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Streptomyces spp. are well-known producers of secondary metabolites with

diverse biological activities. We screened the substances that regulate polyp-to-

jellyfish transition, called strobilation, of the moon jellyfish (Aurelia coerulea)

from the Streptomyces culture library. Among the culture extracts of the strains

tested, Streptomyces albus HUT6047 inhibited the strobilation of A. coerulea.

The active component in strain HUT6047 was purified. Based on structure

elucidation, this component was identified as 4-methoxy-2,2′-bipyrrole-5-
carbaldehyde (MBC), a possible common biosynthetic intermediate of pyrrole-

containing natural products including prodigiosins and tambjamines. Synthetic

MBC arrested strobilation without inducing cytotoxicity and generated abnormal

tentacle-like structures in a dose-dependent manner. Synthetic MBC also

exhibited a minimum activity of 6.3 µM. To our knowledge, this study provides

the first example of a biological activity of MBC.

KEYWORDS

Aurelia coerulea, Streptomyces, screening, strobilation, 4-methoxy-2,2′-bipyrrole-
5-carbaldehyde
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1 Introduction

The filamentous bacterial genus Streptomyces is well

characterized as the most prolific producer of secondary

metabolites with various significant biological activities, including

the production of antibiotics, anticancer agents, antifungal agents,

immunosuppressants, and herbicides (Ōmura, 2011). Exhaustive

screening of the Streptomyces culture library provides bioactive

molecules that control the physiological functions of certain

organisms, including plants, animals, and humans (Chen et al.,

2021). For example, microbial bioherbicides were screened from

102 Streptomyces strains, of which strain-329 produced two

glutarimide derivatives (Bo et al., 2019). Thus, unique biocontrol

agents can be discovered through exhaustive screening using a

Streptomyces culture library.

The moon jellyfish, Aurelia coerulea (Dawson and Jacobs, 2001;

Scorrano et al., 2016), is a marine animal that is widely distributed

along coastal oceans worldwide. Jellyfish blooms of A. coerulea and

other species often negatively affect marine fisheries and

aquaculture (Brotz et al., 2012; Bosch-Belmar et al., 2021). Hence,

controlling jellyfish blooms is important for coastal human

activities. Owing to their abundance and water retention capacity,

jellyfish, including A. coerulea, are a valuable source of collagen, a

biomedical material utilized by humans (Hoyer et al., 2014;

Sumiyoshi et al., 2021). Jellyfish are thus worth studying because

of their basic and applicable properties as bioresources.

The life cycle of A. coerulea consists of two reproductive stages,

the asexual polyp stage and the sexual medusa (jellyfish) stage (Arai,

1997). The transition from polyps to jellyfish is called strobilation

(Figure 1A). Strobilation is induced by lowering a water

temperature (Kroiher et al., 2000; Kuniyoshi et al., 2012; Tsujita

et al., 2015). After the initiation of strobilation, the polyp becomes a

strobila with several transverse segments on the body column.

Strobila segments are sequentially generated in an oral-to-aboral

direction (segmentation phase). Thereafter, each segment is

metamorphosed into one jellyfish (morphogenesis phase). Finally,

several juvenile jellyfish, termed ephyrae, detach from the strobilae.

Strobilation can be induced by the exogeneous addition of

indomethacin (IM) (Kuniyoshi et al., 2012) or indole derivatives

(Fuchs et al., 2014; Helm and Dunn, 2017). Artificial induction of

strobilation by chemicals, including IM, is now employed in

aquarium displays and collagen biomass production. Notably, the

inhibition of strobilation could result in the control of jellyfish

blooms, leading to the maintenance of sustainable coastal human

activities. However, effective strobilation inhibitors have not

been developed.

Here, we performed the Streptomyces culture screening to

identify the inhibitor(s) involved in the strobilation of A. coerulea.

Among these culture extracts, the Streptomyces albus strain

HUT6047 arrested strobilation without inducing cytotoxicity and

generated abnormal tentacle-like structures. The active component

was purified by chromatographies. Thereafter, through structural

elucidation, the component was identified as 4-methoxy-2,2′-
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bipyrrole-5-carbaldehyde (MBC) (Figure 2), the results of which

were described in this paper.
2 Materials and methods

2.1 Bacterial strain and preparation
of the culture library

Various Streptomyces strains, including strain HUT6047, were

cultured in YM medium (0.4% yeast extract, 1.0% malt extract, and

0.4% D-glucose, pH 7.3) at 28°C with 120 rpm (revolutions per

minute) for 3 days, according to our standard protocol (Arakawa

et al., 2005). The Streptomyces culture library was prepared as

described below. Briefly, 100 ml of culture broth was extracted

twice with EtOAc, and then the combined organic phase was dried

(Na2SO4), filtered, and concentrated in vacuo. The residues were

dissolved in MeOH (1 ml), and their aliquots (10 µl each) were

collected for the bioassay.
2.2 Spectroscopic instruments

The compounds (active component against A. coerulea polyps

and synthetic MBC) were analyzed by electrospray ionization-mass

spectrometry (ESI-MS) and nuclear magnetic resonance (NMR).

ESI-MS was performed using an LTQ Orbitrap XL mass

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).

NMR spectra were recorded on a JEOL ECA-600 spectrometer

equipped with a field gradient accessory (JEOL, Ltd., Tokyo, Japan).

The NMR chemical shifts were recorded as d values in ppm. The

coupling constants in 1H-NMR were shown as J value in Hz.

Dimethylsulfoxide-d6 (99.8 atom %; Kanto Chemical, Co., Inc.,

Tokyo, Japan) was used as the solvent for 1H- and 13C-NMR, while

tetramethylsilane (dH = 0) was used as the internal standard for 1H-

NMR and 13C-NMR.
2.3 Metabolites in strain HUT6047

Metabolite production in strain HUT6047 was analyzed using

high-performance liquid chromatography (HPLC) and thin-layer

chromatography (TLC). The EtOAc extract from 100-ml culture of

strain HUT6047 (average 39 mg extracts from the 430-mg dry cell

per 100-ml culture) was dissolved in MeOH (1 ml), and then an

aliquot (10 µl) was passed through a COSMOSIL Cholester column

(4.6 × 250 mm, Nacalai Tesque, Kyoto, Japan) and eluted with 40%

aqueous acetonitrile containing 0.1% TFA at a flow rate of 1.0 ml/

min. The eluate was monitored using a JASCO MD-2010 multi-

wavelength photodiode array detector (JASCO Corporation, Tokyo,

Japan), and active component was detected at 360 nm (Figure 3).

Purified natural MBC (see section 2.4) and synthetic MBC (see

section 2.5) were also analyzed in the same manipulation. TLC
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analysis of the EtOAc extract of strain 6047 prepared as above-

mentioned was performed using a mixture of CHCl3 and MeOH

(15:1, v/v) and exposed to iodine vapor.
2.4 Isolation of MBC from Streptomyces
albus HUT6047

The culture supernatant of strain HUT6047 (26 L) was

extracted twice with an equal volume of EtOAc. The combined

organic phases were dried (Na2SO4), filtered, and concentrated in
Frontiers in Marine Science 03
vacuo. The crude extract was purified using Sephadex LH-20 (GE

Healthcare, Chicago, IL, USA) gel filtration chromatography with

MeOH. All fractions (1 ml each; total 50 fractions) eluted with

MeOH were subjected to a bioassay using A. coerulea polyps

(detailed protocol is described in section 2.5). The fractions

containing the active component(s) were combined, and the

resulting residue was further purified using silica gel

chromatography with two different solvent systems, CHCl3–

MeOH = 50:1–10:1 (v/v) and hexane–EtOAc = 2:1 (v/v). All the

fractions (3 ml each; total 50 fractions) were dried in vacuo, and

redissolved in MeOH (1 ml) and also subjected to a bioassay
FIGURE 1

Schematic view of strobilation and the effect of MBC (see Figure 2) on strobilation in Aurelia coerulea. (A) Schematic view of strobilation.
(B–I) Morphological images of Aurelia strobilation. (B–E) Control experiments in the Aurelia bioassay described in the text. Images (B–E) were taken
at 1 h, 1 day, 2 days, and 6 days after the start of bioassay, respectively. (B) Earlier segmentation-phase strobila with three segments. (C) Later
segmentation-phase strobila. (D) Earlier morphogenesis-phase strobila. (E) Later morphogenesis-phase strobila. An ephyra (white arrow) has just
been detached from the strobila. (F, G) Abnormal strobila caused by purified natural MBC. Images (F, G) were taken at 3 days and 6 days after
administration, respectively. Arrowheads in (F) indicate abnormal tentacle-like structures. (H, I) Abnormal strobila caused by synthetic MBC (12.5 µM).
Images (H, I) were taken at 3 days and 6 days after administration, respectively. Scale bars, 1 mm.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1198136
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Misaki et al. 10.3389/fmars.2023.1198136
described as above to obtain an active component, MBC (5.7 mg

from 26-L culture broth). 1H-NMR (DMSO-d6) d = 3.84 (3H, s),

6.12 (1H, d, J = 1.5 Hz), 6.27 (1H, s), 6.75 (1H, brs), 6.91 (1H, brs),

9.30 (1H, s), 11.24 (1H, brs), 11.42 (1H, brs). 13C-NMR (DMSO-d6)

d = 57.8 (q; OCH3), 90.9 (d), 108.2 (d), 109.3 (d), 117.3 (s), 120.4

(d), 123.4 (s), 133.2 (s), 158.6 (s), 171.6 (d).

HRMS (positive ESI): m/z calculated for C10H10N2O2Na:

213.0640 [M+Na]+; observed: 213.0631.
2.5 Bioassay for the strobilation-inhibiting
activity in A. coerulea

A clonal polyp strain KH1A, which was established from A.

coerulea jellyfish caught in the Seto Inland Sea, Japan (Tsujita et al.,

2015), was used for the bioassay. Polyps were reared in filtered

seawater (FSW) at 22–25°C.

For screening and purification, strobilation was induced by

lowering the culture temperature to 10°C from 22–25°C [cold shock

(CS)]. Strobilae at the earlier segmentation phase with one to five

segments were collected 46–60 days after the temperature drop and

kept in a 14-cm dish at 10°C until transferred to 24-well microtiter

plates. Three strobilae were placed in individual wells of a 24-well

microtiter plate and then cultured in 1 ml of FSW containing 10 µl

of the aliquots of either the culture extracts or fractions separated by

chromatography at 22°C. Control strobilae were cultured in FSW at

22°C. Their strobilation was monitored over a 7-day period. For the

dose–response analysis, strobilation was induced via incubation

with 10 µM IM at 22°C. After a 7-day incubation period,

segmentation-phase strobilae with one to three segments were

collected, and then rinsed with 50 ml of FSW to remove the IM.

Three to five strobilae were incubated in individual 9-cm dishes in

40 ml of FSW containing 1.6, 3.1, 6.3, 12.5, 25, or 50 µMMBC at 22°

C. Control strobilae were cultured in FSW containing 0.025%

DMSO at 22°C. Strobilation was monitored over a 7-day period.
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2.6 DNA sequencing and assembly

Genomic DNA of strain HUT6047 was subjected to paired-

end sequencing using an Illumina NextSeq sequencing system

(San Diego, CA, USA) according to the manufacturer’s

protocol. De novo assembly of the raw genome sequencing

data was performed using SPAdes 3.13.0 (Bankevich et al.,

2012), and Illumina read data were deposited as Bioproject:

PRJDB15399 , Biosample : SAMD00585629 . The MBC

biosynthetic gene cluster was identified using antiSMASH ver.

6.0.1 (Blin et al., 2021), and its sequence was also deposited

(GenBank Accession number: LC760459).
3 Results and discussion

3.1 Extensive screening for the strobilation
of A. coerulea using the Streptomyces
culture library

Previously, we revealed that IM induces strobilation in a dose-

dependent manner through a chemical library screening using the

456 substances provided by RIKEN Natural Products Depository

(RIKEN NPDepo, RIKEN Advanced Science Institute, Wako,

Japan) (Kuniyoshi et al., 2012). In addition, we found that the

lysosomal acidification inhibitors, chloroquine and bafilomycin A1,

partially inhibited strobilation (Tsujita et al., 2017). Owing to these

findings, we proceeded to further investigate the unique chemical

substances with notable biological activity against strobilation in A.

coerulea. Recently, we independently constructed a Streptomyces

culture library and performed a pilot screening to explore various

biological activities, including antimicrobial, antitumor, and other

activities, of these crude extracts.

Strobilation is induced by CS at 10°C, and CS-induced strobilae

metamorphose into ephyrae even at 25°C (Tsujita et al., 2015).
FIGURE 2

Structure of 4-methoxy-2,2′-bipyrrole-5-carbaldehyde (MBC) isolated from Streptomyces albus HUT6047. Structures of undecylprodigiosin,
prodigiosin, and tambjamine BE-18591, derivatives from the common biosynthetic intermediate MBC, were also displayed.
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Similarly, IM-induced strobilae metamorphose into ephyrae in the

absence of IM (Kuniyoshi et al., 2012). Thus, once initiated,

strobilation is autonomously completed independent of

temperature and chemicals. In this study, we aimed to identify

substances that inhibit this autonomous process of strobilation.

To determine the effect of the Streptomyces culture library on

the autonomous process of strobilation, the culture extracts were

administered to earlier segmentation-phase strobilae. In the control

experiments, strobilae with three segments (Figure 1B) became fully

segmented strobilae (Figure 1C) after 1 day and then

morphogenesis-phase strobilae (Figure 1D) after 2 days. Finally,

the ephyrae were detached after 6 days (Figure 1E). Among the 38

culture extracts tested (Table S1), three strains displayed remarkable

inhibition of autonomous process of strobilation. Hereafter, we

focused on the strain HUT6047, which exhibited the highest

strobilation-inhibiting activity among the three strains.
Frontiers in Marine Science 05
3.2 Isolation and structural elucidation
of the active component from
strain HUT6047

The large-scale fermentation of strain HUT6047 was performed

and its metabolites were purified using Sephadex LH20 and silica

gel chromatography homogeneity (Figure 3A). All fractions were

screened through strobilation-inhibiting activity using A. coerulea

polyps. The active compound appeared as a gray green spot on TLC

after iodine staining at Rf = 0.55 [CHCl3–MeOH = 10:1 (v/v)]

(Figure 3A), and displayed a distinct molecular ion peak at m/z

213.0631 [M+Na]+ (calcd. for C10H10N2O2Na, m/z 213.0640) on

high-resolution ESI-MS. In the 13C-NMR spectrum of this

compound, one methyl, five methine, and four quaternary

carbons were identified. All spectral data including 1H-NMR

spectrum agreed well with the reported data for MBC (Figure 2)
A B

C

FIGURE 3

Analysis of MBC in strain HUT6047. (A) TLC of (i) the EtOAc extract of strain HUT6047, (ii) purified natural MBC, and (iii) synthetic MBC. TLC was
developed with CHCl3–MeOH (15:1, v/v). Spots were visualized by UV irradiation at 254 nm (left panel) or iodine staining (right panel). (B) HPLC
chromatogram of (i) the EtOAc extract of strain HUT6047, (ii) purified natural MBC, and (iii) synthetic MBC. Elution profiles were monitored by UV
absorbance at 360 nm (left panels) and 250 nm (right panels). (C) 1H-NMR spectra of (i) natural MBC and (ii) synthetic MBC.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1198136
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Misaki et al. 10.3389/fmars.2023.1198136
(Dairi et al., 2006; Rastogi et al., 2013). MBC is a well-characterized

biosynthetic intermediate of bipyrrole-containing natural products,

including prodigiosins and tambjamines (Figure S1) (Cerdeño et al.,

2001; Stanley et al., 2006; Burke et al., 2007; Hu et al., 2016; Grenade

et al., 2023).

To confirm its structure and prepare a considerable amount for

the bioassay, MBC was synthesized from the commercially available

4-methoxy-3-pyrolin-2-one in two steps (Supplementary Materials

and Figure S2) according to previous reports (Dairi et al., 2006;

Rastogi et al., 2013). HPLC chromatogram of both purified and

synthetic MBC showed a distinct peak at 5.8 min, which was also

detected in culture extract of strain HUT6047 (Figure 3B). The

spectral data of natural MBC were in good agreement with those of

synthetic MBC (1H-NMR in Figure 3C and ESI-MS in Figure S3),

supporting its chemical structure (Figure 2).

The genetic feature of strain HUT6047 was assessed using next-

generation sequencing. A biosynthetic gene cluster for MBC (mbc)

was identified in the genome of strain HUT6047, and it showed a

significant similarity to the biosynthetic gene cluster (tab cluster)

for tambjamine BF-18591 (Figure 2) (Grenade et al., 2023) as shown

in Table S2 and Figure S4, supporting the production of MBC in

this strain.
3.3 MBC specifically affects strobilation
in A. coerulea

The strobilation-inhibiting activity of the purified natural MBC

was examined. As described above, CS-induced strobilae

autonomously metamorphose into ephyrae at 22°C. When

purified natural MBC was administered to strobilae with one to

five segments, the autonomous process of strobilation was arrested

(Figures 1F, G). In contrast, the strobilation proceeded until the end

of 6 days in the control experiment (Figures 1B–E). Remarkably,

abnormal tentacle-like structures were observed around these

constrictions (Figure 1F, arrowheads). These abnormal strobilae

did not undergo morphogenesis stage during the 7-day

observation period.

To confirm the strobilation-inhibiting activity of MBC, the

synthetic MBC was subjected to an Aurelia bioassay. As shown in

Figures 1H, I, the synthetic MBC reproduced the same activity as

purified natural MBC: arrest of the autonomous process of

strobilation and generation of abnormal tentacle-like structures.

Hence, MBC was confirmed as the active component produced by

strain HUT6047. Dose–response analysis using synthetic MBC

revealed that the minimum activity was 6.3 µM concentration

(Table 1). No apparent death was observed in the bioassay.

Despite the abnormal morphology, the MBC-treated strobilae

remained alive for more than 1 month, even at a concentration of

50 µM (Table 1), suggesting that MBC had no remarkable cytotoxic

activity against A. coerulea. In our independent analysis, MBC also

showed no remarkable cytotoxicity against brine shrimp, a model

marine organism (unpublished results).

MBC halts the autonomous process of strobilation without

causing cytotoxicity, and generates abnormal tentacle-like
Frontiers in Marine Science 06
structures. Abnormal tentacle-like structures appeared to

protrude from each constriction between strobilae segments

(Figure 1F, arrowheads). However, the developmental origin of

the abnormal tentacle-like structures and their similarity with the

normal tentacles of polyps remain unknown. Detailed histological

observations are required to clarify these issues.

In a comparative assay, the culture extract of Streptomyces

coelicolor M145, a notable producer of undecylprodigiosin, one of a

prodigiosin derivative, had no effect on A. coerulea, indicating that the

strobilation-inhibiting activity was caused by the bipyrrole structure

and not by the accessory structures including a hydrocarbon chain and

an additional pyrrole ring in undecylprodigiosin.
4 Conclusion

Discovery of the effective strobilation inhibitors is worth

studying for the control of jellyfish blooms that could contribute

to the maintenance of sustainable coastal human activities. We thus

performed the Streptomyces culture screening to obtain the

inhibitor of strobilation of A. coerulea. Among the 38 culture

extracts, three strains showed the inhibitory activity against A.

coerulea. Remarkably, the culture extract of Streptomyces albus

strain HUT6047 significantly arrested strobilation without

inducing cytotoxicity and generated abnormal tentacle-like

structures. The active component in this strain was determined to

be MBC.

MBC, a biosynthetic intermediate of bipyrrole-containing

natural products, specifically inhibits the strobilation of A.

coerulea with a minimum activity value of 6.3 µM, and induces

no remarkable cytotoxicity against A. coerulea. To our knowledge,

this study provides the first example of a biological activity of MBC.

At this stage, the mode of action of MBC against A. coerulea

strobilation is unclear, which will be clarified through extensive

biochemical analysis.

Streptomyces species are well-known sources of natural

bioactive products. Together with these bioactive products, they

accumulate various biosynthetic building blocks, including

bipyrrole, 3-amino-5-hydroxybenzoic acid (Floss et al., 2011),
frontiersin.or
TABLE 1 Dose-dependent inhibitory effect on strobilation.

Concentration
of MBC (µM)

Number of
strobilae tested

Strobilation-
inhibiting
activity*1

50 5 5/5*2

25 5 5/5*2

12.5 5 5/5*2

6.3 5 5/5*2

3.1 3 0/3

1.6 4 0/4

0 5 0/5
*1Number of strobilae that showed arrest of strobilation/Total number of tested strobilae.
*2p < 0.05 vs. control, Mann–Whitney U test with Bonferroni correction.
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non-proteinogenic amino acids (Luo et al., 2016), and deoxysugars

(Thibodeaux et al., 2008), to some extent; however, their notable

biological activities have not yet been elucidated. An advantage of

the microbial culture library is that we can investigate the biological

activity of not only the final products but also their biosynthetic

precursors/shunt products accumulated in the culture extracts. Our

microbial sample collection of numerous actinomycete strains from

soil and marine environments in Japan and tropical areas, including

Indonesia and the Philippines, will enable the discovery of unique

natural products with extensive biological activities, which is in

progress in our group.
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