form

and use it to train a matrix neural network model to achieve

predictions of ship trajectories.
FIGURE 3

A trained model for ship trajectory prediction using a matrix neural network is shown. First, the original data is reconstructed into an input matrix mf

using Taken’s theorem, thus the test set and training set of the trajectory data set are separated. Secondly, the input matrix mf is passed to the

output layer through the matrix neural network. We predict an output of n̂ f and an observation of nf for the next step. The gradient of each layer is
calculated using the loss function to facilitate the update of the circle matrix.
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When dealing with problems involving spatial correlation such

as ship trajectory coordinates, if the traditional neural network

input vector sum is used, information will be lost. As a result, matrix

neural networks are better suited to handle these issues. The

mapping between MNN layers and layers is defined in Eq(7).

Xl+1 = s (WlXlVlT + Bl) (7)

The expanded form is as follows:

xl+11f

xl+12f

xl+1pf

2
6666664

3
7777775
= s

wl
11 wl

12 … wl
1n

wl
21 wl

12 … wl
2n

wl
p1 wl

p2 … wl
pn

2
666664

3
777775

xl1f

xl2f

xlnf

2
6666664

3
7777775
+

bl+11f

bl+12f

bl+1pf

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

(8)

Among them, Xl is the matrix variable of the L layer, Xl+1 is the

output in the L layer, W, X, V, B are matrices with compatible

dimensions, Bl is the offset of the current layer, and s()is the

activation function. The matrix form of the data can be maintained

by Eq(8). Through the changes of W(l), X(l), and V (l), the matrix

form of the hidden layer can be reconstructed. The specific matrix

change process is shown in Eq(9):

Wl ∈ Rp�q� Xl ∈ Ra�b� VlT ∈ Rb�q = Xl+1 ∈ Rp�q (9)

The matrix variation formula of a matrix neural network is

shown the matrix transformation process from input matrix Xl to

output matrix Xl+1, which is different from traditional vector-based

input. Also shown is the matrix transformation for the ith window

from time t to t + a, which gives the latitude and longitude of the

ship’s trajectory. Among them, the matrix dimension is changed

from a × b to p × q by the dimension dot product of the

input matrix.

The definition of the ship trajectory indicates that the input data

mf of the matrix neural network is a three-dimensional tensor of

size, that is, the number of sliding windows for each input data is Tf
- a), each The size of the input unit is a × 2. The number of each

output data sliding window of the output data is also, and the size of

each output unit is 2. That is, we need to find the mapping

relationship that changes the size of the matrix from a × 2 to 2,

that is, f: Ra×2 → R2. To lessen the discrepancy between the

supplied output nf and the network output n̂ f , we adopt Eq(10)

for learning.

min
W o

N

f=1

L(n̂ f , nf ) =o
N

f=1

1
Tf − a

‖ nf − n̂ f ‖22 (10)
3.3 Kalman filter optimization

The ship’s track in space is some time series data. Because our

track data is measured by various sensors, there will be some

unavoidable errors. To ensure the accuracy of trajectory

prediction, we need to smooth the data. Rudolph E. Kalman put

forward the Kalman filter in 1960 and gave a new method to solve

the prediction problem. Kalman filter takes into account the

possible uncertainty in the prediction process and estimates the
Frontiers in Marine Science 07
optimal result through incomplete accurate prediction models and

incomplete accurate measurement results. The prediction equation

includes the system’s status right now and the uncertainty of the

system. The specific process of KF is to evaluate the prediction

equation and correction equation through recursion. The

prediction equation estimates the current state and uncertainty of

the system. The correction equation uses the measured current state

quantity of the system to update the estimation. It should be noted

that in KF, we assume that both system uncertainty and

measurement uncertainty follow a normal distribution.

The prediction equation of Kalman filter is:

x̂ −
k = A · x̂ k−1 + B · uk−1 (11)

P−k = A · Rk−1 · A
T + Q (12)

In Eq(11) X̂
−
k represents a prior estimate at time k, A is the state

matrix, X̂ k−1 represents the estimated value at k − 1 time, B

represents the control matrix, uk−1 represents the control variable

at the moment. In Eq(12) P−k represents the prior error covariance,

A represents the state matrix, Pk−1 represents the error covariance at

k − 1, and Q represents the covariance of process noise. The

correction equation of the

Kalman filter is:

Kk =   P−
k ·H

T

H·P−
k ·H

T+R
  (13)

x̂ k = x̂ −
k + Kk · (zk −H · x̂ −

k ) (14)

Pk = (I − Kk ·H) · P−
k (15)

In Eq(13), Kkrepresents the Kalman ga in, H represents the

observation matrix, and R represents the error covariance of the

measurement process. In Equation (14),X̂ k represents a posterior

estimate, that is, the optimal estimate we need, Zkrepresents the

measured value at time k. In Eq(15), Pkrepresents the update error

covariance at time k. The covariance matrices of process noise and

measurement noise are represented by the matrices Q and R in the

Kalman filter, respectively. The larger the value of Q, the more trust

we have in the measured results, the greater the value of R will be,

and the more trust we have in the estimated results.

When the M-STCP method is combined with the Kalman filter

for ship trajectory prediction, the Kalman filter needs to be set

including the state transition equation, measurement equation,

initial state, and covariance matrix. First, a dynamic trajectory

forecast model is determined by the vessel’s historical trajectory.

Then, the observation values such as position and speed information

are input into the matrix neural network, and the state estimation is

carried out to obtain the predicted value of the ship’s state at that

moment. The predicted value is then corrected using a Kalman filter

to obtain a ship condition estimate that is closer to the real value. The

specific implementation is shown in algorithm 3 .

We can define the state of a ship as a four-dimensional vector X

(k) ={xk, yk, vxk, vxyk}, where xkand ykrepresent the ship’s position

on a planar coordinate system, and vxkand vykrepresent the ship’s

velocity in the x-axis and y-axis directions. This state variable

evolves between adjacent temporal steps, so we can use a
frontiersin.org
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transition matrix A to describe the evolution of state variables in

each temporal step. In particular, under the assumption that the

time step is dt, the transition matrix can be defined as:

A =

1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

2
666664

3
777775 (16)

The Q process noise covariance matrix represents the

uncertainty or noise of the state variable during the forecast.

Ships can be affected by factors such as wind and currents while

sailing, so we can build a random walking pattern. Then, depending

on the location of the ship, we can define the Q corresponding to

where t is the sampling interval.

Q =

1
3 (

Dt3v2
L2 ) 0 1

2 (
Dt2v
L ) 0

0 1
3 (

Dt3v2
L2 ) 0 1

2 (
Dt2v
L )

1
2 (

Dt2v
L ) 0 Dt 0

0 1
2 (

Dt2v
L ) 0 Dt

2
6666664

3
7777775

(17)

Observe the value of the noise covariance matrix RWe measure

the position and speed data of the ship, record the measurement

data and observe the error to obtain the value of the R matrix, and

you can set it to:

R =

s 2
xk 0 0 0

0 s2
yk 0 0

0 0 s 2
vxk 0

0 0 0 s 2
vyk

2
666664

3
777775 (18)
Fron
Input: Get raw vessel location data T = {(x1,y1),(x2,y2),

…,(xn,yn)}

Output: Filtered position data T 1 = {Trj1,T · j2,···,

Trjn}

1: D = trajectPretreatment (T);

2: Initialize the state vector X and covariance matrix P

of the Kalman filter, and set the observation noise

covariance matrix R and the system noise covariance

matrix Q;

3: for each location point (xk,yk) do

4: According to the current states Xk−1 and Pk−1, Xk|−1 and

Pk|−1 are obtained by using the state transition

equation for prediction;

5: According to the predictions Xk|−1, Pk|−1 and Zk,

update Xkand Pkwith the update formula;

6: Record the updated Xkas filtered position data;

7: state = getCurrentState (D);

8: for i = 1 to k do

9: p′ = kalmanPredict (D);

10: end for

11: end for
Algorithm 3. Kalman filter optimization.
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4 Experiments and analysis

In this section, we leverage a substantial amount of actual ship

trajectory data to validate the model’s efficacy. The prediction

results of M-STCP, GRU models (Han et al., 2019), and long

short-term memory networks (Tang et al., 2022) are compared. It

is demonstrated that our methodology accurately predicts time

series data by a comparative study of the experimental findings.
4.1 Data description

To ensure the validity of trajectory prediction, we utilize real

trajectory data. The ship tracking data used in this article is from the

Wenzhou Fishing Vessel Safety and Rescue Center, which contains

about 5 million tracks in Jiangsu and Zhejiang in 2016. The GPS

data collection cycle is 15-30 minutes, the data set size is

approximately 70GB, and it contains about 40 million pieces of

trajectory data. Oracle Database is used for data storage. In Table 1,

a sample of the GPS data are displayed. To obtain the density/

frequency feature of the trajectory data, we plot ship trajectories

every four months in the same heatmap respectively. The space heat

map is shown in Figure 4.

The data distribution after extraction and processing of the

original ship trajectory and anomaly point cleaning is shown in

Figure 5. The trajectory points set in this paper have a longitude

range of [119.6,131.0], a latitude range of [22.0,33.8], a direction

range of [0.0,360.0], and a velocity range of [0.0,25.0].

Due to the complex ship motion pattern in the real data, the

ship’s trajectory is not single linear, we cluster it using the DBSCAN

technique based on density. According to the collected large

number of ship trajectory data, the corresponding characteristics

such as ship number and ship steering angle are selected, and the

ship trajectories with similar patterns are regarded as the same

cluster through DBSCAN. The key to the clustering algorithm is to

adjust the two parameters of the Eps radius and the minimum

number of MinPts samples. Following experimental tests, our

Epsilon is set to 0.4 and MinPts to 8, optimizing the clustering

effect. The results of the ship trajectory clustering are displayed in

Figure 6, including the number of the four clusters and the

approximate direction of the trajectory. Although there are some

anomalous trajectories in the clustering results, we can see

significant differences between each cluster.
TABLE 1 GPS track data storage format and data sample.

Field name Storage type Sample data

ID INT 29140

TIME INT 2016-01-01 00:00:10

LATITUDE (°) DOUBLE 36.72

LONGITUDE (°) DOUBLE 122.68

SPEED (knots) DOUBLE 25

DIRECTION (°) DOUBLE 324
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A B

DC

FIGURE 5

The distribution of longitude, latitude, velocity, and direction after removing anomalies data in the trajectory. The continuous blue line represents the
median, the yellow dashed line represents the 25% quantile, and the 75% quantile is also labelled.
A B C

FIGURE 4

Visualization of GPS raw data from Zhoushan fishery, China. After the sea zone is gridded into cells, horizontal and vertical coordinates are
established, and the number of vessel occurrences in each cell is accumulated. Each cell is 10 km long. The yellow area denotes the area with a
higher density of the trajectory, and the darker the hue, the greater the density of the trajectory. The blue line represents the ship’s trajectory.
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4.2 Performance evalution

For neural networks, the value range of the input features is too

large to cause the gradient descent algorithm to converge slowly or

difficult to converge, so we normalize the input features, scale the data

to the range of [0,1], and limit the value range to a certain range, to

eliminate the adverse effects caused by the data, accelerate the model

convergence speed, and enhance the model’s generalizability and

stability. The normalization formula is shown in Eq(16):

xnorm =
x − xmin

xmax − xmin
(19)
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where x is the original data, xmin and xmax are the minimum and

maximum values of the data in the sample, respectively, and xnormis

the normalized data.

At present, the mainstream methods in the field of ship

trajectory prediction include recurrent neural networks, deep

learning, LSTM, GRU, etc. We compare these methods, as shown

in Table 2. We can see that MNN is a new method of predicting

trajectory, which has greater efficiency and data processing capacity

than the traditional neural network method. Comparison of

mainstream methods for ship trajectory prediction.

Parameter selection is an important factor influencing

prediction outcomes. A number of neurons and a greater number
A B

D E F

G IH

J K

C

L

FIGURE 6

The result of trajectory clustering. (A-C) are cluster 1, (D-F) are cluster two, (G-I) are cluster three, and (J-L) are cluster four.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1199238
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guo et al. 10.3389/fmars.2023.1199238
of layers can extract more information about the vessel’s track

characteristics, but excessive complexity can also lead to overflow.

The experiments use the RMSProp optimizer, a method to optimize

adaptive learning rate and stochastic gradient descent. It can

efficiently address oscillation and instability issues in traditional

gradient descent algorithms. After experimental verification and

parameter comparison, the M-STCP architecture comprises the

following elements: input layer, matrix multiplication layer, non-

linear transformation layer, loop layer and output layer. The input

layer is used to input ship trajectory data into the neural network;

The matrix multiplication layer converts the input trajectory data

into matrix form for input to the next layer; The nonlinear change

layer applies nonlinear functions to each element of the matrix to

enhance the expressiveness of the model; The recurrent layer will

apply the recurrent neural network to process the matrix to better

capture the time series information in the trajectory data. The

output layer produces the last line of the matrix subsequent to the

prediction. Xavier initialization and ReLU activation are used to

initialize the parameters. The loss function selects the average

square error to reduce the error between the expected outcome

and the actual value. In the case that the default learning rate is

0.001, in order to find the optimal batch size and the number of

neurons, we conduct experimental comparisons and determine that

the batch size is 32 and the number of neurons is 128.

Supplementary parameter selections for the remaining two

methods are presented in Table 3. The details of experimental

hardware configuration used in this paper are shown in Table 4.

For additional evidence that the suggested model is workable

and successful, we use 70% of the experimental dataset as the
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training set and 30% as the test set. The results of the M-STCP

method and Kalman filter processing were compared and analyzed

with the prediction results of the LSTM model and the GRU (Han

et al., 2021) model, and the experimental results were verified by the

test set. In the experiment, we selected two sets of data sets for

comparison to compare the prediction effects of the three methods

on simple and complex ship trajectories. The first set of datasets

contains relatively complex, curved ship trajectory data; The second

set of data includes simpler ship trajectory data. In Figure 7, the

experimental outcomes are displayed. Figure 7’s a and c show that at

the beginning of the ship trajectory, only the prediction results of

the M-STCP method processed by KF are more accurate, the M-

STCP method has the same movement trend as the ship trajectory,

but due to the influence of noise, there is a deviation in latitude and

longitude, and the performance of the LSTM model is the worst.

Although the prediction results of the three models are roughly the

same as those of the real ship trajectory, M-STCP is better than

LSTM and GRU in the trajectory prediction performance of the

ship with large changes in the course of the ship. In Figure 7, it is

visible from b that for simple trajectories, although the prediction

results of LSTM and GRU have the same motion trend as the real

trajectory, the position information has a large deviation, while the

M-STCP method and the real trajectory not only have the same

motion trend but also similar position information. This is because

although LSTM and GRU have the strong fitting ability, they are

also prone to overfitting. The matrix neural network adopts the

matrix decomposition method to reduce the number of parameters,

effectively reduces the risk of overfitting, and retains the

spatiotemporal correlation in the trajectory data when predicting
TABLE 3 The hardware configuration required for the experiment.

Method Advantages Disadvantages

MNN Ability to handle multi-channel data, efficient, robust to missing values. It is still in the development stage and more experimental
verification is needed.

GRU On the basis of LSTM, some parameters are reduced, and the calculation speed is
faster.

More experimental validation is needed.

LSTM Ability to handle long series of data. High computational complexity.

RNN For sequence data, the prediction effect is better. High computational complexity.

Deep
learning

Ability to automatically learn features and patterns. A lot of data is required for training.
TABLE 2 Parameter values of M-STCP, LSTM, GRU models.

Parameter name M-STCP LSTM GRU

Learning rate 0.001 0.01 0.01

Batch size 32 64 64

Number of training rounds 1000 1000 1000

Number of hidden layers 2 2 2

Number of neurons per layer 128 128 128

Activation function ReLU ReLU ReLU

Regularization method L2 Dropout=0.3 Dropout=0.2
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the trajectory of the ship, which also makes its prediction effect

better than that of the traditional neural network.

To provide a more precise demonstration of the deviation

between predicted and actual results, we have chosen to examine

100 sets of ship trajectories through three different methods,

ultimately presenting their longitude and latitude error scatter

plots in Figure 8. The M-STCP method’s error in latitude and

longitude can be found to be lower than those of the other two
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approaches, and the error of the M-STCP method after the Kalman

filter treatment is further reduced, and the GRU model has the

lowest prediction accuracy. This also proves the good performance

of M-STCP in ship trajectory prediction.

For the prediction results of the experiment, We employ

evaluation metrics including root mean square error RMSE, mean

absolute error MAE, mean absolute percentage error MAPE. All

four evaluation methods are that smaller values indicate more

accurate predictions from the model. where yirepresents the true

trajectory value and ŷ i represents the predicted value of the

trajectory. As stated in Table 5, the specific values are tabulated,

and the histogram is shown in Figure 9. Taking MAPE and MSE

as indicators to evaluate the prediction results, it can be seen that

the M-STCP value is the smallest and the prediction effect is the

best, followed by LSTM and GRU have the worst performance.

Using MAE and RMSE as indicators to evaluate the prediction

results, M-STCP has the best prediction effect, GRU and LSTM

values were similar and higher than those of M-STCP method. In

summary, the value of the M-STCP method is smaller than that
FIGURE 8

The ship trajectory error distribution is optimized by LSTM,GRU,M-STCP, and M-STCP after Kalman filter.
FIGURE 7

The results of predicting the latitude and longitude of ship trajectory by using M-STCP, LSTM, GRU and M-STCP combined with Kalman filter.
TABLE 4 Comparison of prediction performance by using M-STCP, GRU,
LSTM in terms of MAPE, MAE, RMSE.

Device name DELL XPS 8950

Processor 12th Gen Inter (R) Core (TM) i7-12700 2.10 GHz

RAM 64.0GB (63.7GB Available)

System type Windows11/Ubnutu 22.04

Display NVIDIA GeForce RTX 3060 12GB
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of the other two models under the three evaluation criteria, which

indicates that M-STCP has a high precision than the LSTM and

GRU models.

MAPE =
100%
n o

n

i=1

ŷ i − yi
yi

����
���� (20)

MAE =
1
no

n

i=1
yi − ŷ ij j (21)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mo

m

i=1
(yi − ŷ i)

2

s
(22)
5 Conclusion and future works

In this paper, we introduce an online ship track cleaning and

prediction algorithm M-STCP based on matrix neural network.

Matrix neural networks, or MNNs, can be applied to predict

future ship trajectories using clustered GPS ship trajectory data.

The reliability of the dataset is also a critical part of prediction

accuracy. Due to sensor acquisition problems, the data set we use

may contain some noise and invalid trajectory points, and by

cleaning the data set and using Kalman filter, we can obtain a data

set closer to the real ship trajectory, and also make the prediction

results more realistic and effective. We compare the results of M-

STCP predictions of ship trajectories with LSTM and GRU models.

To improve the accuracy of the experimental findings, we first
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extracted ship trajectories with similar behavior patterns in the

original trajectory data by clustering method, and then processed

them to remove anomalies and invalid values. Predict the future

trajectory of ships by using the M-STCP method. We selected three

evaluation metrics to evaluate the forecasting methodology. In terms

of prediction accuracy, LSTM is 84.27%, GRU is 87.62%, while M-

STCPmethod can reach 88.52C%, which can be improved to 89.44%

after Kalman filter noise reduction.

M-STCP’s ship trajectory prediction accuracy is higher than

that of GRU and LSTM, as evidenced by the experimental results.

Ship trajectories can be regarded as a series of time trajectory data,

and matrix neural networks have important advantages in

addressing time series problems. Based on a matrix neural

network, we maintain the spatial correlation between the

trajectory data by eliminating the spatial offset in the original

dataset so that all ship trajectories start from the same starting

position. Matrix neural networks can effectively process multi-

dimensional time series data, making them capable of performing

multi-scale analysis on data and enhancing data expression

capabilities. By doing this, neural networks can learn the input

data’s features more efficiently and process multi-dimensional input

and output data with greater efficiency. Matrix neural networks

convert sequence data into matrix or tensor form, enabling parallel

computing, speeding up the training process, and addressing the

long-term dependency problem by doing so. In contrast, the biggest

advantage of matrix neural networks is that they can efficiently

process large-scale data and have a fast training speed, but their

accuracy is easily affected by noise. Sequence data handling with

good stability and solving long-term dependencies through control

units can be done by LSTM and GRU using their control units.

GRU and LSTM’s internal structure is both complex and difficult to

interpret. When time series data are long, the problem of

disappearing or exploding the gradient arises and the

computation time is long. Setting parameters and adjusting the

number of layers is a challenge for all three methods, and they

require high computing resources. Matrix neural networks can

often provide better prediction performance than traditional

recurrent neural networks like GRU and LSTM in sequence

modeling tasks, including ship trajectory prediction.

In addition, there are other influencing factors, such as wind

wave and tide intensity on the ocean, visibility at sea, and the width

and depth of the waterways in this sea area, which were not

considered in this study. These influencing factors may contribute

to the prediction results of matrix neural networks. In future work,

we can use other factors that affect the trajectory of ships, such as

the strength of wind and waves and tides on the ocean, as input

characteristics for prediction. In further work, we will improve the

accuracy of long-term trajectory prediction based on improving the

calculation accuracy, which will help ships navigate traffic problems

with early warning.
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FIGURE 9

The evaluation results of the three methods were histogram using
the evaluation criteria of MAPE, MSE and RMSE.
TABLE 5 Comparison of mainstream methods for ship trajectory
prediction.

Method MAPE MAE RMSE

M-STCP 3.6045 × 10−3 4.7078 × 10−3 5.5023 × 10−3

GRU 2.3136 × 10−2 1.4817 × 10−2 1.6672 × 10−2

LSTM 2.8864 × 10−2 1.1119 × 10−2 1.2427 × 10−2
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