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This study develops a novel approach to forecasting anomalies of meat yield

from mussel aquaculture in Pelorus Sound, New Zealand, based on the

relationships between non-local sea surface temperature (SST) and

observations of mussel meat yield over 13 years. Overall, we found strong

associations between lagged SSTs in the Tasman Sea region and mussel meat

yield, with a noticeable seasonal cycle in these relationships. Results also showed

that oceanic variables such as SST correlate more strongly with mussel meat

yield than atmospheric variables, such as surface wind and other indices of

atmospheric flow. The relationship between SST and mussel meat yield is linked

to patterns of surface wind anomalies along the west coast of New Zealand. We

identified regions where the SST was most correlated with mussel meat yield

anomalies for each season and derived empirical relationships from linear

regression. We then applied these empirical relationships to seasonal forecasts

of SST from the European Centre for Medium-Range Weather Forecasts to

generate seasonal forecasts of mussel meat yield. By validating our mussel meat

yield forecasts from 13 years of retrospective forecasts, we find significant skill at

lead times of up to 3 months in December–February and 5 months in

September–November. During March-August forecasts are only skillful at a

lead-time of 1 month. The results of this study have the potential to improve

the accuracy and reliability of mussel meat yield forecasts and to provide valuable

insights for the mussel industry.

KEYWORDS

seasonal forecasting, mussel meat yield, aquaculture, teleconnections, sea
surface temperature
1 Introduction

Mussel aquaculture contributes significantly to the New Zealand (NZ) economy, with

an annual production of around 80,000 metric tons (Aquaculture New Zealand, 2022),

generating over $204 million NZD annually and employing approximately 2,500 people.

Research in Pelorus Sound (South Island, NZ: Figure 1) has shown that mussel aquaculture
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yields are driven by the supply of suspended seston (particulate

organic materials, including algae, detritus, and bacteria) as its

source of nutrition (Zeldis et al., 2008) and that the abundance and

variability of suspended seston affects mussel farming and

aquaculture operations. Accurate forecasts of seston or mussel

production can therefore help mussel farmers plan, allowing them

to make informed decisions about aspects such as when to harvest,

how much to gather, and where to harvest (Zeldis et al., 2013).

Climatic and oceanographic variables or indicators have been

used internationally to predict quantities that are associated with

aquaculture production (Taboada et al., 2019; Gómara et al., 2021)

and are skillful at seasonal timescales (Hobday et al., 2016; Mills

et al., 2017; Tommasi et al., 2017; de Burgh-Day et al., 2019; Jacox

et al., 2020; de Burgh-Day et al., 2022). In Pelorus Sound, climatic

and oceanographic variables were used to predict mussel meat

yields (Zeldis et al., 2008; Zeldis et al., 2013). They used multiple

regression analysis to show that yields were most strongly

associated with the abundance of seston and the oceanographic

variables which drive seston abundance. They revealed seasonal

variation in the relationships: during the austral summer half-year

(October – March), the key mechanism for increased seston (and

nitrate supply underpinning its production) in Pelorus Sound is the

combination of westerly winds, cooler SSTs, and upwelling.

Upwelling occurs off the northwest coast of the NZ South Island

adjacent to Cook Strait (Figure 1) and the entrance to Pelorus

Sound, which brings nitrate-rich water to the vicinity of the Sound

entrance (Zeldis et al., 2013; Chiswell et al., 2017), and stimulates

seston production within the sound. While this injection of

nutrient-rich upwelled water occurs all year round, it has its
Frontiers in Marine Science 02
greatest influence on seston production during the summer half-

year (Bradford et al., 1987; Zeldis et al., 2013). In the winter half-

year (April – September), the water column at the entrance is

entirely vertically mixed (Harris, 1990; Zeldis et al., 2013) such that

local upwelling-favorable winds exert little influence on surface

water composition, including its heat content and nutrient content

(Zeldis et al., 2013). In the winter half-year, Zeldis et al. (2013)

found that nitrate levels in the Pelorus Sound were correlated with

its river flows, with influence on seston concentrations. In winter,

anomalies in mussel meat yield and seston negatively correlated

with 2-month lagged sea surface temperature and positively

correlated with river flow.

Here, we aim to further develop the climatic relationships and

drivers of mussel meat yield in Pelorus Sound. Unlike the earlier

work (Zeldis et al., 2013) long-range forecasts are made by

exploiting General Circulation Models (GCMs), to provide state-

of-the-art forecasts of a wide variety of variables (e.g., sea surface

temperature) on daily to seasonal timescales (Johnson et al., 2019).

GCMs consist of complex physical equations, representing

processes and interactions on the land, ocean, and atmosphere

(Wilby & Wigley, 1997). One commonly used method to obtain

forecasts of a variable that is not directly simulated in GCMs (e.g.,

mussel meat yield) involves analyzing historical data to identify

patterns and trends that can be linked to outputs of a GCM (e.g., sea

surface temperature or other prognostic fields such as surface

winds) to predict historical conditions of that variable (Glahn &

Lowry, 1972). For example, one could train a model to predict

historical mussel meat yield based on historical SST and historic

time series of yield. Once this model has been trained, it can be
FIGURE 1

The location of Pelorus Sound in New Zealand, adapted from Zeldis et al. (2013). The contours illustrated the annual mean sea surface temperature
in the region. The dashed lines highlight the shelf edge where the ocean depth exceeds 100 m. The filled green area highlights the Pelorus Sound
region, for which mussel meat yield is predicted.
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applied to the outputs of a GCM – which provides forecasts of SST

at seasonal timescales, and thus can also provide forecasts of mussel

meat yield.

The study by Zeldis et al. (2013) established empirical

relationships between Pelorus Sound mussel meat yields observed

between 1997 – 2005 and environmental predictor variables,

including the El Niño Southern Oscillation (ENSO), wind stress,

SST, and river flow using a stepwise multiple linear regression

model. While the regression models enabled understanding of the

environmental drivers of mussel meat yield (Zeldis et al., 2013),

during the summer half-year, they explained 30% of the variance in

mussel meat yield from environmental variables and only 20% for

the winter-half year. The empirical relationships were then applied

to the outputs of seasonal forecast models that provided forecasts of

the environmental predictor variables on time horizons of 1–5

months. The statistical downscaling approach by Zeldis et al. (2013)

had several limitations. Firstly, the empirical relationships only

explained a small portion of the variance during the winter season,

and thus when applied to seasonal forecasts their skill was further

degraded (as seasonal forecasts are not perfectly like observations).

This meant that the authors felt the regression models only

provided useful predictive power for the summer half-year (Zeldis

et al., 2013). Secondly, the regression model requires predictors

such as wind speed and river flow, which are hard to predict

accurately on seasonal timescales (Johnson et al., 2019). Lastly,

the short training period of data (1997–2005) meant that there was

considerable uncertainty about whether these “learned”

relationships were robust and applicable to future periods.

Our approach aims to overcome some of these issues. We also fit

regression models between observed mussel meat yield and

environmental variables but use a larger range of environmental

predictor variables. We also investigate the role of lagged relationships

in environmental predictor variables, and non-local predictor variables

or teleconnections - where teleconnections are defined as non-local

external influences (e.g., ENSO). Zeldis et al. (2013) did not explicitly

analyze the role of lags in the SST response, or non-local SST (whether

SSTs from another location such as near Australia can be correlated

with mussel meat yield variability) and whether there are specific

weather and oceanic patterns that precede months where mussel

meat yield is poor relative to normal. Lags in climate variables such

as SST have been suggested to influence aquaculture productivity

through ENSO teleconnections, and can be exploited for prediction at

seasonal timescales (Zeldis et al., 2013; Gómara et al., 2021). We

investigate a wider range of environmental predictor variables,

including complex variables such as upper level winds.

Another key advance of our work is that it uses validation on an

independent temporal period because learned relationships over

one period (e.g., 1997-2005) may not extrapolate well to another

period (e.g., 2015–2019, the next period that mussel meat yield data

were made available), and our approach focuses on extrapolation.

Additionally, we describe how we have operationalized our model

in a forecasting context, and we provide a description of model skill,

where we validate the performance of our model on over a decade of

model hindcasts (retrospective forecasts).
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2 Data and methods

2.1 Environmental setting and
study approach

Pelorus Sound is a drowned valley estuary at the north end of

NZ’s South Island (Te Wai Pounamu), with a length of 56 km and

an average depth of 40 m (Figure 1). The sound has relatively

complex dynamics, as it is fed both by the Pelorus River and

estuarine exchanges with the Cook Strait (Bradford et al., 1987;

Gibbs, 1993; Zeldis et al., 2008). The river flow rates are highly

seasonal due to rainfall variability, which modulates the

concentrations of nutrients and vertical density stratification

within the sound. Oceanic effects are also seasonal, with a large

seasonal amplitude in SST. Changes in atmospheric circulation also

induce significant upwelling of nutrient-rich waters at the

northwest South Island (near the Kahurangi Shoals: Figure 1),

which are advected toward the sound entrance (Chiswell

et al., 2017).

This study was approached in two phases:
1. Exploration of relationships between environmental

variables and mussel meat yield through examining

lagged correlations and identifying spatial locations that

most strongly influence mussel meat yield anomalies.

2. Development of a regression model that uses the

relationships established in (1) to apply to the outputs of

GCMs to provide a 1–6 month forecast of mussel meat

yield anomaly.
2.2 Datasets

Our regression analyses predict mussel meat yield anomalies

obtained as per capita meat yield of mussels obtained from yield

monitoring by Sealord Shellfisheries for 11,378 mussel farm long-

lines throughout Pelorus Sound from July 1997 until November

2005 (the end of their data availability). The monitoring obtained a

sample of 20 mussels from each line which were wet-weighed whole

(including shell), then cooked, shelled and the meat re-weighed, on

board the harvesting vessel. The yield was then expressed as a

percentage, i.e., (100 × cooked flesh wet weight/whole wet weight)

(Zeldis et al., 2008). Additional mussel meat yield data (used for

validation of our forecast model) were obtained between 2015–

2019, with mussels sampled once every two months from Pelorus

Sound mussel farms during a NIWA research program and

processed identically to the earlier sampling. Therefore, our

datasets consisted of two periods (1997–2005 and 2015–2019)

separated by 10 years, that provided an opportunity to test

whether “learned” relationships from 1997–2005 sufficiently

extrapolated to the period 2015–2019. To identify suitable

predictors for mussel meat yield, we used several datasets

(Table 1). We focused on using a combination of oceanic (e.g.,
frontiersin.org
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SST) and atmospheric (e.g., surface wind) predictors for mussel

meat yield anomaly (see section Calculating Anomalies).

We used the Extended Reconstructed Sea Surface Temperature

(ERSST) to establish relationships between SST observations and

mussel meat yield. The ERSST dataset is a global monthly analysis of

SST derived from the International Comprehensive Ocean–

Atmosphere Dataset (ICOADS), which combines SST observations

from Argo floats and satellite data. The dataset is widely used for the

global monthly analysis of SST trends, at a spatial resolution of 2°

(Huang et al., 2017). The ERSST data used in this study is a subset

around NZ and Australia, with an extent of 60°S – 20°S latitude and

140°E – 180°E longitude.

While higher spatial resolution SST datasets exist, we only used

large-scale SSTs to predict mussel meat yield anomalies. There are

two main reasons for this. Firstly, GCMs, which provide seasonal

forecasts of SST, typically have resolutions on the order of 1° by 1°

(~100 km) and thus cannot capture fine-scale variability in ocean

temperature. Secondly, we want to ensure that the relationships

learned will generalize well from observed SSTs to the GCMs, and

through using a coarse-resolution SST dataset we are ensuring that

the two datasets are as consistent as possible.

Our analysis also uses surface zonal (west-to-east) and surface

meridional (north-to-south) winds from ERA5 – which is the fifth-

generation European Centre for Medium-Range Weather Forecasts

(ECMWF) reanalysis (Hersbach et al., 2020). ERA5 incorporates an

abundance of surface and satellite observations through state-of-

the-art modelling and data assimilation systems, providing a 30 km

resolution grid with 137 atmospheric layers stretching from the

surface up to an altitude of 80 km.

In addition to surface wind observations, we have used

Trenberth indices, which are pressure differences from

observations from two different stations, to quantify atmospheric

flow across NZ (Trenberth, 1976). The “Z” Trenberth indices

outline zonal atmospheric flow (west-to-east) across NZ, “M”

indices outline meridional flow (north-to-south), and “MZ”

corresponds to diagonal flow through NZ. For example, the Z1

index is the pressure difference between Auckland and Christchurch

and the M1 index is the pressure difference between Hobart,
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Australia, and the Chatham Islands, NZ. More information about

the construction of these indices is provided in Trenberth (1976).
2.3 Calculating anomalies

Seasonality in meat yield and atmospheric variables was

accounted for in the analysis by establishing relationships

between anomalies in each quantity from the seasonal cycle. To

calculate the anomalies in mussel meat yield, we first computed the

climatological average of meat yield of mussels for each given

month for the period 1997–2005. Anomalies were then calculated

by subtracting the relevant long-term month-of-year average from

each observation in the raw time series. A similar methodology was

applied to calculate SST and surface wind anomalies, although they

were calculated relative to the climatological period 1993–2016.

This is a common period of historical re-forecasts for all eight

GCMs, which provide ensemble seasonal forecasts of SST via the

Copernicus Data Store (CDS) - an open access data portal. In our

analysis (not shown), different climatological periods were also

tested but had a negligible effect on our model performance.
2.4 Developing relationships between SST
and mussel meat yield anomalies

2.4.1 Correlation maps
The environmental predictor variables (both oceanic and

atmospheric) and mussel meat yield anomalies were calculated at

monthly temporal resolution. Lags in these environmental variables

were also considered for up to six months (i.e., to predict mussel

meat yield anomalies at month (t), environmental variables were

considered from t to t-6). Mussels and other shellfish often respond

gradually to changes in environmental variables, and thus they have

an integrated response from both climatic and oceanic conditions

(Zeldis et al., 2013).

Because of the previously mentioned seasonality in the

relationships between environmental variables and mussel meat
TABLE 1 An overview of the datasets and their purpose used research.

Variable Dataset Reference Temporal Resolution Spatial
Resolution

Units

SST Anomaly Extended Reconstructed Sea Surface Temperature
(ERSST)

(Huang et al.,
2017)

Monthly 2° °C

SST Forecast Anomaly European Centre for Medium-Range Weather
Forecasts (ECMWF)

(Johnson et al.,
2019)

Monthly 2°(re-gridded) °C

Surface Zonal Wind Anomaly
(U)

ECMWF Reanalysis v5 (ERA5) (Hersbach et al.,
2020)

Monthly 0.25° m/s

Surface Meridional Wind
Anomaly (V)

ECMWF Reanalysis v5 (ERA5) (Hersbach et al.,
2020)

Monthly 0.25° m/s

Trenberth Indices (e.g., M1,
Z1, MZ1)

Station Observations (Trenberth, 1976) Monthly Pointwise Pa
frontie
For all datasets used in this study, all models are trained on the period 1997-2005, and the 2015-2019 period was used for evaluation/validation.
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yield anomalies, we temporally stratified our analysis. However,

unlike Zeldis et al. (2013) who stratified their analysis into summer

and winter half-years, we considered three-month periods to better

resolve potential seasonal variability in the relationships. We

correlated the mussel meat yield anomaly series for a given three-

month season with the time series of spatial environmental

variables (e.g., SST) for each given geographic grid point in ERA5

and ERSST (observations) datasets and for a given lag. This

provides a spatial distribution of the correlation coefficient for a

variable such as SST for different lags. These correlation coefficients

were computed only for the period 1997–2005, and the remaining

mussel meat yield observations from 2015–2019 (sampled every

two months) were used as an independent test set.

2.4.2 Composite maps
Composite maps are a way of analyzing data that combines

information from multiple events that have something in common.

Composites can be used to understand the environmental

mechanisms that contribute to mussel meat yield by identifying

patterns in environmental conditions (e.g., SST, winds) that are

associated with higher or lower mussel meat yields. They represent

an average response of all the events for an occurrence (e.g., when

the yield is below normal) – which can help us understand the

environmental drivers of mussel meat yield and complement the

correlation analyses.

We create composite maps as a function of the season of the

environmental conditions when the monthly mussel meat yield

percentage anomaly:
Fron
• falls more than 5% below the mean climatological value for

the time of year.

• climbs more than 5% above the mean climatological value

for the time of year.
The thresholds above are presented as percentage deviations

from the climatology. For example, if the mean mussel meat yield in

December – February (DJF) is approximately 25% then a 5%

percentage deviation is 1.25%. In the example of examining a

composite with 5% higher yield relative to the climatological

average for DJF, we would compute the average environmental

conditions for all instances in DJF when the yield was greater than

26.25% (25% + 1.25%). If the composites maps computed for DJF

showed that above-normal mussel meat yield co-exists with a strong

signal of below-normal SSTs in the Tasman Sea, this would indicate

that mussel meat yield is sensitive and perhaps linked to SST

variability within the Tasman Sea.

We also examined the environmental conditions before such

events – to determine if there were patterns of such environmental

conditions several months prior. The threshold of 5% was chosen to

remove noise and ensure there were sufficiently many samples to

produce the composites. Other thresholds including 0 and 10%

were also investigated which yielded similar results. In our

composite maps, we focused on examining three environmental

variables: SST, zonal and meridional surface winds.
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2.5 Developing an ensemble forecast
system of mussel meat yield

From the correlation maps described above, which determine

the strength of the relationship between mussel meat yield and SST,

we identified important regions of interest or locations that have the

highest magnitude of correlation. For example, if the predictor of

mussel meat yield selected for the DJF season were the SSTs near the

grid point 45.5°S and 150°E, lagged 3 months, rather than selecting

the SST at the grid point of maximum correlation, we averaged the

SST anomaly over a 5° buffer in the longitude and latitude directions

43-48°S, 147.5-152.5°E. This averaging helped improve the signal-

to-noise ratio. Once this location was determined we trained a

simple Ordinary Least Squares (OLS) model to establish

relationships between the predictor (e.g., SST averaged around a

location) and mussel meat yield anomalies for each season. In total,

four models were developed, and each model was able to select a

predictor from a different region of interest. We used two

independent periods, one for training (1997-2005) and the other

for validation (2015-2019). For training, we have a total of 108

monthly observations, or 27 per season. Once the model was trained

it was then applied to the outputs of seasonal forecast models.

The seasonal forecasting model or GCM outputs were sourced

from the CDS, established under the auspices of the Copernicus

Climate Change Service (C3S). The CDS consists of forecast data

generated by eight international institutions. These outputs are

provided publicly on the 11th day of each month (but are run earlier

in the month). Due to the chaotic nature of the atmosphere, each

international institution typically runs an ensemble of different

forecasts to account for uncertainty. Here, we used the ensemble

average of each institution’s seasonal forecast of SST at a monthly

temporal resolution, and thus we are left with 8 ensemble-averaged

seasonal forecasts – one for each international institution. Hereon,

we will refer to these 8 different ensemble-averaged seasonal

forecasts from each international institution as the C3S ensemble.

Because the forecasts are only publicly available on the 11th day

of the month, a lead-time of 0 months corresponds to forecast for

the current month. For example, if the forecast is initialized in

January, a forecast for a lead-time of 0 months is a forecast for the

month of January itself, and a forecast of a lead-time of 1-month is a

forecast issued for February. For some seasons, our regression

models (also discussed in Section 3.5) use lagged SSTs to predict

mussel meat yield. This means that for some seasons and lead-

times, our model may need to use observed SSTs in addition to

forecasted SSTs to make a prediction of mussel meat yield.

Figure 2B illustrates how observed and forecasted SSTs are

ingested into our regression model. For example, let’s take the

example of a forecast issued for February (hence the DJF regression

model is used) at a lead-time of 1 month (meaning that it is

initialized in January). If the DJF regression model used lagged

SSTs from 3 months prior, then the forecast issued for February

would require SSTs from November. In these instances where the

SST observations are available, observations are used instead of

previous SST forecasts as they are a more accurate indication of the
frontiersin.org

https://doi.org/10.3389/fmars.2023.1195921
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rampal et al. 10.3389/fmars.2023.1195921
ocean state. In our analysis, historical observations were used when

forecasting months between December-February (incl.).

A diagram outlining the individual steps required to create a

seasonal forecast of mussel meat yield (1-5 months) is illustrated in

Figure 2A and summarized below:
Fron
• Global monthly SST anomalies (relative to 1993-2016

model hindcast) forecasts for each member of the C3S

ensemble (eight GCMs) are downloaded. Note, C3S

ensemble member spatial resolution varies from 1.25° to

2.5°.

• All ensemble members of the SST forecast (C3S) are

gridded to a common spatial resolution of 2.0°, which is

consistent with the resolution of ERSST which the

regression models were trained on.

• The SST forecasts (C3S ensemble) and observations

(ERSST) lagged up to 3-months before the issued forecast

are selected at four locations – each of which is a predictor

for mussel meat yield for a given season.

• The regression model is applied to both observations and

SST forecasts from C3S – which collectively provides a

mussel meat yield forecast at lead times between 1 and 5
tiers in Marine Science 06
months. Note, there are four regression models, where for

every forecast lead time a regression model is selected.
Our methodology does not bias correct or calibrate the SST

forecasts from C3S, and assumes the forecasts are “pseudo-

observations” and that they replicate similar statistics and

teleconnections as the observation. These procedures are executed

in a web application that predicts mussel meat yield for Pelorus

Sound, which is updated once a month on the 11th day (accessible

freely at https://shiny.niwa.co.nz/musselforecast/).
2.6 Validation of seasonal forecasts of
mussel meat yield

A model hindcast for seasonal forecasts refers to the use of

GCMs to make predictions of various meteorological or

oceanographic variables, such as SST, for a specified historical

period, where the model is run retrospectively. The model

hindcast is then compared to actual observations, to obtain a

measure of the skill of the model. In our study, we used seasonal

hindcasts of SST from the ECMWF model. In total there are 51

ensemble members in the ECMWF seasonal forecast system; in this

study we used the ensemble average across all members. The

accuracy of the ensemble mean tends to have higher accuracy

than each ensemble member (Jacox et al., 2019; Johnson et al.,

2019; Jacox et al., 2020). The model hindcasts are provided for the

period 1993-2016, which we combined with operational forecasts

from the period 2017-2019 to align with the period of the mussel

meat yield data. Note, the operational forecasts are not run

retrospectively, and are archived forecasts. Here we use the

monthly SST anomaly outputs from the hindcast, where we

subtract the lead-time dependent climatology of SST over the

period 1993-2016 from the forecast for a given location, forecast

initialization time, and lead-time. Here, we refer to lead time as the

number of leading months that we were making a forecast for.

The SST hindcasts were also blended with observations. Then the

regression equations were applied to the SST anomaly forecasts

(Figure 2: see section 2.3). In section 2.5, we used the 2015-2019

period exclusively for validation. However, here we are applying our

regression model to SST outputs from the ECMWF GCM, which is

an independent dataset from which the model is trained. Thus, we

evaluate the performance of the mussel meat yield forecasts over

both the 1997-2005 and 2015-2019 periods for lead-times of 1-5

months. We used two key validation metrics: explained variance

and mean absolute percentage error (MAPE).
3 Results

3.1 Climatology of Pelorus Sound

The seasonal cycle of mussel meat yield is strongly correlated

with the seasonal cycle of SST whereby lower SSTs tend to

correspond to lower mussel meat yields (Figure 3A). The seasonal
A

B

FIGURE 2

A diagram of the C3S mussel forecasting pipeline. The pipeline
consists of two key inputs, observations, and forecast outputs from
GCMs. These are post-processed and combined into a single
dataset, before being ingested into our regression model (A).
(B) shows a detailed account of how the regression is implemented
operationally. When forecasting mussel meat yield for a given
month, a different regression equation is used for its corresponding
season (e.g., DJF model for December). Here, t is the forecast lead
time in months, where t ranges from 1 month to 5 months. The
mussel app is freely available at: https://shiny.niwa.co.nz/
musselforecast/.
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cycle for surface zonal wind does not strongly align with the

seasonal cycle of mussel meat yield; however, the minimum wind

speed does approximately coincide with the minimum mussel meat

yield (Figure 3B). The seasonal cycle of meat yield is driven by

spawning in Pelorus Sound mussels, which occurs in winter and

reduces yield (Zeldis et al., 2013). Thus, in subsequent sections, we

focus on deviations from the seasonal cycle – or the anomalies.
3.2 The role of atmospheric indicators

While the ocean and atmosphere interact, large-scale variability

in ocean properties tend to be more gradual due to its large heat

capacity, potentially affecting mussel meat yield variability across

longer timescales than atmospheric drivers. Hence, we consider

their effects separately. To determine the relationships between each

of the Trenberth indices and the mussel meat yield anomalies, we

computed the correlation coefficient (r) as a function of season and

lag (Figure 4). In Figure 4, we aggregate the relationships by winter

and summer half-year to enable a comparison with Zeldis et al.

(2013). Overall, the relationships between Trenberth indices (a total

of 14 indices) and mussel meat yield anomalies were relatively

consistent amongst the summer (DJF) and autumn (MAM) half

year, and winter (JJA) and spring (SON) half year (Figure 4).

During the winter, we find relatively weak correlations between

all indices and mussel meat yield - consistent with Zeldis et al.

(2013), which also outlined a breakdown in the role of atmospheric

flow in the winter half-year.
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Conversely during the summer half year, there was moderate

correlation (r>0.5) between the Z1, Z2, Z3, MZ2, and ZS and mussel

meat yield anomaly at a lag-time of approximately two to three

months. Interestingly, there is no significant correlation with any of

the meridional-only indices (e.g., M1), reiterating the importance of

the westerly wind stress near Pelorus Sound, and stimulation of

nitrate-rich waters through upwelling (Zeldis et al., 2008; Zeldis

et al., 2013).
3.3 Local and non-local correlations
with SST

During DJF there is a strong negative correlation between mussel

meat yield anomalies and SST at a lag of three months (the SST from

three months prior) in the Tasman Sea between Tasmania and the

South Island NZ (Figure 5 location C), where the correlation

coefficient reaches values around -0.8 (Figure 5, top row). The

pattern of correlation also shows a weak but slightly positive

correlation near and around the coastline of Queensland and in the

Northern Tasman Sea (Figure 5, locations A and D, respectively) in

Australia. During MAM and JJA (Figure 5, second and third rows),

we still find a strong negative correlation with the SSTs between

Tasmania and the South Island and mussel meat yield anomalies;

however, the correlation is stronger for lags up to one month, with

slightly weaker correlation at a lag of three months. During the

seasons of MAM and JJA, the positive correlation between the SST

near the coastline of Queensland strengthens progressively until the

season of SON, where the correlation coefficient reaches a maximum

of around 0.8 at a lag of one month. Conversely, during SON the

strength of the negative correlation significantly weakens or breaks

down near Tasmania (Figure 5, location B) of lags for up to one

month (Figure 5, bottom row). However, around the coastal waters of

NZ, the correlation coefficient becomes increasingly negative,

reaching a value of nearly -0.6 at a lag of three months.
3.4 SST and surface wind composites
during above and below-normal mussel
meat yields

In this section, we firstly examine composites of SST and surface

wind anomalies during seasons of below-normal mussel meat yield.

During DJF when mussel meat yield anomalies fell below 5% of their

yield relative to climatology (Figure 6, top row), there were above-

normal SSTs several months prior across the Tasman Sea (>+0.7°C),

and a strong easterly anomaly in surface winds in months preceding

these events. The strong easterly anomaly in the surface wind was

persistent for several months and would likely reduce the amount of

surface upwelling, as surface upwelling on the West Coast of the

South Island of NZ has been suggested to be linked to the westerly

wind stress (Zeldis et al., 2013) The reduction in mussel meat yield

can likely be attributed to a combination of warmer SSTs and reduced

westerly flow. We also examined the correlation between surface

wind anomalies andmussel meat yield anomalies – and found weaker
A

B

FIGURE 3

The seasonal cycle of mussel meat yield, sea surface temperature
(A) and zonal wind speed. (B) Note, the sea surface temperatures
are interpolated from ERSST at 2.0° resolution, and the zonal winds
are extracted from ERA5 reanalysis. The seasonal cycle is computed
by averaging each variable (e.g. wind speed) for each month over
the period 1997-2005.
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relationships than using SST alone, and thus SST appears to be a

more reliable indicator of mussel meat yield anomalies.

Results for MAM (Figure 6, second row) were similar result to

DJF, with warmer than normal SSTs in the Tasman Sea (~0.5°C)

coupled with an easterly surface wind anomaly that was persistent

approximately one month prior. However, during JJA (Figure 6,

third row) average SSTs were warmer throughout the southern

Tasman Sea, but with no preferential direction in the surface wind

anomaly – and in some months the anomaly was westerly, which

was opposite to all other seasons. Moreover, the lack of preferential

surface wind anomaly direction during JJA, means that it is unclear

whether reduced surface upwelling contributed towards below-

normal mussel meat yields. Unlike JJA, the surface-wind anomaly

patterns during SON (Figure 6, bottom row) appear to be easterly

several months prior to below-normal mussel meat yields. These

easterly surface-wind anomalies coexist with positive SST anomaly

with a strong easterly surface wind anomaly several months prior.

We now examine composites of SST and surface wind, during

seasons of above-normal mussel meat yield (>5% anomaly). During

DJF (Figure 7, top row), several months preceding above-normal

mussel meat yield there was an intensification of the westerly winds,

coupled with slightly cooler than normal SSTs (<-0.3°C). Similarly,
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during MAM (Figure 7, second row), there was also an intensification

in westerly winds coupled by below-average SSTs near Tasmania

(<-0.4°C) and above normal SSTs (>0.5°C) north of the North Island

and in the Northern Tasman Sea (Location D), resembling the

correlation map illustrated in Figure 6, second row. During JJA

(Figure 7, third row), there were stronger westerlies several months

prior, with negative SST anomalies throughout the Tasman Sea.

During SON (Figure 7, bottom row), there were slightly enhanced

westerly winds several months prior and a weak signal of negative

SST anomalies around the NZ coastline. However, there is a stronger

SST anomaly signal near the coast of Queensland – again resembling

the SST correlation pattern outlined in Figure 6.
3.5 Regression equations

To develop regression models for each season, we selected a 5°

bounding box in which SST anomalies were more strongly correlated

with subsequent mussel meat yield anomalies for a given season.

These regions were illustrated earlier as the boxes in Figure 5, and the

areal extent for these regions are summarized in Table 2. For each

season there was only one unique location where the correlation
FIGURE 4

The correlation coefficient between each of the 14 Trenberth Indices (Y-axis) and mussel meat yield anomalies, computed by the summer
September-November (SON) and December – February (DJF) and winter March-May (MAM) and June-August (JJA) half-years as a function of the
lag, on the X axis. Red colors indicate a positive correlation, and blue indicates a negative correlation. Black dots are where the correlation
coefficient exceeds 0.5 and the p-value is less than 0.05.
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coefficient was either a maximum (e.g., during SON) or minimum

(e.g., during DJF, MAM, JJA). Key information about the regression

equations including the regression coefficients, p and r values and

geographic region of maximum correlation is given in Table 2. The

regressions predict that during DJF and MAM, for every degree of

warming relative to climatology in the regions outlined in Table 2,

there was a reduction of -15.2% ( ± 2.3%) and -11.8% ( ± 1.9%) in

mussel meat yield respectively (where the uncertainty corresponds to

the standard error in the regression coefficient). During JJA, there was

a significantly enhanced sensitivity to SST anomalies, with a -23.7 ±

4.0% reduction for every degree of warming relative to climatology.

Lastly, during SON for every degree of warming relative to

climatology, there was a 13.1 ± 2.5% increase in mussel meat yield.

We have applied our linear regression equations to two separate

periods, the training period (1997-2005) and the validation period

(2015-2019). Overall, the predicted mussel meat yield appears to

match the observed mussel meat yield for both periods with an

r2=0.60 over the training period and an r2=0.42 over the validation

period (Figure 8).
3.6 Validation of seasonal forecasts of
mussel meat yield anomaly

The results of our mussel hindcast show a distinct seasonality in

both explained variance (Figure 9A) and mean absolute percentage
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error (MAPE) metrics (Figure 9B). The season on the y-axis of

Figures 9A, B corresponds to model initialization season. For

example, a model initialized in the month of January would

provide forecasts until June (5-month lead-time). We evaluated

model skill as a function of the forecast initialization time. Our

analysis suggests that predictions made in the DJF season had

considerable skill out to approximately three months (i.e., to

MAM). During the DJF season, the explained variance ranged

from 0.56 (or 56%) at a lead time of one month to 0.15 at a lead

time of five months but peaked at 0.6 for a lead time of 3 months.

Meanwhile, the MAPE ranged from 4.8% to 8.8%, with a minimum

of 4.8% for a lead time of 1 month and gradually increased for

longer lead times. In contrast, predictions made during the MAM

season have meaningful skill only to one month into the future (i.e.,

AMJ). The explained variance reaches a maximum at a lead time of

1 month, with a sharp decline towards the longer lead times. The

MAPE ranged from 7% to 8.9%, with the highest values of 11% and

12% for lead times of 3 and 4 months, respectively. In JJA season,

there was some skill in predicting mussel meat yield at lead times of

1 month, but little or no skill at other lead-times. In JJA the MAPE

appears to decrease as a function of lead time. During the SON

season, there was considerable skill across all lead times, where the

explained variance increased from 0.3 at a lead time of one month to

0.61 at a lead time of five months, with a peak of 0.63 for a lead time

of 4 months. The MAPE ranged from 5.6% to 5.7%, with a

minimum of 3.8% for a lead time of 4 months. Overall, the
FIGURE 5

Seasonal correlation between mussel meat yield anomaly and SST anomaly (relative to the climatology) at each grid point within the domain. The
correlations are organized by season. For each season (row), the domain with the maximum correlation among the lags is outlined in a black box.
The locations (A–D) shown in Figure 5 are referred to in the text. In the text, Location A is referred to as Queensland, Location B as Tasmania,
Location C as the Tasman Sea, Location D as the Northern Tasman Sea.
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accuracy of our mussel hindcast showed significant skill at seasonal

timescales (≥3 months) during DJF and SON (initialization dates

for predictions)– where in SON there was skill at lead times up to

five months. During MAM and JJA there was some skill at shorter

lead times (~1 month) – where during JJA there appeared to also be

some skill at lead times up to 5 months.
4 Discussion

Our forecasts of mussel meat yield are predicted with a single

variable (SST), despite mussel meat yield being dependent on a wide

variety of other local and non-local environmental variables (Zeldis

et al., 2008; Zeldis et al., 2013). Overall, we found that our single-

variable regression equations, which were trained on the period

1997-2005, extrapolated well to the period 2015-2019, highlighting

that the learned relationships were robust and able to generalize to a

different climatological period.
Frontiers in Marine Science 10
To measure the skill of our regression equations, we applied

them to SST retrospective forecasts from the ECMWF GCM –

without any bias correction. While our model has a skill of a lead-

time of at least 1-month for all seasons, it is skillful at 3- and 5-

month lead times in DJF and SON, respectively. This means that a

forecast issued in September would be skillful and useful for

predicting mussel meat yield in February. The crop-production

cycle in Pelorus Sound is such that harvest rates tend to be lowest

during the mid-winter-early spring period (July–

September: when themussels tend to be in poor condition following

spawning). It is therefore important that our forecast model does have

the greatest reliability for months associated with greatest harvest when

mussel meat yield is highest (November–March).

Despite our initial results highlighting that our model has

significant skill at seasonal timescales, there is still significant

room for development. Firstly, there are biases within GCMs,

which arise from uncertainties in their parameterization schemes

(e.g. Wilby & Wigley, 1997). This means that forecasts from GCMs
FIGURE 6

Seasonal SST and surface wind vector anomaly composites for months with mussel meat yield at least 5% lower than the climatological average for
each season. The rows correspond to the anomalies for each respective season and anomalies up to three months prior. The number of samples
used in each composite calculation is specified in the title. The color scale represents the deviation from the 1993-2016 climatology, with red
indicating warmer than normal temperatures and blue indicating cooler than normal temperatures. The wind anomalies are depicted by arrows, with
westerly anomalies represented by heads facing right and easterly anomalies represented by heads facing left.
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are not necessarily consistent with observations (Glahn & Lowry,

1972; Wilby & Wigley, 1997). Biases in GCMs are also often

seasonal, meaning that a forecast issued in DJF could have a

lower skill than forecasts issued in JJA (de Burgh-Day et al., 2019;

Jacox et al., 2019; de Burgh-Day et al., 2022). Bias-correcting the

outputs from GCMs could significantly improve the skill of our

model. Additionally, we have only validated our results on one
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single GCM. An ensemble average of different GCMs has been

shown to be more skillful than one individual model (Jacox

et al., 2022).

It is also important to highlight that while using multiple

regressors (e.g., atmospheric variables and SST) may improve the

explanatory power of a model for predicting mussel meat yield, this

added explanatory power may not translate when the model is
FIGURE 7

Seasonal SST and surface wind vector anomaly composites for months with mussel meat yield at least 5% higher than the climatological average for
each season. The rows correspond to the anomalies for each respective season and anomalies up to three months prior. The number of samples
used in each composite calculation is specified in the title. The color scale represents the deviation from the 1993-2016 climatology, with red
indicating warmer than normal temperatures and blue indicating cooler than normal temperatures. The wind anomalies are depicted by arrows, with
westerly anomalies represented by heads facing right and easterly anomalies represented by heads facing left.
TABLE 2 A summary of the suite of linear regression models that are applied to SSTs (x) to create a mussel meat yield (y) forecast.

Season P value Correlation Equation Region Lag

DJF <0.01 -0.80 y = (–15.2 ± 2.3)x + (2.7 ± 0.9) (-45.5°S, 152.5°E) 3 Months

MAM <0.01 -0.79 y = (–11.8 ± 1.9)x + (–0.9 ± 1.0) (-47.5°S, 152.5°E) 0 Months

JJA <0.01 -0.75 y = (–23.7 ± 4.0)x + (–1.2 ± 1.2) (-47.5°S, 152.5°E) 0 Months

SON <0.01 0.71 y = (–13.1 ± 2.5)x + (–2.0 ± 1.3) (-27.5°S, 1577.5°E) 1 Months
fron
The linear models were trained to map SST anomalies over a specific region to mussel meat yield anomalies for each season over the period 1997-2005. The uncertainty in the regression equations
is the standard error in each of the regression coefficients. The regions denote the sites for which the regressions are derived and displayed maximum correlations (see text).
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applied to outputs of a seasonal forecast model or GCM. Using both

SST and atmospheric variables as predictors could result in poorer

performance than using SST alone in a seasonal forecast for several

reasons. Firstly, SST tends to be more predictable on seasonal

timescales than atmospheric variables - especially in the mid-

latitudes (Johnson et al., 2019). The large heat capacity of the

ocean means that it is a much more stable system, and thus more

slowly varying than the atmosphere, and that it has a longer

persistence and contains a large portion of lower frequency

variability (Jacox et al., 2019; Jacox et al., 2022). Owing to these

significant differences in seasonal forecast skill and their difference

in heat capacity (which causes the ocean to vary more slowly in

comparison to the atmosphere) using both a combination of

atmosphere and oceanic variables will likely poorly extrapolate to

outputs of seasonal forecast models.

Whilst we have been able to generate moderately reliable

forecasts of mussel meat yield using non-local SSTs (e.g., near the

coast of Tasmania) without explicit recourse to local environmental

data (or forecasts of local environmental properties), physical

drivers of seston production affecting mussel meat yield will not

plausibly arise from non-local SSTs. Rather, they will be affected by

oceanic processes off the northern South Island coast of NZ (Zeldis

et al., 2008; Zeldis et al., 2013). While our correlation analysis found

strong non-local relationships with SST, we also found strong

statistically significant correlations with the local SSTs (e.g., the

SSTs near the Pelorus Sound) as illustrated in Figure 5. This result is

consistent with Zeldis et al. (2013), which found significant

correlations with the local SSTs. This additional explanatory
A

B

FIGURE 8

The regression model applied to the training period (A), and to an
independent test period (B). The model predictions are black, and
the actual observations are blue. Note, the observations only extend
until 2019.
A B

FIGURE 9

Seasonal and lead-time dependence of mussel hindcast accuracy. The sub-figures show the explained variance (A) and mean absolute percentage
error (MAPE, B) of the mussel hindcast initialized in different seasons (DJF, MAM, JJA, and SON) and lead times (1-5 months). Forecast initialization
season refers to the season in which the predictor is made and does not represent the season being forecasted for. For explained variance (left),
redder colors indicate high accuracy and lighter colors highlight lower accuracy. For MAPE (right), redder colors indicate higher accuracy/lower
percentage error and paler colors indicate lower accuracy/higher percentage error.
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power by non-local SSTs in the Tasman Sea for predicting mussel

meat yield likely arises through oceanic and atmospheric

teleconnections under the influence of ENSO. Moreover, the non-

local SSTs are likely able to provide a better description of the effects

of ENSO on mussel meat yield.

To describe the role of ENSO on mussel meat yield, we turn to

relationships between surface wind anomalies and SST anomalies.

Typically, when there are positive SST anomalies near Tasmania

there are also north-easterly surface wind anomalies near the West

Coast of the South Island, NZ. These conditions are associated with

below-normal mussel meat yields. Conversely, cooler SSTs in the

Tasman Sea are coupled with south-westerly surface wind

anomalies and were associated with above-normal mussel meat

yields. We also found a consistent result when examining

correlations with each of the Trenberth Indices – where only

zonal indices (west-east flow) had a significant correlation with

mussel meat yield during the summer half-year. La Niña conditions,

which are associated with a positive Southern Oscillation Index

(SOI) are associated with northeasterly wind anomalies, and El

Niño conditions are typically associated with enhanced westerlies

(Mullan, 1998). This is also consistent with Zeldis et al. (2013),

which found that the SOIwas an important predictor for mussel

meat yield in DJF – with a negative regression coefficient.

Our analysis has focused on non-local SSTs and associations

with large-scale atmospheric and oceanic features (>2°), however

highly localized environmental fluctuations can also influence

mussel meat yield variability in the Pelorus Sound (Zeldis et al.,

2013). For example, changes in the surrounding river catchment of

Pelorus Sound have the potential to influence patterns of freshwater

delivery (annual quantity and seasonality, and hence, stratification

and estuarine circulation) inside Pelorus Sound. Similarly, the

Pelorus River has the potential to influence the delivery of

nutrients and suspended sediments into the sound. Dissolved

nutrients can be expected to influence mussel body-condition

through their influence on the growth rates (hence, standing

stocks) of phytoplankton. Phytoplankton, in turn, underpin the

formation of seston of marine origin (Eppley et al., 1977.; Verity,

2002) which is the food of mussels in Pelorus Sound (Gibbs, 1993;

Zeldis et al., 2008). Internationally, correlations of mussel growth

and condition with food supply have been demonstrated in several

cases (Blanton et al., 1987; Figueiras et al., 2002; Ren & Ross, 2005).

Our forecast model was developed using data from

commercially harvested mussels that had been brought ashore for

factory processing toward a meat/table product. It is therefore likely

that the population of harvested mussels will sometimes be a biased

sample of the population of harvest-size (shell dimensions)

available on the crop lines. Since our forecast model was trained

upon mussels which had been commercially harvested and returned

to the factory for processing into meat-product, it implicitly takes

account of the additional factors (beyond meat content/quality) that

influence harvest decisions. Equally, it is important to recognize

that our forecast model may be of lesser value as a predictor of the

quality/value of mussels harvested for nutriceutical products and

mussels which are growing on the crop lines or in the wild
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(regardless of whether these are of harvest size). We have found a

strong relationship between the ‘quality’ of the harvested product

and antecedent environmental conditions. This implies that farmers

cannot entirely buffer themselves against the vagaries of

environmental fluctuations by preferentially selecting only the

‘right’ mussels – sometimes they are forced to harvest sub-

optimal ones. Conversely, it also implies that market demands for

high-value product do not entirely outweigh the impositions of

environmental fluctuations. There are several other aspects that

may influence the quality of data collected, these include changes in

the forestry cover of the Pelorus river catchment. The upper parts of

the Pelorus river catchment are native forests and dry-stock farms.

The lower parts of the catchment are more intensively farmed.

Below the river mouth, the Sound is surrounded by steep land –

much of which is under commercial pine plantations. Much of the

plantation forest was in the early/mid-growth phase during the

period in which the ‘training data’ were gathered, but increasingly

large fractions of that forest are now being harvested. It is not yet

clear whether climate change and/or termination of the present

forest harvest cycle will lead to temporary or even permanent

changes in the patterns of seston generation within/import into

the sound, but one much accepts that a quasi-empirical forecast

model such as ours may prove to have a shorter useful lifespan than

one based upon more formal mechanistic biophysical relationships

would have in our climate-changing world.
5 Conclusion

We have recently witnessed significant advances in seasonal

forecasting due to increased computational resources and the

development of sophisticated physical parameterizations of

unresolved ocean processes (Johnson et al., 2019). These

advancements have enabled skillful forecasts of SST at horizons of

1-5 months (de Burgh-Day et al., 2019; de Burgh-Day et al., 2022;

Jacox et al., 2022; McAdam et al., 2022) which is extremely useful

for the aquaculture industry (Hobday et al., 2016; de Burgh-Day

et al., 2019; Jacox et al., 2020; de Burgh-Day et al., 2022; Stevens

et al., 2022). In this study, we have used these advancements in the

accuracy of SST forecasts to develop forecasts of mussel meat yield

for Pelorus Sound, the largest mussel aquaculture region in NZ.

To develop a forecasting model of mussel meat yield, we first

established relationships between historical SSTs and mussel meat

yield. We found that non-local SSTs (e.g., SSTs near Queensland,

Australia and near Tasmania, Australia) are the best environmental

predictors of mussel meat yield. Through the non-local SST

anomaly as a single predictor alone, we explained 60% of the

seasonal variance mussel meat yield anomalies from 1997-2005

and 42% from 2015-2019. Our model outperforms previous work

by Zeldis et al. (2013), which explained 30% of the summer-time

variance and 20% of the winter-time variance. The SST anomaly

patterns are strongly linked to patterns of surface wind anomalies

with above-normal yields corresponding to cooler SSTs in the

Tasman Sea, with enhanced westerly winds. Similarly, in the
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winter season, we find that below normal mussel meat yields are

associated with warmer SSTs in the Tasman Sea and an easterly

wind anomaly. A plausible explanation as to why the easterly

(westerly) surface wind anomalies would contribute to reducing

(increasing) mussel meat yield is through reducing (increasing) the

amount of surface upwelling near the West Coast of the South

Island. Enhanced surface upwelling (providing nutrient rich waters)

is associated with a positive westerly wind stress (Zeldis et al., 2013;

Chiswell et al., 2017). We also find that this relationship between

surface-wind anomalies and mussel meat yield weakens in JJA,

which is consistent with Zeldis et al. (2013). While non-local SSTs

have no clear physical mechanism to affecting mussel meat yield, it

appears that they are linked to patterns of surface-wind anomalies

near the West Coast of the South Island which are induced by

different phases of ENSO.

While our mussel meat yield forecasts demonstrate some skill

for all seasons, they are particularly skillful at lead times of 3 and 5

months for forecasts initialized in DJF and SON, respectively.

Forecasts issued for the months September – May are particularly

skillful. These forecasts can help mussel farmers plan, allowing

them to make informed decisions about farm management

including timing and expected yields of harvest several months

in advance.

In future work, our model will be validated against a wide

variety of different GCMs, and we will also investigate the use of

multi-variate regressors (e.g., atmospheric and oceanic predictors).

A large ensemble of GCMs has been suggested to reduce errors in

SST forecasts (Jacox et al., 2019; Jacox et al., 2019; Jacox et al., 2022;

McAdam et al., 2022) and thus could also reduce errors in our

seasonal predictions of mussel meat yield. An ensemble also

provides a measure of uncertainty for each forecast, which could

useful for decision making (e.g., Hobday et al., 2016; de Burgh-Day

et al., 2019; de Burgh-Day et al., 2022; Stevens et al., 2022). Further

work will also explore the utility of bias correcting GCMs to obtain

more reliable forecasts of SST – which could in turn improve the

accuracy of mussel meat yield forecasts.
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