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Bio-geo-optical modelling
of natural waters

Shun Bi*, Martin Hieronymi and Rüdiger Röttgers

Department of Optical Oceanography, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon,
Geesthacht, Germany
The color of natural waters – oceanic, coastal, and inland – is determined by the

spectral absorption and scattering properties of dissolved and particulate water

constituents. Remote sensing of aquatic ecosystems requires a comprehensive

understanding of these inherent optical properties (IOPs), their interdependencies,

and their impact on ocean (water) color, i.e., remote-sensing reflectance. We

introduce a bio-geo-optical model for natural waters that includes revised

spectral absorption and scattering parameterizations, based on a comprehensive

analysis of preciselymeasured IOPs andwater constituents. In addition, specific IOPs

of themost significant phytoplankton groups aremodeled and a system is proposed

to represent the optical variability of phytoplankton diversity and community

structures. The model provides a more accurate representation of the relationship

between bio-geo-optical properties and can better capture optical variability across

different water types. Based on the evaluation both using the training and

independent testing data, our model demonstrates an accuracy of within ±5% for

most component IOPs throughout the visible spectrum. We also discuss the

potential of this model for radiative transfer simulations and building a

comprehensive synthetic dataset especially for optically complex waters. Such

datasets are the crucial basis for the development of satellite-based ocean (water)

color algorithms and atmospheric correction methods. Our model reduces

uncertainties in ocean color remote sensing by enhancing the distinction of

optically active water constituents and provides a valuable tool for predicting the

optical properties of natural waters across different water types.

KEYWORDS

inherent optical properties, ocean color, remote sensing, phytoplankton types, optically
complex waters, essential climate variable
1 Introduction

During the transfer of solar radiation through the atmosphere and water, light is

absorbed and scattered, i.e., its energy is converted into another form such as heat and its

direction of propagation is changed. In aquatic science, light absorption and scattering

properties of a water body are also called inherent optical properties (IOPs) because they do

not depend on the ambient light field in the medium. Interactions of sunlight in the upper

water layer create the ocean (water) color, an apparent optical property (AOP), from which

information about IOPs can be derived. Therefore, IOP modeling is used in the context
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with ocean color algorithm development. Spectral IOPs are fed into

radiative transfer models, such as HydroLight (Mobley, 1994), to

simulate remote-sensing reflectance, Rrs, and other interactions

with (sun) light.

The color of natural waters contains a wealth of information

about important constituents present in them, e.g., on primary

production and pools of organic and inorganic carbon (Brewin

et al., 2023). Therefore, ocean color is considered as an Essential

Climate Variable (GCOS, 2011). The optically active components

include phytoplankton, biogenic and minerogenic detritus, and

chromophoric dissolved organic matter (CDOM). Interpreting the

color information in terms of the concentrations and type of the

different components requires the knowledge of the bio-geo-optical

properties of the water body (Bricaud et al., 1998; Boss et al., 2001;

Morel and Maritorena, 2001; Stavn and Richter, 2008). Optical

remote sensing of aquatic ecosystems necessitates understanding

the relationship between component concentrations and their IOPs,

namely an “IOP model”, and how IOPs relate to relevant signals,

such as the remote-sensing reflectance. However, the challenge of

bio-geo-optical modeling of natural waters is that values of IOPs in

optically complex waters, e.g., coastal waters, can vary by orders of

magnitude (Twardowski et al., 2001; Mobley et al., 2004; Zheng

et al., 2015; Hieronymi et al., 2017).

Water reflectance and other apparent optical properties can be

calculated numerically and analytically under all light conditions

(so-called forward modeling). To simplify this modeling, Morel and

Prieur (1977) divided water bodies in nature into Case-1 and Case-2

types according to their optical properties. It is important to note

that this binary classification does not imply high or low values of

optical properties but instead represents a difference in the model

assumptions (Mobley et al., 2004). For Case-1 waters, all optical

properties (except pure water) are related to the phytoplankton

biomass, which is parameterized by its total concentration of the

pigment Chlorophyll a, [Chl], because it reflects the concentrations

of most of the components due to the biological processes of

phytoplankton (Morel and Maritorena, 2001). For Case-2 waters,

omitting sea bottom effects, the IOPs are not only related to [Chl]

but also to other components from terrigenous or benthic inputs

(Prieur and Sathyendranath, 1981; Sathyendranath et al., 1989;

Werdell et al., 2018). This leads to the fact that, assuming the

IOPs of pure water are known, for Case-1 the bio-optical model

requires only one variable, [Chl], which greatly simplifies the

complexity of the model, while for Case-2 waters, the IOP model

requires more inputs, which are not covariant. However, the global

ocean does not always conform to the ideal Case-1 type, and Lee and

Hu (2006) found that only about 60% of the ocean can be classified

as such (depending on the used criterion), underscoring the

complexity of a major part of natural waters. Another reason for

the subdivision is the optimization of ocean color products from

satellite remote sensing. As the boundaries of Case-1 and Case-2 are

not always clear, the use of fuzzy-logic optical water type (OWT)

classifications based on Rrs has been established in recent years,

allowing suitable algorithms to be selected and seamless results to be

produced (Moore et al., 2001; Moore et al., 2014; Mélin and

Vantrepotte, 2015; Hieronymi et al., 2017; Jackson et al., 2017; Bi

et al., 2019).
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Component IOPs of Case-2 waters are usually treated

separately, which is commonly referred to as a “Four-term”

model (IOCCG, 2006 and references therein), including the four

components pure water, CDOM, detritus, and phytoplankton as the

four important components. However, one should note that, as per

Case-2 definition, there are certainly other sources of IOPs, e.g., air

bubbles (Stramski and Tegowski, 2001) or zooplankton (Basedow

et al., 2019), which, however, are out of scope in this study (but any

other components can be added easily to our model). The number

“Four” here should be regarded as a “manageable number” as

discussed in Stramski et al. (2001), which is a general concept of

IOP assembly, and each component can be further separated into

subcomponents based on how modelers understand the bio-geo-

optical progress (Stramski et al., 2001, 2004). IOPs of pure water are

typically parameterized as a function of wavelength, temperature,

and salinity (Röttgers et al., 2016). The magnitude and spectral

slope of CDOM vary significantly with molecular weight, source,

and status of photobleaching of the relevant absorbing molecules

(Röttgers and Doerffer, 2007; Helms et al., 2008), with the slope

values usually present a lower variability in Case-2 waters (Babin

et al., 2003b). Detritus refers to the non-living organic and inorganic

matter in the water column. It can be challenging to differentiate

between biogenic (from living organisms) and non-biogenic

(minerogenic, from rocks and minerals) detritus due to their

similar spectral shapes and non-additive properties (Stramski

et al., 2001; Roesler and Boss, 2008; Röttgers et al., 2014a).

However, by incorporating their individual concentrations in a

forward bio-optical model, it is possible to understand their

respective impacts on particulate IOPs across various water

environments (Ramıŕez-Pérez et al., 2018; Lo Prejato et al., 2020).

In Case-1 waters, it is reasonable to assume that detritus IOPs are

more related to phytoplankton biomass due to its degradation,

whereas in hydro-dynamically mixed shallow waters, they are more

related to inorganic suspended matter concentrations.

Phytoplankton IOPs show significant variability, with different

phytoplankton groups exhibiting different spectral attributes

(Bricaud et al., 1983; Sathyendranath et al., 1987; Hoepffner and

Sathyendranath, 1991; Bracher et al., 2017). This variability can be

attributed to the diversity of phytoplankton groups and species and

their varying pigmentation, structural and morphological

characteristics, which affect their light-interacting properties. This

highlights the importance of considering the phytoplankton

community composition when modeling IOPs and interpreting

the results.

The main focus of building an IOP model is on the absolute

values and spectral shapes (mostly from the ultra-violet to the near-

infrared range) of the IOPs of individual components. The absolute

values of the IOP components are related to their concentrations,

and are typically described using mass-specific IOP coefficients. The

spectral shape of mass-specific IOP is not dependent on the

component concentrations in the water, and is instead a property

of the component itself, determined by its biological, physical, and

chemical properties. Some component IOP spectra are relatively

simple, such as the absorption coefficient of CDOM, ag (where the

subscript g stands for the methodologically more appropriate term

gelbstoff), which exhibits a monotonically decreasing trend with
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wavelength, and can be well approximated by an exponential

function in a certain wavelength range. Some are more complex,

such as the absorption coefficient of phytoplankton, aph, which has

a large peak in the blue-green spectral range and a narrower peak in

the red spectral range. In larger absorbing phytoplankton particles,

spectral scattering measurements (Bricaud et al., 1983; Roesler and

Boss, 2003; Zhou et al., 2012) or simulations (Bernard et al., 2009;

Organelli et al., 2018; Robertson Lain and Bernard, 2018) tend to

show more peak-valley features. The feature is primarily due to the

suppressions within absorption bands, which probably causes the

inapplicability of assuming the scattering spectrum as a smooth

power-law function (Babin et al., 2003a).

In satellite remote sensing of waters, there are many influencing

factors, which produce partly similar features in the top-of-

atmosphere radiance signal; these include the solar and

observational angles, from the atmosphere especially the Rayleigh

scattering from air molecules and aerosol influences, reflection

effects at the water surface, and in the water column the IOPs of

the different components. This can lead to ambiguities in the signal.

Thus, accurate IOP modeling is important for the development of

water algorithms, but also as a basis for atmospheric correction

models. It allows the construction of large synthetic data sets

without in situ measurements with unpredictable errors and

possible data gaps (IOCCG, 2006). This is particularly important

for the training of neural networks, which are used for about two

decades for the inversion of remote sensing reflectance into IOPs,

especially to solve the ambiguities for optically complex waters

(Schiller and Doerffer, 1999; Doerffer and Schiller, 2000). However,

due to simplification of bio-geo-optical properties, the simulations

were based on several limiting assumptions and oversimplifications

(Schiller and Doerffer, 1999; Doerffer and Schiller, 2007). To

address these limitations, Hieronymi et al. (2017) developed an

optical water type (OWT) classification and used a set of OWT-

specific neural networks for a much wider range of applications

including extremely absorbing or scattering waters; in addition,

different phytoplankton groups were considered, but still with

lacked confidence in the phytoplankton scattering coefficient due

to the lack of observations. Note that it is important to consider

phytoplankton community distribution in the forward modeling,

since the phytoplankton diversity can result in varying cell sizes and

pigment compositions, making the standard ocean color algorithm

inapplicable across different water environments (Szeto et al., 2011;

Bracher et al., 2017; IOCCG, 2019). For instance, coccolithophores

exhibit IOPs and [Chl] that significantly differ from other types of

algae, leading to distortion in the spectral band ratio (IOCCG,

2014). Detection of coccolithophores is often challenging, as they are

usually only flagged when their brightness exceeds a certain

threshold (Balch and Mitchell, 2023). To extend the dilemma

further: in Case-2 waters, the relationships between water

components are more intricate and often random (Woźniak and

Dera, 2007). Thus, despite numerous in situ measurements since

decades, a universal approach for all natural waters remains elusive

(IOCCG, 2019). Hence, a radiative transfer modeling framework

specific to algorithm development, such as the ONNS in-water

algorithm (Hieronymi et al., 2017), is necessary. Given that,

previous forward models based on deterministic functions, e.g.,
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fixed parameters, may not capture all the variability, and utilizing

reasonable random values can improve flexibility in simulations

(IOCCG, 2006; Zheng et al., 2015; Loisel et al., 2023).

The aim of this study is to develop a bio-geo-optical IOP model

that accurately reproduces IOPs from given component

concentrations, and can effectively capture variations in optical

properties across different water types. By conducting a detailed and

comprehensive analysis of in situ data with high accuracy and a

wide range, this model will provide guidance for feeding radiative

transfer simulations such as HydroLight, which allows the creation

of a new synthetic database. The findings of this study will enhance

our understanding of the composition of the planktonic community

and its impact on optical variability. Also, we will review the specific

IOP assumptions, the spectral scattering in particular, on remote

sensing reflectance. This will have important implications for ocean

color remote sensing including boundary conditions for the

atmospheric correction.
2 Fundamental concept of
the IOP model

All symbols, abbreviations, and units used are presented in

Table 1. IOPs are represented as the sum of light absorption or

scattering by water molecules and by various dissolved and

particulate constituents. Previous laboratory studies (Twardowski

et al., 2001; Vaillancourt et al., 2004) have already demonstrated the

separation of absorption and scattering based on observations. By

adopting the widely accepted conceptual separation of IOPs

(Mobley, 1994), the total absorption and total scattering

coefficients can be formulated as:

at(l) = aw(l) + ad(l) + ag(l) + aph(l) (1)

and

bt(l) = bw(l) + bd(l) + bph(l), (2)

where l is the wavelength of light and the subscripts w, d, g, and

ph stand for the four components: pure water, detritus, gelbstoff, and

phytoplankton, respectively (no particulate scattering is usually

attributed to the dissolved gelbstoff). However, if other

components are important in a specific context, they can be

added (Stramski et al., 2001). The attenuation coefficient is the

sum of absorption and scattering, expressed as. The total particulate

IOPs are represented as the sum of that of detritus and

phytoplankton: ap(l) = ad(l) + aph(l) and bp(l) = bd(l) + bph(l).
The subscript gp is used to represent the IOPs calculated as the sum

of CDOM (gelbstoff) and total particulates.

The light backscattering coefficients of water components are

determined by

bbx(l) = ~bbxbx(l), (3)

where the subscript x represents different components (w, d, or

ph), and ~bbx is the backscattering probability (or backscattering

ratio). This ratio is the fraction of backward scattered light to total

scattered light and is assumed to be constant, as no significant
frontiersin.org
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TABLE 1 List of symbols, abbreviations, definitions, and units.

Symbol or abbreviation Description Unit

Abbreviations

AOP Apparent optical property

IOP Inherent optical property

CV Coefficient of variance, CV = standard deviation/mean –

NIR Near infrared spectral range

UV Ultraviolet spectral range

VIS Visible spectral range

WOPP Water Optical Properties Processor

Short for concentrations

CDOM Colored dissolved organic matter, expressed as ag(440) m-1

[Chl] Concentration of chlorophyll a, Chl mg/m3

[ISM] Concentration of inorganic suspended matter, ISM g/m3

[OSM] Concentration of organic suspended matter, OSM g/m3

[TSM] Concentration of total suspended matter, TSM g/m3

Short for phytoplankton groups

Brown Brown-colored phytoplankton group

Cocco Coccolithophores phytoplankton group

Crypt Cryptophytes phytoplankton group

CyanB Blue-green-colored Cyanobacteria phytoplankton group

CyanR Red-colored Cyanobacteria phytoplankton group

Green Green-colored phytoplankton group

Symbols

Axd, Sxd* , Cxd Coefficients of the exponential function with a constant for a*bd(l) and a*md(l) where x stands for b and d,

respectively.

m-1, nm-1, m-

1

a*bd(l) Chl-specific biogenic detritus absorption coefficient m2/mg

ad(l) Absorption coefficient of detritus m-1

ag(l) Absorption coefficient of gelbstoff or colored dissolved organic matter (CDOM) m-1

a+g (l) Normalized ag(l) at the reference wavelength, a+g (l) = ag (l)=ag (l0) –

agp(l) Total absorption coefficient without pure water, agp(l) = at(l) – aw(l) m-1

a*md(l) Mass-specific minerogenic detritus absorption coefficient m2/g

ap(l) Absorption coefficient of total particulate matter, ap(l) = aph(l) + ad(l) m-1

aph(l) Absorption coefficient of phytoplankton m-1

a*ph(l) Chl-specific absorption coefficient of detritus m2/mg

a+ph(l) Normalized aph(l) at the reference wavelength, a+ph(l) = aph(l)=aph(l0) –

a*ph,i(l) Chl-specific absorption coefficient of the i-th phytoplankton group m2/mg

at(l) Total absorption coefficient m-1

aw(l) Absorption coefficient of pure water m-1

b0, n, m Coefficients of the model for bGM83
ph (l) m2/mg, -, -

(Continued)
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TABLE 1 Continued

Symbol or abbreviation Description Unit

bbd(l) Backscattering coefficient of detritus m-1

bbph(l) Backscattering coefficient of phytoplankton m-1

bbp(l) Backscattering coefficient of total particulate matter m-1

bbt(l) Total backscattering coefficient m-1

bbw(l) Backscattering coefficient of pure water m-1

bd(l) Scattering coefficient of detritus m-1

bp(l) Scattering coefficient of total particulate matter m-1

bph(l) Scattering coefficient of phytoplankton derived by the IOP model in this study m-1

b*ph(l) Chl-specific scattering coefficient m2/mg

bAdjph (l) Adjusted bGM83
ph (l) to the magnitude of bph(l) m-1

bGM83
ph (l) Scattering coefficient of phytoplankton derived by the Gordon and Morel (1983) model m-1

bt(l) Total scattering coefficient m-1

bw(l) Scattering coefficient of pure water m-1

~bbd Backscattering probability of detritus –

~bbph Backscattering probability of phytoplankton –

~bbph,i Backscattering probability of the i-th phytoplankton group –

cd(l) Attenuation coefficient of detritus m-1

cgp(l) Total attenuation coefficient without pure water, cgp(l) = ct(l) – cw(l) m-1

cp(l) Attenuation coefficient of total particulate matter m-1

cph(l) Attenuation coefficient of phytoplankton m-1

c*ph(l) Chl-specific attenuation coefficient of phytoplankton m2/mg

c+ph(l) Normalized cph(l) at the reference wavelength, c+ph(l) = cph(l)=cph(l0) –

c*ph,i(l) Chl-specific attenuation coefficient of the i-th phytoplankton group m2/mg

ct(l) Total attenuation coefficient m-1

cw(l) Attenuation coefficient of pure water m-1

Fph,i Fraction of the i-th phytoplankton group with the value between 0 and 1 –

Gw
0 , G

w
1 , G

p
0, G

p
1 G coefficients in the Lee et al. (2011) model to calculate Rrs(l) –

gd Power law exponent of cd(l) –

gph Power law exponent of c+ph(l) –

k(l) Sum of total absorption coefficient and backscattering coefficient, at(l) + bbt(l) m-1

l Light wavelength nm

l0 Light reference wavelength nm

Nph Number of phytoplankton groups –

p1, p2, …, pn Intermediate parameters in the “Two-term” IOP model (Table 3)

Rrs(l) Remote-sensing reflectance sr-1

R A random value between 0 and 1 –

S Water salinity PSU

(Continued)
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spectral changes have been observed (Twardowski et al., 2001;

Vaillancourt et al., 2004). While ~bbx is normally calculated using

volume scattering functions that describe the angular distribution of

scattered light (Mobley, 1994; Harmel et al., 2021), in this study,

fully radiative transfer simulations are not required as the focus is

on forward modeling. Therefore, ~bbx is used as a simplification in

the modeling work instead of the entire volume scattering function.

The single-scattering albedo, w(l), is the ratio of scattering to

attenuation:

wx(l) = bx(l)=cx(l), (4)

where the subscript x denotes total particle or individual

components. w(l) is a dimensionless optical parameter

combining a(l) and b(l) and is useful in optical modeling

(Stramski et al., 2007). The total scattering coefficient b(l) can be

easily determined if the shape of c(l) and w(l) are given.
2.1 The Four-term IOP model for
complex waters

As mentioned in the introduction, the “Four-term” IOP model

manages all components in Eqs. (1) and (2), separately. The IOPs of

pure water are known and are not the subject of further modeling.

The fundamental concepts of constructing IOPs of gelbstoff,

detritus, and phytoplankton – so that it fits to our observational

data – are illustrated in the following. The corresponding

parameterizations, which we determined based on analyses of

measured data, are given in section 3.2.

The absorption of gelbstoff in surface water, as a proxy of

CDOM, can be expressed as:

ag(l) = ag(l0)a
+
g (l), (5)

where the reference wavelength, l0, is usually at 440 nm, and

a+g (l) is the normalized ag(l) at l0, which has typically a nearly

exponential shape in the visible spectral range, which is most

relevant in the ocean color context. To substitute the exponential

function into Eq. (5), ag(l) can be written as

ag(l) = ag(l0) exp ( − Sg(l − l0)), (6)

where Sg is the spectral slope estimated by nonlinear regression

for a specific wavelength range, such as 350 to 500 nm (Babin et al.,

2003b). The form of Eq. (6) has been widely accepted to compare
Frontiers in Marine Science 06
the CDOM absorption coefficients across different systems but may

have a risk when extrapolate to longer wavelengths, e.g., > 500 nm.

The absorption coefficient of detritus, ad(l), is assumed to be

controlled by both phytoplankton [Chl] and inorganic suspended

matter, [ISM]. Following the concept of Ramıŕez-Pérez et al. (2018)

and Lo Prejato et al. (2020), the absorption coefficient is constructed

as:

ad(l) = ½Chl�a*bd(l) + ½ISM�a*md(l), (7)

where a*bd(l) is the Chl-specific biogenic detritus absorption

coefficient in the unit (m2/mg) and a*md(l) is the mass-specific

minerogenic detritus in (m2/g). Note that the units of [Chl] and

[ISM] are (mg/m3) and (g/m3), respectively.

The scattering of detritus is determined by the subtraction of its

absorption from its attenuation:

bd(l) = cd(l) − ad(l) : (8)

The attenuation coefficient of detritus, cd(l), is described as a

power law function to avoid any negative values:

cd(l) = cd(l0)(
l0
l
)gd , (9)

where the reference wavelength, l0, is often at 550 nm for its

lower susceptibility to phytoplankton absorption, and gd is the

power law exponent. Using Eq. (9), we can determine the spectral

shape of cd . To ensure a positive scattering value obtained from Eq.

(8), we calculate the magnitude of its attenuation based on the

single-scattering albedo at l0, wd(l0), which is a relative IOP

parameter and can be empirically obtained. The magnitude of the

spectrum, represented by cd(l0), can be then calculated by:

cd(l0) =
ad(l0)

1 − wd(l0)
: (10)

The absorption coefficient of phytoplankton is expressed as

aph(l) = ½Chl�a*ph(l), (11)

where a*ph in (m2/mg) is the Chl-specific absorption coefficient,

and [Chl] is commonly regarded as a proxy of the total

phytoplankton concentration.

To capture the natural variability in phytoplankton IOPs due to

the occurrence of different taxonomic groups, several phytoplankton

groups with different optical properties and pigment compositions

are considered. The Chl-specific absorption coefficient for
TABLE 1 Continued

Symbol or abbreviation Description Unit

Sd Exponential slope value of ad(l) nm-1

Sg Exponential slope value of ad(l) nm-1

T Water temperature °C

wd(l) Single-scattering albedo of detritus –

wph(l) Single-scattering albedo of phytoplankton –

wp(l) Single-scattering albedo of total particulate matter –
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phytoplankton is then expressed as:

a*ph(l) =oNph

i=1 fph,ia
*
ph,i(l), (12)

where fph,i is the fraction from 0 to 1 of each group in sum equal

to 1, and Nph is the number of different groups used. fph,i represents

the proportionate contribution of each group to the total

chlorophyll a concentration.

We define a+ph(l) as the normalized spectrum of phytoplankton

absorption coefficient spectrum with respect to its value at the

reference wavelength, which can be expressed as:

a+ph(l) =
a*ph(l)

a*ph(l0)
=

aph(l)
aph(l0)

, (13)

where l0 is the reference wavelength. Eq. (13) means one can

obtain the spectral shape by any given phytoplankton absorption or

specific absorption spectrum. Because we will afterwards obtain aph(l)
once aph(l0) is provided. This value is deemed as the spectral

magnitude and can be obtained based on its relationship with [Chl].

The relationship is often described using a power law function:

aph(l0) = A½Chl�E , (14)

where A is the scale factor, and the power exponent, E, is often

observed to be slightly below one in global data sets (Bricaud et al.,

1998; Woźniak and Dera, 2007). E represents the effects of pigment

packaging and its interaction with phytoplankton cell size.

Combining Eqs. (13) and (14), aph(l) of specific phytoplankton

groups can be spectrally determined.

The reference wavelength l0 is often set at 443 nm (Bricaud

et al., 2004). However, in this study, it was set at 676 nm, a

wavelength where chlorophyll a is the dominating pigment

absorption, and where a*ph is assumed to be very similar between

different taxonomic groups, while variations at 443 nm would be

larger due to a different pigment composition in each group.

Having cph(l) = ½Chl�c*ph(l) , the Chl-specific attenuation

coefficient of phytoplankton, c*ph(l), is expressed as the sum of

those of the different groups:

c*ph(l) =oNph

i=1 fph,ic
*
ph,i(l Þ: (15)

The phytoplankton Chl-specific scattering spectrum, b*ph(l), is
then taken from the difference between those for attenuation and

absorption:

b*ph(l) = c*ph(l) − a*ph(l) : (16)

The backscattering of phytoplankton, bbph, is calculated by

multiplying bph(l) with the weighted sum of the backscattering

probabilities of each phytoplankton group, ~bbph, which is expressed

as:

~bbph =ofph,i~bbph,i : (17)

For phytoplankton groups for which c*ph(l) in Eq. (16) is

unavailable, we will use wph(l0) and re-normalized cph(l) at the
reference wavelength, i.e., c+ph(l)=c

+
ph(l0), to determine c*ph(l):
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c*ph(l) =
c+ph(l)
c+ph(l0)

�
a*ph(l0)

1 − wph(l0)
, (18)

where l0 is set at 676 nm likewise and wph(l0) can be

empirically obtained from the measurements or literature for

specific phytoplankton groups, which controls the magnitude of

c*ph(l), and c
+
ph(l) only serves the spectral shape and can be assumed

safely as a power law function (l0=l)gph where the exponent gph
determines the spectral slope. The power law function was also used

to extrapolate c*ph(l) beyond the measured wavelength range.
2.2 The Two-term IOP model for
phytoplankton dependence only

While the “Four-term” IOP model is highly adaptable, it may

not be the most efficient option for simulating Case-1 waters, which

make up the majority of the Earth’s oceans and are influenced by

only two principal components: pure water and phytoplankton.

Although the “Four-term”model can simulate these waters, it often

requires more computational time and the gain in accuracy is small.

To improve efficiency, we added a “Two-term” IOP model, as a

supplement, by following the data synthesis process outlined in the

IOCCG (2006), but using the setups for pure water and

phytoplankton from the “Four-term” model (section 2.1) to

mimic different phytoplankton groups. In the “Two-term” model,

the fraction of phytoplankton groups from pico-phytoplankton to

micro-phytoplankton is constrained by varying limits based on

[Chl] levels. At low [Chl] levels, oceanic groups dominate, while

other groups become mixed in as [Chl] increases (Brewin et al.,

2010; Losa et al., 2017). However, in the “Four-term” model, there

are no bounded limits as phytoplankton communities may be not

correlated with [Chl] in optically complex water such as coastal and

inland waters. The fraction setting is a preliminary biological limit

that prevents unrealistic scenarios, but can be further refined with

additional knowledge inputs.
3 Model development

3.1 Data sets

3.1.1 Fundamental data set for the
model developing

The IOP model was developed using the “Hereon” data set

collected by scientists of the Helmholtz-Zentrum Hereon in

Germany (Röttgers et al., 2023). The comprehensive data set

includes various water systems, including coast (the southern North

Sea), river (the Elbe River), and ocean (the Atlantic Ocean),

representing both Case-1 and Case-2 waters, which makes it suitable

for building the IOP model. The data collection and processing

methods of the coast and river parts (N=794) are detailed in

Röttgers et al. (2023). However, the ocean part (N=40), which

follows the same protocols, is not yet published. This part of data is

primarily used for identifying and characterizing an oceanic
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phytoplankton group. Except that the [ISM] measurements are not

available in the ocean part, the Hereon data set contains parameters of

water constituents including [Chl], concentration of total suspended

matter, [TSM], and concentration of organic suspended matter,

[OSM]. [ISM] is calculated by subtracting [OSM] from [TSM].

The uncertainties of [TSM] and [OSM] measurements are given as

the standard deviation using the method proposed in Röttgers et al.

(2014b). Measurements of spectral IOPs, namely cgp(l), cp(l), agp(l),
ap(l), ag(l), ad(l), aph(l), bp(l), and bbp(l), are provided in the

Hereon data.

3.1.2 External data sets for the model evaluation
Several external in situ data sets were considered to evaluate the

IOP model. The “C22” data set, collected by Castagna et al. (2022),

was obtained from turbid and eutrophicated Belgian inland and

coastal waters, and it provides co-measured component

concentrations, IOPs, and Rrs. The “HYPERMAQ”, gathered by

Lavigne et al. (2022), consists of water samples from coastal and

inland waters with co-measured component concentrations and

IOPs. The “M17”, compiled by Mouw et al. (2017), contains

samples from a four-year period in Lake Superior, a large

freshwater lake that is dominated by CDOM. These data sets are

utilized to test the “Four-term” IOP model with [Chl], [ISM], and

ag(440) as inputs. Additionally, the “OC-CCI v3” data set by

Valente et al. (2022), which is the third version of the collection

for the ESA Ocean Colour-Climate Change Initiative (OC-CCI),

was also utilized. This data set mainly comprises oceanic samples,

including [Chl], aph, adg , bbp, and Rrs, and was aggregated within ±2

nm of satellite bands. It was used to test the “Two-term” IOP model

with [Chl] as input.

Furthermore, three simulated data sets were included to assess the

coverage of optical properties. The “L23” database by Loisel et al.

(2023), with a special focus onCase-1waters, was synthesized following

the process in IOCCG (2006), but its data distribution was constrained

to fit the global distribution based on satellite products. The “CCRR” by

Nechad et al. (2015), with a focus on Case-2 waters, was simulated

based on in situ measurements collected in the ESA Coast Colour

Round Robin project (see specifications in their Table 11). The “C2X”

database by Hieronymi et al. (2016, 2017). addresses all natural
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waters, including Case-1 and extremely absorbing or scattering

waters, though with some different IOP assumptions (see later

discussion). Table 2 presents the sample number and the ranges of

component concentrations.
3.2 Analysis of in situ data and
parameterization of the IOP model

3.2.1 Pure water
The real part of the spectral refractive index of water, as well as

water absorption and water scattering, are used as a function of

wavelength, water temperature, and salinity. The calculation of pure

water IOPs is based on the Water Optical Properties Processor

(WOPP) (Röttgers et al., 2016 and references therein). The pure

water light absorption coefficient in the UV/VIS part (< 510 nm) is

taken from Mason et al. (2016).

3.2.2 CDOM
Figure 1 shows CDOM absorption spectra from the coastal, river,

and oceanic waters fromHereon, C22, andM17. The spectral slope of

most Case-2 waters exhibits relatively limited variation, with even

more consistency observed in the turbid river data. However,

variability in spectral slope is observed in Hereon – Ocean due to

different sources of organic matters, photodegradation, precipitation,

and microbial alteration of CDOM (Kieber et al., 2006; Helms et al.,

2008). The distribution of Sg in the data set is consistent with previous

reports in European coastal waters (Babin et al., 2003b) of 0.0176 ±

0.002 nm-1, and the shape is comparable to the determination in the

Ligurian Sea (Ramıŕez-Pérez et al., 2018).

Initially, we used the exponential function, Eq. (6), to fit ag(l)
measurements from the Hereon data within the 350~500 nm range.

This yielded a mean Sg value of 0.0174 ± 0.0014 nm-1, with fitted

slope values varying in a narrow range. However, using this mean

slope caused a discrepancy between modeled ag(l) values and

measured values at longer wavelengths, with the modeled ag(560)

by Eq. (6) being approximately 20% lower than the real

measurements on average. To address this issue, we identified a

normalized spectrum frommeasurements with the nearest Sg values
TABLE 2 The summary of IOP data sets used in this study.

Name Reference N [Chl] [ISM] ag(440)

Hereon Röttgers et al. (2023) 834 0~54 0~240 0~1.1

C22 Castagna et al. (2022) 77 0~400 1~800 0.3~2.8

HYPERMAQ Lavigne et al. (2022) 179 1~180 0~450 1.8~3.5

M17 Mouw et al. (2017) 37 0~6 0~2 0~2.1

OC-CCI v3 Valente et al. (2022) 6,766 0~78 N/A N/A

C2X Hieronymi et al. (2016, 2017) 100,000 0~200 0~1,500 0~20

CCRR Nechad et al. (2015) 5,000 0~214 0~500 0~15

L23 Loisel et al. (2023) 29,880 N/A N/A 0~0.4
fron
Unit: [Chl] (mg/m3), [ISM] (g/m3), ag (440), (m
-1).

The Hereon data set was used for model training, while the remaining data sets were used for evaluation.
N/A means data are not available.
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(see black solid line in Figure 1). To account for the variability of the

ag(l) shape in the UV, we constrained the percentage difference of

Sg between the fitted mean value to be less than 0.1%, resulting in a

library of twelve a+g (l) spectra (not shown). Such random selection

of a+g (l) exhibits deviations of 0.7685 and 0.0543 at 300 and 350 nm,

respectively. Finally, in the “Four-term” IOP model, Eq. (5) will be

used to model ag(l) by providing ag(440) and randomly selecting

an a+g (l) spectrum from the library.
3.2.3 Detritus
To determine a*bd(l) and a*md(l) in Eq. (7), we formulated a

linear matrix equation at each wavelength:

½ISM�1 ½Chl�1
½ISM�2 ½Chl�2
⋯ ⋯

½ISM�n ½Chl�n

2
666664

3
777775� ½a*md(li),   a

*
bd(li)�T =

ad(li)1
ad(li)2
⋯

ad(li)n

2
666664

3
777775, (19)

where n denotes the number of samples used to solve the

equation matrix, i denotes the wavelength number, and here T

denotes the transpose sign. This equation satisfies the condition

a*md(li) > 0 and a*bd(li) > 0.

To reduce noise effects in the solution of Eq. (19), we applied

constraints to the Hereon data for [Chl], [ISM], and ad(l)
measurements. Any detritus absorption spectra that showed

remnants of pigment absorption were discarded. The coefficients of

variation (CV) of each component concentration were calculated as the

ratio of its standard deviation to the mean value (Röttgers et al., 2014b).

To select for accurate, detritus dominated measurements, we applied

the following constraints: CV(TSM) ≤ 0.3, CV(OSM) ≤ 0.3, and the

proportion of detritus of total particle absorption, ad(550)=ap(550) ≥

0:5. Note that the values used here for constraints are arbitrary to

ensure sufficient samples to solve Eq. (19). As a result, there were n = 80
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data combinations in Eq. (19). To avoid biased results, we used a

“Markov-chain” Monte Carlo algorithm by Meersche et al. (2009) to

solve Eq. (19). 3,000 iterations were used as suggested by this algorithm.

The results are presented as points in Figures 2A, B. The variability of

a*bd(l) is higher than that of a
*
md(l), and the separation of biogenic and

minerogenic components has a significant impact on the shape

of ad(l), depending on the ratio of [Chl] and [ISM]. Even though

we conducted quality control on ad(l), a slight peak around 676 nm

still appeared in the determined a*bd(l), as observed in a similar study

by Ramıŕez-Pérez et al. (2018). This peak may be due to imperfect

bleaching of pigments, so we excluded the region around 676 nm for

the non-linear regression of a*bd(l).
We employed an exponential function with a constant to fit

a*bd(l) and a*md(l) as there were non-zero signals in the near

infrared (Röttgers et al., 2014a). This function is given by:

a*xd(l) = Axd exp ( − Sxd* (l − l0)) + Cxd , (20)

where the subscript x denotes biogenic and minerogenic detritus as

b andm, respectively, and l0 represents the reference wavelength at 550
nm.We tested the function with and without a constant Cxd and found

that including theconstantyieldedbetter results,which is consistentwith

the findings in Woźniak and Dera (2007). The Meersche et al. (2009)

method resulted in a*xd(li) as a normal distribution per wavelength, so

we performed an exponential fit at different quantiles, ranging from 0 to

1, of a*bd(l) and a
*
md(l). The quantile of 0.5 indicates the maximum of

the distribution, representing the average condition for the selected data.

For this average condition, the coefficients are Abd = 0.0004 m-1, Sbd* =

0.0158nm-1,Cbd =0.001m
-1,Amd =0.0135m

-1,S
md* =0.0104nm

-1, and

Cmd = 0.0122 m-1. The coefficients of Eq. (20) for other quantiles in the

Hereon data set are listed in the Supplementary Material (Table A3).

Although higher quantiles may suggest a higher organic composition of

particles, we found no significant correlation and therefore this requires

further investigation before being used.

Measurement of attenuation and scattering of detritus alone are

technically not feasible. Therefore, we began by analyzing total

particles and selecting again detritus-dominated samples to

represent the IOPs of detritus. Subsequently, we used these IOPs

to parameterize the spectral slope of attenuation, gd , and the single-

scattering albedo of detritus at the reference wavelength, wd(l0), in
Eqs. (9) and (10), respectively. We applied two constraints to the

training data: 1) ad(550)=ap(550) ≥ 0:85 and 2) only surface

samples (water depth ≤ 12 m). Based on these criteria, we

obtained 24 samples where we assumed that the cp(l) spectra

represented cd(l). The distribution of gd and wd(550) for these

samples are shown in Figures 2C, D, respectively. The mean value of

gd is 0.3835 ± 0.1277 nm-1, which follows a normal distribution

function. As gd decreases, the spectrum gradually flattens,

indicating that detritus increasingly dominates, which has been

reported by other studies too (Voss, 1992; Boss et al., 2001;

Twardowski et al., 2001; Neukermans et al., 2012). To satisfy a

normal distribution, we re-transformed the single-scattering albedo

of detritus, wd(550), using log10 (1 − wd(550)). The resulting mean

value of transformed wd(550) is –1.3390 ± 0.0618 (mean of 0.9542

on its original scale). The determined wd(l) spectrum (not shown)

is comparable to laboratory measurements of most terrigenous
FIGURE 1

Normalized CDOM absorption spectra, a+g (l), from data sets Hereon

(grouped into ocean, river, and coast), C22 (Castagna et al., 2022),
and M17 (Mouw et al., 2017), as well as from modeled spectra by
Ramıŕez-Pérez et al. (2018) and Babin et al. (2003b). The red dashed
line represents the fitted a+g (l) spectrum based on the exponential

function, Eq. (6), with a mean Sg value of 0.0174 nm-1. The black
solid line indicates the mean spectrum of the a+g (l) library in the IOP

model (see text). Spectral slopes for ag on the left.
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particles (Stramski et al., 2007). Finally, we set the backscattering

probability of detritus, ~bbd , as 0.0216 based on these measurements.

To summarize, the “Four-term” IOP model follows a process

where a quantile value between 0 and 1 is randomly chosen from

the fitting results to determine a*bd(l) and a
*
md(l) using Eq. (20). Next,

ad(l) is calculated based on [Chl] and [ISM] using Eq. (7). gd and

wd(550) are randomly generated from normal distributions based on

their statistical parameters to determine cd(l). Finally, bd(l) is

obtained using Eq. (8), and bbd(l) is calculated by multiplying bd(l)
with ~bbd . One should note that the random terms used for detritus

IOPs are derived from the Hereon statistics and are already

representative. However, they can be adjusted to other specific

environments, which is relatively more convenient compared to

other models that require the replacement of entirely new

specific-IOPs.
3.2.4 Phytoplankton
The relationships between [Chl] and aph(676) from the Hereon

data is shown in Figure 3A, after excluding outliers (i.e., water depth

> 12 m and ten samples with obvious aph noise). A power law
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function, Eq. (14), was initially used to fit the data. However, for

lower [Chl] values (≤ 1 mg/m3), we found that a linear relationship

(E = 1) was more appropriate. Therefore, aph(676) can be expressed

using a hybrid function:

aph(676) =
0:0237½Chl�1:0000,  ½Chl� ≤ 1  mg=m3

0:0237½Chl�0:8987,  ½Chl� > 1  mg=m3
:

(
(21)

To account for natural variation, the equation allows a deviation

within ±20% of the A coefficient (i.e., 0.0112~0.0501) (Bricaud et al.,

1995). Figure 3B demonstrates that this range agrees well with other

data sets and other fitting models (Bricaud et al., 1995; Bricaud

et al., 1998; Churilova et al., 2017; Castagna et al., 2022).

To capture the optical features of phytoplankton diversity, we

selected spectral properties of seven different phytoplankton groups.

Five of these groups represent the essence of distinguishable

phytoplankton absorption spectra of algal cultures determined in

preliminary work by the authors (Xi et al., 2015; Hieronymi et al.,

2017; Xi et al., 2017) and include: (1) a brown group

(Heterokontophyta [including diatoms], Dinophyta, and

Haptophyta), (2) a green group (Chlorophyta), (3) the
A B

DC

FIGURE 2

Spectral coefficients of detritus. (A) Chl-specific biogenic detritus absorption, m2/mg. (B) ISM-specific minerogenic detritus absorption, m2/g. (C)
Normalized particle attenuation spectra at 550 nm. Note that the Y-axis does not start from the origin. (D) Scatter plot of wd (550) and gd (550).
Determined on varying quantiles, points fitted in exponential functions with constant. Normalized attenuation spectra fitted based on power law

function. Spectral slopes for a*bd , a
*
md, and cd on the left of panels (A–C).
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Cryptophyceae; (4) a blue-green-colored Cyanobacteria and (5) a

red-colored Cyanobacteria. In addition, two other groups were

considered: (6) “Phytoplankton Case-1” for oligotrophic Case-1

waters and (7) a group representing Coccolithophores. The

“Phytoplankton Case-1” group shall represent a small-sized group

of widely distributed oceanic phytoplankton (Synechococcus and

Prochlorococcus), that play an important role in global primary

production. The corresponding IOP data for this group were

collected in the tropical-subtropical North Atlantic Ocean (RV

Sonne, SO287, 12/2021-01/2022) following the same protocol as

in Röttgers et al. (2023). Coccolithophores are marine group that are

abundant in temperate zones and exhibit strong particulate

scattering, which can dominate ocean color properties. Without

blooms, their bbph typically accounts for approximately 10~20% of

total bbp, whereas during intense blooms, bbph can account for over

90% of total bbp (Balch et al., 1991; Balch and Mitchell, 2023). The

specific IOP data for the Coccolithophore group were taken from

measurements of the unialgal culture Coccolithus huxleyi by Bricaud

et al. (1983).

In our previous studies (Xi et al., 2015, 2017), we measured the

absorption coefficients of two Cyanobacteria groups, the “Green”

group and the Cryptophytes from cultures, but their attenuation and

scattering coefficients were not available for this study. To estimate

these coefficients, we made a first guess. We determined the Chl-

specific IOPs of the “Brown” group from a subset of theHereon data

that was dominated by this phytoplankton group. We excluded

samples collected in the Atlantic Ocean and samples with ad(560)

=ap(560) ≥ 0:3 and [Chl]< 1 mg/m3, which is additionally based on

the constrain settings for calculating a*ph(676). Since it is impossible

to measure the true cph(l) in a natural sample, we used bp(l) and
cp(l) to represent bph(l) and cph(l) for the constrained samples.

The single-scattering albedo of phytoplankton at 676 nm, wph (676),
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for the “Brown” group has a mean value of 0.8952 ± 0.0107. The

corresponding spectra of aph(l), bp(l), and cp(l) are shown in

Figure 4, which do not exhibit any obvious spectral features in the

attenuation coefficients, likely due to the rather large cell size of this

phytoplankton group. Therefore, we assumed that, for groups

without measured attenuation coefficients, they are spectrally

constant over the wavelength, which is not true in reality but

should be considered as a reasonable way to mimic the shape of

scattering spectra by subtraction. Once we determined wph(676) for

each group, we calculated the magnitude of phytoplankton

attenuation using Eq. (18). The values of wph(676) for the

Coccolithophores and the “Phytoplankton Case-1” group were

0.9562 and 0.8485 according to their respective measurements.

Considering the size difference between phytoplankton groups, we

adjusted wph(676) to 0.88 for the Cryptophytes (usually smaller than

the “Brown” group), 0.9 for the two Cyanobacteria groups, and

retained 0.8592 for the “Green” group. Mixing all phytoplankton

groups resulted in a varying wph(676) between 0.8525 and 0.9541,

which is consistent with previous studies (Stramski et al., 2001;

Babin et al., 2003a; Oubelkheir et al., 2006). Figure 5 presents

spectra of IOPs (absorption, scattering, attenuation, and single-

scattering of albedo coefficients) for phytoplankton groups, pure

water, detritus, and CDOM. The corresponding spectra data are

provided in Data Sheet 1 of the Supplementary Material.

The backscattering probabilities of phytoplankton, ~bbph, is assumed

to be spectrally independent (Twardowski et al., 2001; Harmel et al.,

2021). Based on the data reported by previous studies (Bricaud et al.,

1983; Ahn et al., 1992; Gregg and Rousseaux, 2017), ~bbph of each group

are assigned as 0.002 for the “Brown” group and the Cryptophytes,

0.003 for the two Cyanobacteria groups, 0.007 for the “Green” group,

the Coccolithophores, and the “Phytoplankton Case-1” group. ~bbph is

then calculated as the sum of all group fractions.
A B

FIGURE 3

Relationship between [Chl] and aph (676) on the log10 scale with different regression curves from previous studies and the Hereon data. The solid
lines denote the training data range and the dashed lines are extrapolated. Points in panel (A) are for the Hereon data and panel (B) for the external
data sets.
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To simplify the phytoplankton IOP for oligotrophic Case-1

water, which is typically dominated by Synechococcus sp. and

Prochlorococcus sp., we applied constraints to the occurrence of

the different groups in the “Two-term” model but not in the “Four-

term” model. The distribution of phytoplankton groups was

estimated based on open access High Performance Liquid

Chromatography (HPLC) data (Kramer and Siegel, 2021) and the

CHEMTAX method (Mackey et al., 1996), using the results as a

reference. The initial and final pigment ratio matrices can be found

in Tables A1, A2 of the Supplementary Material. To account for

natural variability in phytoplankton absorption and scattering, we

performed random sampling and shuffling to obtain the fractions of

the phytoplankton groups, fph, within the upper and lower limits.
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The fraction library for sampling is presented in Figure A1 of the

Supplementary Material. Details of the calculation steps for the

“Four-term” and “Two-term” IOP models can be found in Table 3;

and a flow chart summarizing the process is provided in

Supplemental Figure A2. The relevant data and codes for the IOP

model are provided in the section Data Availability Statement.
3.3 Benchmark tests

3.3.1 Other IOP models
In this study, we compared our proposed IOP model with two

other models, R18 (Ramıŕez-Pérez et al., 2018) and L23M (Loisel et al.,
A B

DC

FIGURE 4

The spectra of Chl-specific IOPs of the “Brown” group, derived from a subset of the Hereon data. Panels (A–C) present the phytoplankton IOP
spectra, normalized by [Chl], for absorption, scattering, and attenuation, respectively. The thick black spectra correspond to constrained samples
used to determine IOPs. Panel (D) shows the calculated Chl-specific IOPs.
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2023). We didn’t consider models designed for retrieving IOPs from

AOPs, as our focus is on forward modeling. It should be noted that the

performance of amodel depends on its inputs and the type of water it is

applied to. A superior model should be able to capture the majority of

IOPs across various optical water types and accurately reproduce IOPs

when component concentrations are provided.

The R18 model estimates specific IOP coefficients of water

components using a deconvolution method, based on data from

optically complex waters in the Ligurian Sea. Its outputs are

deterministic and depend solely on the input variables [Chl],

[TSM], and ag(440).
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The L23Mmodel (the “M” indicating it’s a model, as opposed to

the name of their data set) was developed as part of the study by

Loisel et al. (2023) to create the L23 data set (refer to Table 2). The

L23M model is not deterministic, meaning that it does not always

produce the same result given the same inputs. This is because the

model incorporates random values, which are used to account for

natural variability. Its non-deterministic result may fluctuate with

changes in random values. To address this, we repeated model runs

30 times for a given input, and calculated the mean and standard

deviation for comparison purposes. The same procedure was also

implemented for our model.
A B

DC

FIGURE 5

Specific IOPs of phytoplankton groups compared with IOPs of other components. Spectral absorption (A), scattering (B), attenuation (C), and single-
scattering albedo coefficients (D) of phytoplankton groups (solid lines) and exemplary non-phytoplankton components (dashed lines): water (with
temperature = 20°C and salinity = 15 PSU), detritus (with [ISM] = 1 g/m3 and [Chl] = 3 mg/m3), and CDOM (with ag (440) = 0.03 m-1). Some spectra
are re-scaled for better visualization.
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3.3.2 Remote-sensing reflectance model and
simulations

In this study, we adopted the formula proposed by Lee et al.

(2011) to simulate Rrs(l) based on the absorption and

backscattering coefficients obtained from IOP models. The

formula is given as:

Rrs(l) = Gw
0 + Gw

1
bbw(l)
k(l)

� �
bbw(l)
k(l)

+ Gp
0 + Gp

1

bbp(l)
k(l)

� �
bbp(l)
k(l)

, (22)

where k(l) = at(l) + bbt(l). The coefficients G are dependent on

solar zenith angle and viewing direction, with values for solar zenith

angle = 30° and nadir viewing direction being Gw
0 = 0.05881474, Gw

1 =

0.05062697, Gp
0 = 0.03997009, and Gp

1 = 0.1398902.

To demonstrate the potential of our IOP models in building a

synthetic database, we generated a wide range of component

concentrations and fed them into Eq. (22). Note that these
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simulations are a simplified showcase and a full radiative transfer

model, such as HydroLight, will be utilized in the future. The range

of concentrations was collected from the data sets listed in Table 2.

We calculated their mean and standard deviation values and

assumed a log10-normal distribution with twice the standard

deviation to obtain more samples at extremely low and high

values (Campbell, 1995). The concentration specifications are

presented in Table 4. We generated 1,000 random combinations

and to capture more variability in Case-2 waters, we used these

combinations eight and four times in “Four-term” and “Two-term”

models, respectively, resulting in 12,000 simulations.
3.3.3 Alternative phytoplankton
scattering assumption

Many contemporary inversion models, used for deriving IOPs

from AOPs, commonly employ power law functions to represent

particle scattering or backscattering (Lee et al., 2002; Maritorena

et al., 2002; Morel et al., 2002; Werdell et al., 2013; Liu et al., 2020).
TABLE 3 Calculation steps of the “Four-term” and “Two-term” IOP models.

Component Calculation of the “Four-term” model Calculation of the “Two-term” model

Pure water aw(l), bw(l), bbw(l) from WOPP(l, T, S)

CDOM ag (l) = ag (440)� a+g (l) ag (l) = ag (440)exp( − Sg (l − 440))

Sg randomly between 0.0100 ~ 0.0200 nm-1

ag (440) = p1aph(440) p1 = 0:3 + (5:7Raph(440))=(0:02 + aph(440))

Detritus ad(l) = ½Chl�a*bd(l) + ½ISM�a*md(l)cd(l) = cd(550)(l=550)
gd

cd(550) = ad(550)=(1 − wd(550))

wd(550) = 1 − 10Rw

where Rw follows N(-1.3390, 0.0618)
gd follows N(0.3835, 0.1277)

bd(l) = cd(l) − ad(l)
bbd(l) = ~bbdbd(l) and ~bbd = 0.0216

ad(l) = ad(440)exp( − Sd(l − 440))
Sd randomly between 0.007 and 0.015
ad(440) = p2aph(440)

p2 = 0:1 + (0:5Raph(440))=(0:05 + aph(440))

bd(l) = bd(550)(550=l)
p3

bd(550) = p4½Chl�0:766
p3 = −0:5 + (2:0 + 1:2R)=(1 + ½Chl�0:5)
p4 randomly between 0.06 and 0.60

bbd(l) = ~bbdbd(l) and ~bbd = 0.0183

Phytoplankton IOPs determined from seven groups without limited bounds, i.e.,
fph,i from 0 to 1.

aph(l) = ½Chl�a*ph(l)
aph(676) = A½Chl�E
A: 0.0237 and between 0.0112 ~ 0.0501
E: 1.0000 for [Chl] ≤ 1mg/m3;
0.8938 for [Chl] > 1 mg/m3

c*ph(l) =
c+ph(l)
c+ph(676)

�
a*ph(676)

1 − wph(676)

b*ph(l) = c*ph(l) − a*ph(l)

bbph(l) = ~bbphbph(l)  and ~bbph =ofph,i~bbph,i

Same as the “Four-term” model (the left cell) but with limited bounds of
phytoplankton fraction, fph,i , of

[Brown, Green, Crypt, CyanB, CyanR, Cocco, PhyC1].

The upper limit is:
[0.5, 0.5, 0.3, 0.5, 0.5, 0.1, 1.0].
The lower limit varies with [Chl], mg/m3:
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0] if [Chl]< 0.05;
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5] if [Chl] ≥ 0.05 and ≤ 0.2;
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2] if [Chl] ≥ 0.2 and ≤ 1;
[0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2] if [Chl] > 1.
The normal distribution is represented by N(mean, standard deviation). The bold-faced variables are the primary inputs. R is a random generator producing values from 0 to 1. The calculation
steps of the “Two-term” model for CDOM and detritus are based on the process in IOCCG (2006).
TABLE 4 The specifications of component concentrations in the IOP simulation.

Parameter Unit Random generator Bound limits

[Chl] mg/m3 N(0.121, 0.858) [0.02, 1,000]

[ISM] g/m3 N(0.386, 1.637) [0.001, 2,000]

ag(440) m-1 N(-0.671, 0.969) [0.0001, 50]
Concentrations are obtained using an exponential function with base 10. The power value is determined by a random generator, N(mean, standard deviation) which satisfies a normal
distribution. Bound limits are defined for each parameter as the lower and upper boundaries.
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Although this parameterization has been successful in retrieving

IOPs for decades, there is less confidence in the accuracy of

scattering coefficients (Roesler and Boss, 2003) due to the non-

smooth nature of the scattering spectra, as observed from in situ

measurements and theoretical models (Babin et al., 2003a; Stavn

and Richter, 2008; Bernard et al., 2009). In contrast, particulate

attenuation spectra, such as those in the Hereon data set shown in

Figure 4, exhibit more smoothness, whereas scattering spectra tend

to be more irregular in the wavelength range where absorption

spectra display peaks. This is believed to result from the

compensation of strong absorption peaks by phytoplankton

(Twardowski et al., 2001). This raises the question of how the use

of a smoothed power law function for scattering spectra in the

presence of spectral features affects the accuracy of the ocean

color algorithm.

In this study, we used the Gordon and Morel (1983) model,

which is a common option in HydroLight, to examine the impact of

the bph assumption on Rrs simulation. The power law model is

expressed as:

bGM83
ph (l) = b0½Chl�n

l0
l

� �m

, (23)

where bGM83
ph (l) represents the bph(l) by the above model, l0 =

550 nm, b0 = 0.3, n = 0.62, andm = 1. The term b0½Chl�n denotes that
bph(550) is dependent on [Chl], and the spectral shape is controlled by

the exponent m. The observed difference in magnitude may be due to

the varying relationship between bph(550) and [Chl] across different

aquatic systems. To account for this magnitude effect, we adjusted

bGM83
ph (l) by normalizing its bGM83

ph (550) to the value obtained from our

IOP model. This leads to bAdjph (l), which is calculated as:

bAdjph (l) = bGM83
ph (l)

bph(550)

bGM83
ph (550)

, (24)

where bph(l) , for the sake of simplification, is the

phytoplankton scattering coefficients by our IOP model. We

conducted a sensitivity analysis to compare the simulated Rrs

using bph, which is assumed as the reference, and the two

modified scattering assumptions bGM83
ph and bAdjph .
3.4 Statistical metrics for evaluating
model performance

This study evaluated the performance of an IOP model by

comparing its ability to reproduce co-measured concentrations and

IOP results using component concentrations as input. The aim was

to demonstrate the capability to accurately describe the bio-optical

process. To evaluate the performance, several statistical metrics

including linear regression were utilized. The squared correlation

coefficient, R2, measures how well a model fits the observed data.

The slope, S, represents the change in the measured value for each

unit increase in the estimated values, while the intercept, I,

represents the systematic offset when comparing measurements

and estimations. Better fits are indicated by R2 and S values closer to

one and I value closer to zero. Additionally, the unbiased median
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percentage difference, D, was used to evaluate the accuracy of IOP

models, with lower values indicating better accuracy. D was

calculated as the median of (X − Y)=(X + Y)� 200% , where X

and Y are measurement and estimation values. The measurement

and estimation values are scaled using a logarithmic base 10

transformation prior to the calculation of these statistical metrics.
4 Results and discussion

4.1 Reproducibility of IOP models

Recall that the two-term model takes only [Chl] as input, while

the four-term model takes [Chl], [ISM], and ag(440) as inputs. The

R18 model uses [Chl], [TSM], and ag(440), while the L23M model

takes only aph(l). All of these models output spectral IOPs of the

components. In this section, we compared these benchmark models

in terms of aph, ad , ag , agp, bp, and bbp, focusing specifically on the

results at 440 nm. Scatter plots for the Hereon data set and the

external data sets are in Figures 6, 7, respectively. Additional scatter

plots at other wavelengths are provided in the Supplementary

Material (Figures A3, A4: 560 and 670 nm). Figure 8 shows

spectral analysis to evaluate model performance from 400 to 700

nm. Multispectral samples were excluded in the spectral analysis to

avoid outliers, primarily from OC-CCI v3, resulting in different

valid estimation numbers (N) in scatter plots and spectra plots, but

this does not significantly affect the spectral trend.

Figure 6 shows the reproduced IOPs for the Hereon data from

our model in comparison with two other models, whereby for our

model, the “Two-term” setup was applied to the oceanic data in

Hereon and the “Four-term” setup to coastal and river data. The

comparison between the two- and four-term results of the “oceanic”

samples indicates no significant deviation, which is crucial for the

seamless modeling of IOPs during the transition from Case-1 to

Case-2 waters. Figure 6A demonstrated accurate aph(440) estimates

with a slope close to one, which verifies the reliability of the a*ph(l)
determination and the phytoplankton group spectral shapes, as the

result at 440 nm can be regarded as being extrapolated from 676

nm. The percentage difference in aph from 400 to 700 nm, shown in

Figure 8 (A7), was within approximately ±5%, with some results

within ±10%. The evaluation of ad(440) in Figure 6D revealed good

performance across a range of four orders of magnitude, especially

when ad(440) was greater than 0.1 m-1, where the particulate matter

was dominated by the inorganic component. However, the ad(440)

estimation was more scattered for lower values, possibly due to

increased variability in the a*bd(l) shape due to increased organic

components and uncertainties in concentration inputs caused by

general measurement errors for organically dominated [TSM],

hence [ISM]. The spectral statistical results of ad in Figure 8 (A8)

exhibited relatively consistent values across the wavelength range,

with percentage differences between ±5%. The ag (440) results,

shown in Figure 6G, were in line with the “Four-term” input,

while the “Two-term” results were dependent on the random

parameter values. Despite the wide variation range, the error lines

covered the measured values. The statistical results of ag in Figure 8

(A9) showed percentage differences within ±5% up to 600 nm, but
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degradation was observed beyond 600 nm as the values approached

zero. Our IOP model performed well in the evaluation of agp(440),

the sum of aph(440), ad(440), and ag(440), across different water

types and over wavelengths, with no outliers observed. The bp(440)

estimates, shown in Figure 6M, were accurate across three orders of

magnitude, but with a few outliers due to higher measurement

variation of [TSM]. The bbp(440) results were close to the 1-to-1 line
Frontiers in Marine Science 16
for values greater than 0.01 m-1, but with some deviations in the

low-value region, especially for the “Two-term” model in the

oceanic data. The spectral distribution of statistical values for bp
and bbp in Figure 8A remained consistent, with percentage

differences within ±5%.

The R18 model generally yielded comparable results at 440 nm

to our model, albeit with some differences for certain parameters.
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FIGURE 6

Evaluation of IOP estimates at 440 nm from our proposed model, from Ramıŕez-Pérez et al. (2018), and Loisel et al. (2023). Color shows the
different parts in the Hereon data, shape indicates the model type, black line is 1:1, red line is linear regression. Point denotes the mean value of
repeated runs and error bar shows the variation using random parameters (defined in Table 3). Statistics: the number of points (N), the unbiased
median percentage difference (D), the coefficient of determination (R2), and linear regression slope and intercept (S and I), with standard deviation in
brackets. Panels with notes in red text mean input equals to output. The reason for the absence of results for Hereon – Ocean in R18 is the
unavailability of the input parameter [TSM] in that specific part of the data. The panels are labeled from (A–R) corresponding to the different models
across the variables.
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Specifically, R18 model underestimated ad at longer wavelengths, as

shown in Figure 8 (A8), with a slope of 0.78 lower than that of our

model (0.93) at 560 nm, and with 0.71 lower than 0.99 at 670 nm.

This difference could be due to the imperfect separation of biogenic

and minerogenic parts of detritus in R18, as the pigment residuals in

longer wavelengths, e.g., ≥ 560 nm, were still evident in their a*bd(l) ,
leading to the underestimation of a*md(l) in these wavelengths.

Additionally, consistent discrepancies between measurements and

estimations of bp(l) and bbp(l) were observed across wavelengths,

which were also found in other data sets, as shown in Figure 8B.

Based on the points ofHereon –Ocean and some points ofHereon –
Frontiers in Marine Science 17
Coast resembling oceanic waters, as shown in Figure 6, the L23M

model demonstrates favorable results for Case-1 waters when aph(l)
spectra are provided. Conversely, the model generally

underestimates all IOPs for Case-2 waters across the wavelength

range concerned, as demonstrated in Figure 8B. This outcome is

anticipated since the model is primarily designed for global oceanic

waters. The superior performance of the L23M model for Hereon –

Ocean is primarily due to the fact that aph(l) is its primary input,

which mainly governs the total IOPs.

Figure 7 displays an independent evaluation of IOP models

based on in situ data from external sources. Our model performs
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FIGURE 7

Same as Figure 6 but for external data sets: HYPERMAQ, M17, OC-CCI v3, and C22, shown in different colors.
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better in estimating aph(440) for various water types, including

CDOM-dominated lakes from M17, eutrophic lakes from C22, and

oceanic waters from OC-CCI v3, as evidenced by the lower

percentage difference. In addition, our model produces a larger

number of estimated aph(440) values, which may interfere with the

reliability of other statistical metrics if other models are unable to

estimate these points. However, the ad(440) results are slightly

underestimated in C22 and overestimated M17 in both our model

and R18. The higher [ISM] values observed in M17 compared to

similar samples in the Hereon data may explain the overestimation

of ad(440), which can also be observed from the overestimation of

bp(l) in Figures 7M, N. The overestimation of ad(l) was slightly
reduced by L23M in Figure 7F, when only [Chl] was used to model

ad(l). One should consider the uncertainty associated with

component concentration when using IOP models (IOCCG,
Frontiers in Marine Science 18
2019). Despite this, the overall performance of agp(440) remains

strong by our model, with an R2 of 0.83, even in the presence of

more variability in OC-CCI v3. The spectral percentage difference of

agp mostly fell within ±10%, as shown in Figure 8 (B10). The bp(440)

estimates by our model are slightly underestimated for extremely

turbid water (mainly from HYPERMAQ). For such highly turbid

waters, the uncertainty of in situ measurements should be

considered (IOCCG, 2019). Only a few of points of bbp(l) are

observed due to the limited data from these external data sets. The

different performance between our model and R18 in estimating

bbp(440) may result from the use of similar measurement devices in

the studies of R18 andM17. The reason for the absence of results for

Hereon – Ocean and OC-CCI v3 in R18 is the unavailability of the

input parameter [TSM] in that specific part of the data. Note that

the smaller data size and larger measurement uncertainties in the
A

B

FIGURE 8

Statistical metric spectral distribution for component IOPs: R2, percentage difference (D), and number of valid estimations (N). The lines represent our
proposed model, Ramıŕez-Pérez et al. (2018), and Loisel et al. (2023). Panel (A) uses the Hereon data, while panel (B) uses external data sets listed in
Table 2. The wavelength range is from 400 to 700 nm. The two colored shadows represent the percentage differences of ±5% and ±10%, respectively.
The model inputs equal to the model outputs for aph in the Loisel et al. (2023) model. Some spectra overlap due to the closely similar values.
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external data sets compared to the Hereon data can impact

statistical results in Figure 8B. Nonetheless, our model still

demonstrates consistent and robust performance across the

spectrum, with most components falling within a ±10%

difference range.

To summarize, our IOP model shows comparable performance

as other the two models in terms of reproducing IOPs from

concentrations in specific water environments and in terms of

absolute values and spectral shapes. However, our model provides

a higher amount of reproducibility across diverse optical water

types, encompassing oceanic, coastal, and inland waters. Our

spectral statistical metrics demonstrate that the estimations of

model have a percentage difference of within ±5% for most

component IOPs throughout the visible spectrum, with some

falling within ±10%, which is essential for meeting the accuracy

requirements outline in GCOS (2011) for developing ocean color

algorithms. Another advantage of our IOP model is its flexibility,

allowing for replacement of specific model parameters with more

optimal values in special scenarios. Although these parameters

defined so far have proven to be representative, this enables

continuous improvement and refinement of the model over time.
4.2 Do we capture most optical variability?

In the previous section, we established that our IOP model can

accurately reproduces water optical properties based on component

concentrations. However, we also need to determine whether the

model can capture most of the optical variability, which depends on

the concentration range and the dynamic range of model

parameters like g and w . We admit that our current ranges may

not encompass some extreme scenarios. For instance, to address the

underestimation depicted in Figure 7M, we increased the original

value of wd(550) and reduced gd to simulate a highly turbid water

type. By adjusting model parameters such as g and w , the resulting
ranges offer valuable insights into the appropriate direction for fine-

tuning the model. Although these modifications improved that

particular case, they lay outside 96% of the training data

distribution. Despite this, we used the original model parameters

established in section 3.2 and the concentration range provided in

Table 4 to do the simulation as a showcase, which is used to test the

data coverage with other data sets.

The data distribution presented in Figure 9 compares in situ

measurements and simulated data sets. Panels (A) and (C) show our

simulated data and in situ measurements, while panels (B) and (D)

compare other simulated data sets. Our selection of 560 nm was

intended to showcase the data distribution, but it is worth noting that

the results for other wavelengths are also comparable. The ap(560) and

wp(560) relationships demonstrate the ratio of bp to cp as particle

absorption increases. The ap(560) values of Hereon vary up to four

orders of magnitude, with C22 andHYPERMAQ having higher values,

and M17 varying over a smaller range with lower values. Despite the

variation in ap(560), Figure 9A demonstrates that the variation

in wp(560) is relatively stable, with measured values as low as about

0.9 and simulated values as low as 0.8. As anticipated, the “Four-term”

model contributes to most of the value variation. Figure 9B indicates
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that other simulated data sets have similarities, with the L23 data set

having a comparable distribution to our simulations, albeit with fewer

points where ap(560) is greater than 0.1. The simulated CCRR data set

shows a wider distribution in ap(560) but stablewp(560), primarily due

to a constant gd and a [Chl]-related gph. However, the simulated C2X

data set displays more pronounced differences, with some points

having significantly lower wp(560) values for high ap(560) and

phytoplankton-dominated water, suggesting that only 20% of the

light is scattered for a given high particle concentration, resulting in

low reflectance, which is inconsistent with real-world observations. The

primary reason for such low wp(560) values is the inappropriate

parameterization of bph(l) in C2X. These points have lower bph(l)
values with relatively higher aph(l) (not shown). Figures 9C, D show

the relationship between agp(560) and bbp(560), with bbp(560)

increasing as agp(560) increases in the measured data, suggesting a

stable proportion of ag(560) in agp(560) that co-varies with [Chl], as

reflected in CCRR and L23. C2X contains simulations of extremely

absorbing waters, resulting in simulated points below the distribution

of other data due to high CDOM absorption. Our simulated data, using

a similar concentration limit fromC2X, has a wider coverage compared

to the C2X distribution, with most points originating from the “Four-

term” model (CDOM is independent of [Chl]), while C2X has some

data gaps.

For practical reasons, the study limited the number of IOP

components to a manageable amount instead of including all

particle species in water (Stramski et al., 2004). In the “Four-

term” model, ag was modeled using a few spectra (N=12) with

similar shapes (Sg = 0.0174 nm-1 ± 0.1%). The resulting model was

able to accurately reproduce the CDOM spectrum with precise ag(

440) values. In the “Two-term” model, ag was correlated to [Chl]

with a random value, resulting in relatively greater variability, but

still covering the range of values observed in oceanic waters. The

shape of specific detritus absorption, a*d , varies across different

aquatic environments but is generally limited on a local scale

(Woźniak and Dera, 2007). The slope of minerogenic detritus

absorption, S*md , in our study, 0.0104 nm-1 in Figure 2B, was

consistent with values observed in other natural water basins

(Woźniak and Dera, 2007). The combination of biogenic and

minerogenic detritus in our model enhances its applicability

across different regions, which is important for simulating IOPs

of complex waters on a global scale. The use of different quantiles

(quasi-organic proportion of the total particle) to define a*bd aligns

with the observed increase in biogenic detritus absorption when

organic matter dominates. The slopes of our simulated ad values

range from 0.0068 to 0.015 (as per the definition in Stramski et al.

(2019), based on the natural logarithmic transformation at 440 and

550 nm), which are generally consistent with previous studies, e.g.,

0.0095~0.0148 in Zheng et al. (2015) and 0.0031~0.0169 in Stramski

et al. (2019), but lack the “flat” shapes (lower values) found in

Stramski et al. (2019) due to limited data in the training set, which

can be expanded in the future to incorporate such extreme

scenarios. The IOP model proposed in this study includes seven

phytoplankton groups that are used as general “color” groups,

rather than specific phytoplankton species or functional types that

have different absorption and scattering properties. By using these

general groups, the model can capture the increased variability in
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phytoplankton IOPs that is visually seen in natural systems. In other

words, the phytoplankton groups in our model are not based on

specific biological characteristics, but rather on their broad spectral

characteristics, allowing for more flexibility and accuracy in

predicting phytoplankton IOPs. Variables aph(412)=aph(443) and

aph(555)=aph(490), used to describe the shape of aph in Zheng et al.

(2015), were found to be in good agreement with other in situ and

simulated data sets, within the ranges of 0.8~1.0 and 0.2~1.0,

respectively. Although some ranges may not be covered, it is not

necessary to add more phytoplankton groups if no color differences

are added. Our IOP model is also able to simulate coccolithophore

blooms with a 490 nm reflectance peak by multiplying its

absorption coefficient by 0.02, which is biologically based on the

vanishing of the absorbing algae cells but remaining high scattering
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from detached coccoliths (Neukermans and Fournier, 2018;

Cazzaniga et al., 2021).

Complete coverage of the optical diversity of as many natural

waters as possible is also important for the exploitation of optical

water type classification methods. Existing methods (e.g., Moore

et al., 2014; Hieronymi et al., 2017; Jackson et al., 2017; Bi et al.,

2021) can only partially cover the optical variability; many complex

waters are out-of-scope for these methods, which is reflected in too

low class memberships (not shown in detail here). This also applies

to the classifiability of Rrs from various ocean color atmospheric

corrections (Hieronymi et al., 2023). Both aspects identify potential

weaknesses of the OWT methods, which should be revised in the

future, e.g., by means of our IOP model. It is noteworthy that the

analysis here did not account for variability when modeling IOP to
A B

DC

FIGURE 9

Data coverage comparison for IOPs at 560 nm of our simulated data with measured (left) and other simulated (right) data. (A, B) show scatter plots
of particulate absorption versus the single-scattering albedo. (C, D) show the total non-water absorption versus total particulate backscattering. The
black dashed outline is the convex hull of our simulations and the red one is highlighted part in the C2X data set that [Chl] ≥ 50 mg/m3 and [ISM] ≤
50 g/m3.
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Rrs, and we simplified backscattering as a spectral constant rather

than a sophisticated phase function or a volume scattering function.

This could impact the Rrs angular distribution in many complex

waters (Harmel et al., 2016). When analyzing OWT frameworks,

environmental factors, and sun-viewing geometries should also be

considered and varied (Bi et al., 2023).
4.3 Sensitivity analysis of phytoplankton
scattering assumption

Figure 10 demonstrates that the disparity in Rrs between modeled

bph(l) and bGM83
ph (l) was more noticeable at high [Chl] (>100 mg/
Frontiers in Marine Science 21
m3), with bGM83
ph (l) showing lower values (up to 0.02 sr-1 difference)

due to the modeled bph(550) discrepancy. At low [Chl] (< 1 mg/m3),

bGM83
ph (l) displayed slightly higher Rrs values (up to 0.003 sr-1 or 40%

difference). The most significant differences were observed in the

green and NIR (540~590 nm and 700~730 nm), with differences of

up to 90%, while the blue region (400~450 nm) was the least affected

as non-phytoplankton signals prevail. Renormalizing bGM83
ph (l) to

bAdjph (l), which makes bAdjph (560) equal to bph(560), significantly

reduced differences in Rrs except for higher [Chl] (>100 mg/m3).

However, the values in NIR were still lower than those with bph(l) by
up to 0.004 sr-1 (or 35%). Figure 11 presents six intuitive samples of

IOPs and Rrs ordering by increasing [Chl] values. The use of b
GM83
ph (l)

underestimated bp(l) from concentrations evaluated in the training
A B

D

E F

C

FIGURE 10

The difference in Rrs due to the scattering assumption of phytoplankton. Points and error bars indicate the mean and range of differences at selected

wavelengths. The first column (Power law) represents the results using bGM83
ph (l), while the second column (Adjusted power law) bAdj

ph (l) (see text).

Panels (A, B) for 400~450 nm; (C, D) for 540~590 nm; (E, F) for 700~730 nm.
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and testing data sets (not shown) and did not fit the spectral features

of phytoplankton observed in the measured bp data (Castagna et al.,

2022; Röttgers et al., 2023), resulting in suppressed Rrs values in the

green and longer wavelengths for high [Chl]. This contradicts the

high NIR reflectance commonly seen during algal blooms

(Hieronymi et al., 2017; Bi et al., 2019; Castagna et al., 2022). The

differences were significantly mitigated by using bAdjph (l), although the
shape difference still remains.

The sensitivity analysis results, on the forward modeling aspect,

revealed that the assumption of bph shape has a limited impact on

Rrs modeling, provided that the bph magnitude is reasonable. This

finding may explain why some inversion models perform well,

despite using a simplified power law function for scattering shape.

However, it is worth noting that the simplified scattering shape may

not accurately represent the scattering spectra and may lead to

variance transference between scattering and absorption in the non-

linear optimizing approach, as discussed in Roesler and Boss (2003)

from the perspective of inversion modeling. Furthermore, a power

law function may not be sufficient for modeling optically complex

water, particularly at high biomass, where scattering dominates over

absorption in water color (McLeroy-Etheridge and Roesler, 1998).
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It is important to note that adjusting bph to bAdjph , as presented in

this section, is an ideal scenario that may not always be feasible due to

limited knowledge of bph magnitude in many practical cases. As

discussed about the C2X in Figure 9B, modeling absorption and

scattering of phytoplankton (detritus as well) separately can lead to

significant uncertainties when the input concentrations are outside

their training ranges. To address this issue, a relative IOP parameter,

the single-scattering albedo, is used in our newmodel, which has been

proven to improve accuracy. Additionally, attenuation, unlike

scattering, is relatively simpler to mathematically describe

(Twardowski et al., 2001; Roesler and Boss, 2003). Therefore, we

suggest an improved parameterization of phytoplankton IOPs in

terms of both their spectral shape and magnitude, which has been

shown to be applicable for various natural water types.
5 Conclusion

In this study, we introduce a new bio-geo-optical model that can

compute spectral inherent optical properties (IOPs) of water

constitutes, providing a valuable tool for predicting and
A B

D E F

C

FIGURE 11

Comparison of the impact of phytoplankton scattering assumptions on IOPs and Rrs in six simulated samples varying from low to high [Chl]. The
component concentrations are displayed in the corner of each panel. Panels (A–F) sorted by increasing [Chl].
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understanding the optical properties of natural water. The model

presents several advantages including the consideration of the

absorption of detritus from biogenic and minerogenic sources,

distinctive optical signatures of the phytoplankton communities, and

a novel strategy for modeling scattering coefficients that avoids

unrealistic simulations observed in previous studies. To parameterize

the model, we perform a detailed and comprehensive analysis of high-

quality in situ data from optically complex water, and evaluate the

model performance using both training and independent data sets. Our

model demonstrates promising capabilities in reproducing consistent

spectral IOPs from concentrations across different natural water types,

including oceanic, coastal, and inland waters. Based on the evaluation

both using the training and independent data sets, our model

demonstrates an accuracy of within ±5% for most component IOPs

throughout the visible spectrum, with some falling within ±10%.

Our new model offers a high degree of freedom, allowing for

extensive customization and adaptability when applied to new

aquatic systems that extend beyond the training data set. This

flexibility enables researchers to fine-tune the framework according

to specific requirements, enhancing its practicality and convenience.

To fill the gap in previous studies, we generate a showcase data set

based on our new model and a simple Rrs model, which

demonstrates better coverage of the majority of optical variability

when compared to several published synthetic data sets. This

provides valuable guidance for radiative transfer simulations and

building a comprehensive synthetic database for the ocean color

community, which should help better distinguish optically active

water constituents and thereby reduce uncertainties in ocean color

remote sensing. The relevant data and code of the model are

available in the section Data Availability Statement.
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Woźniak, B., and Dera, J. (2007). Light absorption in sea water (New York, NY: Springer).

Xi, H., Hieronymi, M., Krasemann, H., and Röttgers, R. (2017). Phytoplankton
group identification using simulated and In situ hyperspectral remote sensing
reflectance. Front. Mar. Sci. 4. doi: 10.3389/fmars.2017.00272

Xi, H., Hieronymi, M., Röttgers, R., Krasemann, H., and Qiu, Z. (2015).
Hyperspectral differentiation of phytoplankton taxonomic groups: a comparison
between using remote sensing reflectance and absorption spectra. Remote Sens. 7,
14781–14805. doi: 10.3390/rs71114781

Zheng, G., Stramski, D., and DiGiacomo, P. M. (2015). A model for partitioning the
light absorption coefficient of natural waters into phytoplankton, nonalgal particulate,
and colored dissolved organic components: a case study for the Chesapeake bay. J.
Geophys. Res. Oceans 120, 2601–2621. doi: 10.1002/2014JC010604

Zhou, W., Wang, G., Sun, Z., Cao, W., Xu, Z., Hu, S., et al. (2012). Variations in the
optical scattering properties of phytoplankton cultures. Opt. Express 20, 11189.
doi: 10.1364/OE.20.011189
frontiersin.org

https://doi.org/10.1364/AO.41.002705
https://doi.org/10.1364/AO.55.007163
https://doi.org/10.18637/jss.v030.c01
https://doi.org/10.1016/j.rse.2015.01.023
https://doi.org/10.5670/oceanog.2004.48
https://doi.org/10.1109/36.942555
https://doi.org/10.1016/j.rse.2013.11.021
https://doi.org/10.1364/AO.41.006289
https://doi.org/10.1029/2000JC000319
https://doi.org/10.4319/lo.1977.22.4.0709
https://doi.org/10.5194/essd-9-497-2017
https://doi.org/10.5194/essdd-8-173-2015
https://doi.org/10.3389/fmars.2018.00146
https://doi.org/10.4319/lo.2012.57.1.0124
https://doi.org/10.1038/s41467-018-07814-6
https://doi.org/10.1029/2005JC003113
https://doi.org/10.4319/lo.1981.26.4.0671
https://doi.org/10.1002/2017JC013453
https://doi.org/10.3390/app8122681
https://doi.org/10.1029/2002GL016185
https://doi.org/10.1594/PANGAEA.950774
https://doi.org/10.1594/PANGAEA.950774
https://doi.org/10.4319/lom.2007.5.126
https://calvalportal.ceos.org/tools
https://calvalportal.ceos.org/tools
https://doi.org/10.4319/lo.2014.59.5.1449
https://doi.org/10.1016/j.ecss.2014.10.010
https://doi.org/10.4319/lo.1987.32.2.0403
https://doi.org/10.1080/01431168908903974
https://doi.org/10.1080/014311699212443
https://doi.org/10.1364/AO.47.002660
https://doi.org/10.4319/lo.2007.52.6.2418
https://doi.org/10.1016/j.pocean.2004.07.001
https://doi.org/10.1364/AO.40.002929
https://doi.org/10.1364/AO.58.003790
https://doi.org/10.1029/2000JC000461
https://doi.org/10.1029/2011JC007230
https://doi.org/10.1029/2011JC007230
https://doi.org/10.1029/2000JC000404
https://doi.org/10.1029/2000JC000404
https://doi.org/10.1093/plankt/fbh012
https://doi.org/10.5194/essd-14-5737-2022
https://doi.org/10.5194/essd-14-5737-2022
https://doi.org/10.4319/lo.1992.37.3.0501
https://doi.org/10.1364/AO.52.002019
https://doi.org/10.1016/j.pocean.2018.01.001
https://doi.org/10.3389/fmars.2017.00272
https://doi.org/10.3390/rs71114781
https://doi.org/10.1002/2014JC010604
https://doi.org/10.1364/OE.20.011189
https://doi.org/10.3389/fmars.2023.1196352
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Bio-geo-optical modelling of natural waters
	1 Introduction
	2 Fundamental concept of the IOP model
	2.1 The Four-term IOP model for complex waters
	2.2 The Two-term IOP model for phytoplankton dependence only

	3 Model development
	3.1 Data sets
	3.1.1 Fundamental data set for the model developing
	3.1.2 External data sets for the model evaluation

	3.2 Analysis of in situ data and parameterization of the IOP model
	3.2.1 Pure water
	3.2.2 CDOM
	3.2.3 Detritus
	3.2.4 Phytoplankton

	3.3 Benchmark tests
	3.3.1 Other IOP models
	3.3.2 Remote-sensing reflectance model and simulations
	3.3.3 Alternative phytoplankton scattering assumption

	3.4 Statistical metrics for evaluating model performance

	4 Results and discussion
	4.1 Reproducibility of IOP models
	4.2 Do we capture most optical variability?
	4.3 Sensitivity analysis of phytoplankton scattering assumption

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


