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Introduction: Food web is an important basis for identifying trophodynamic

processes, and evaluating the structural and functional characteristics of

ecosystems. The trophodynamics and system function of artificial reef (AR)

ecosystems have rarely been examined.

Methods: Stable isotope analysis was used to investigate the food web structure

and functions of an artificial reef (AR) ecosystem in this study.

Results and Discussion: The d13C and d15N values of particulate organic matter

(POM) in AR showed noticeable seasonal changes, and the d13C value of POM in

autumn was significantly higher than that in other seasons (p<0.05). There were

no significant seasonal variations in the d13C values of solid organic matter

(SOM), and no significant difference between SOM and POM was observed

except in autumn. Moreover, macroalgae did not significantly affect the d13C
values of SOM. Phytoplankton may be the primary nutrient source in the AR

ecosystem. The d13C values of most crustaceans in the AR were approximately

between (-17.03 ± 0.22) ‰ – (-17.74 ± 0.07) ‰, higher than those of most fish,

indicating that they may have different basal nutrient sources. The trophic level

(TL) of invertebrates was between 2.00 and 3.09, and that of fish was between

2.98 and 3.66. The distribution of d13C and TLs of crustaceans and fish showed

that, except for crustaceans, bivalve shellfish and zooplankton might also be

important food sources for fish in the AR ecosystem.
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Conclusion: The d13C and d15N values of most species in the AR showed good

continuity, indicating that they may be mainly produced from the AR ecosystem.

Migratory species such as Lateolabrax japonicus and Sepiella maindroni showed

higher d13C values, indicating that they may have migrated from other sea areas.

To maintain the stability of the ecosystem structure and function of the AR

ecosystem, fishing activities should be carried out following the maximum

sustainable yield theory. Future research needs to identify the nutritional

relationship between AR and its adjacent sea areas, to depict the food web

structure of the AR with higher accuracy.
KEYWORDS
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1 Introduction

Inshore areas are well known for their rich biodiversity and

high productivity, the major habitats and fishing grounds of many

commercial species (Jin et al., 2015). Chinese inshore fisheries

account for more than 90% of the total marine catches and are an

essential source of high-quality proteins for Chinese people (Jin

et al., 2015). However, due to overfishing and other excessive

human activities (e.g., pollution, coastal construction), marine

biodiversity and inshore fishery resources have markedly

declined, and the coastal environment has seriously deteriorated

(Liu, 2013; Jin et al., 2015). Therefore, the fishery production mode

urgently needs transformation and upgrading in China’s coastal

areas, and the coastal environment requires protection

expeditiously. As a new type of marine economy, marine

ranching plays a vital role in enhancing fishery resources and

restoring marine ecosystems, which is also of great importance

for the sustainable development of marine fisheries in China (Yang

et al., 2016).

Currently, the construction of marine ranching has developed

rapidly in China owing to the strong social demand and

government promotion (Yang et al., 2018). From 2015 to 2023,

China has gradually established eight batches of 169 national

marine ranching demonstration areas, and the total sea area for

marine ranching has exceeded 850 km2. Artificial reef (AR)

construction is one of the most important ways to build marine

ranching (Lin et al., 2020). By the end of 2018, ARs constructed in

China’s coastal waters reached 60.94 million cubic meters. AR

influences the environment by changing the flow field,

heterogeneity of spatial structure, and bottom sediment

(Bohnsack et al., 1991; Harmelin and Bellan-Santini, 1997;

Zalmon et al., 2014). The upwelling formed by the ARs brings

nutrients from the deep seabed to the upper layers, providing

nutrients for phytoplankton (Okano et al., 2011). In addition, the

complex spatial structure of ARs provides shelter for low trophic-

level organisms or species at a vulnerable life stage (Hixon and

Beets, 1989; Charbonnel et al., 2002; Okumura et al., 2003; Ushiama
02
et al., 2016). The deployment of artificial structures provides new

hard substrata for marine fouling organisms to settle down,

increasing food resources for other marine organisms

(Boaventura et al., 2006; Walker et al., 2010). The environmental

change caused by AR construction leads to a change in the

biological environment, increasing the biomass of all the

organisms in the reefs (Chen et al., 2002). Several studies have

demonstrated that the increase in biological resources in AR

ecosystems is due to increased biomass production (Polovina and

Sakai, 1989; Bortone et al., 1994; Powers et al., 2003; Claisse et al.,

2014; Cresson et al., 2014). However, protesters also insisted that

the increased biomass is due to the attraction hypothesis, the ARs

serve purely as an aggregation device without any increase in

biomass production (Bohnsack et al., 1994; Grossman et al., 1997;

Pitcher and Seaman, 2000).

Despite numerous studies of ARs, the attraction-production

controversy persists as an unresolved research question (Smith

et al., 2016). These two effects are closely associated with the

fishery production of ARs (Bortone, 2008). The “attraction”

effects made the ARs a more efficient fishing area by attracting

fishery species with little or no production. Simultaneously, the

“production” effects also gain a significant advantage of fishery

production exports through the increased biomass production of

fishery species in ARs. The settlement of this controversy will

greatly help the scientific construction and management of ARs

(Cresson et al., 2014).

Net production requires the availability of suitable food and

recruitment of larvae (Bohnsack and Sutherland, 1985). The

production of high trophic level (TL) species relies on food

sources transferred from low TLs through food web structures

(Tang, 1996), so the trophodynamics of ARs provide an essential

solution to resolve the attraction-production controversy

(Bohnsack and Sutherland, 1985). However, the trophodynamics

of ARs have rarely been examined. In order to analyze the structure

and function of the AR ecosystem, an investigation of AR’s food

web structure and trophodynamic processes are desperately needed

(Lin et al., 2020).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1192173
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Feng et al. 10.3389/fmars.2023.1192173
Stable isotope analysis (SIA) is a powerful tool for identifying

food sources (Phillips et al., 2014; Grey, 2016), calculating trophic

position (Sahm et al., 2021; Stewart et al., 2021), and constructing

food web structures (Mao et al., 2014; Gusha et al., 2021).

Compared to the traditional stomach content analysis, which only

represents food composition in a short period, the SIA provides

data reflecting the long-term accumulation of food sources. It

provides a more dependable approach for investigating marine

food web ecology and increasing the credibility of the food web

structure (Parnell et al., 2010; Feng et al., 2018).

Several studies have already used C and N stable isotope

methods to study the structure of food webs in AR ecosystems.

Meanwhile, Cresson et al. (Cresson et al., 2012; Cresson et al., 2014;

Cresson et al., 2019) used C and N SIA to investigate the food web

structure and assess the trophic function (production or attraction)

of ARs. Zhang et al. (Zhang et al., 2020a; Zhang et al., 2020b) used

SIA to investigate the food web structure prior to and following the

construction of ARs. Wei et al. (2013), Xu et al. (2017), Xie et al.

(2017), Lin et al. (2018) and Zhang et al. (2019) used stable isotope

analyses to determine the basal food sources and TL of organisms in

ARs. However, none of these studies explored the production or

attraction functions of ARs in China.

The Fuhan AR ecosystem is located in the outer waters of

Rushankou in the northern Yellow Sea. Until now, no research

associated with food web structure and system function has been

conducted for this AR ecosystem, and most of the construction and

management activities associated with AR have been conducted based

on empirical activities. This study used the Fuhan AR as the target to

investigate the trophic structure and the AR ecosystem pathway, to

depict a basic food web structure and explore the “attraction” and

“production” functions of the AR ecosystem, thereby providing a

scientific basis for AR construction and management.
2 Materials and methods

2.1 Study area

The Fuhan AR is located in the northern Yellow Sea, southeast

of the Shandong Peninsula. The coordinates of the central point

were 36° 42′ 5.27″N, 121° 27′ 31.16″ E. The specific locations of the
AR are shown in Figure 1. The Fuhan marine ranching was built by

AR construction and stock enhancement to restore fishery

resources and degraded habitats. Since 2013, 0.25 million cubic

meters of ARs have been deployed in a 6.67 km2 zone. The

proliferation and release activities of sea cucumber Stichopus

japonicus and Korean rockfish Sebastes schlegelii have also been

conducted for several years. The average water depth of the Fuhan

AR was approximately 12 m.
2.2 Sampling strategy

Samples of phytoplankton, zooplankton, particulate organic

matter (POM), and solid organic matter (SOM) were collected in

July, September, November 2017, and May 2018. Macroalgae were
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collected in July 2017. Samples of swimming creatures and zoobenthos

were collected in September 2017. POM was obtained by filtration,

and approximately 1 L of seawater was filtered through a screen with a

mesh size of 63 mm to remove large particles and zooplankton and

then onto precombusted (450°C, 6 h) and preweighedWhatman GF/F

glass fiber filters under vacuum suction of less than one-third

atmospheric pressure. The residue on the filter papers was rinsed

with distilled double deionized water to remove the salt adsorbed on

the particle surface. Zooplankton samples were obtained by horizontal

towing using a 63 mm plankton net, which was then held in filtered

seawater overnight to allow the evacuation of gut contents. After that,

zooplankton samples were dried at 60°C for 48 h and processed into a

fine powder using a mortar and pestle. Macroalgae were hand-

collected and rinsed with distilled water immediately after sampling.

Sediments were collected using a sediment sampler, large benthic

invertebrates of Crassostrea gigas and A. japonicus were collected by

SCUBA diving, and Perinereis aibuhitensis were collected using a clam

bucket dredger. All other benthic invertebrates and fish species were

collected using cage nets and gillnets.

The white muscles of individual fish were removed from the

dorsal part for SIA, the abdominal muscles of shrimp, the adductor

muscles of shellfish, and the claw muscles of crabs were taken for

SIA. Small invertebrates (e.g., Caprella acanthogaster) were

prepared by pooling a suitable number (10–20 individuals) of

whole specimens.

All samples were dried to a constant weight in an oven at 60°C.

The dried tissue and sediments were pulverized into a fine powder

using a mortar and pestle to ensure homogeneity. Samples for

carbon SIA were acidized for 4 h with 1N HCl to remove carbonate

and then dried at 60°C for 24 h. Samples for nitrogen stable isotope

analysis were directly measured without the treatment of

acidification (Cui et al., 2012). All samples were then stored at

−20 °C prior to subsequent SIA.
FIGURE 1

Location of the artificial reef in the southeast coast, Shandong
peninsula, China.
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2.3 Water quality determination

The water quality of marine ranching was measured in July,

September, November 2017, and May 2018, respectively. The

temperature, salinity, pH, and dissolved oxygen were measured by

using a EXO2multiparameter water quality detector (YSI co., USA).

The mixed water samples (2 L) for determining inorganic

nutrients (PO4
3-, NH4

+, NO3-, NO2-, and SiO3
2-) and

Chlorophyll (Chl) a were taken from the surface, middle, and

bottom layers of the marine ranching. The water samples

for determining inorganic nutrients were first filtered through

pre-combusted (450°C, 2 h) Whatman GF/F filters, and then

measured according to the method of Lei (2006). The samples for

determining Chl a were filtered through a 0.45 mm glass fiber filter,

then the Chl a on the filter papers was extracted for 30 h with

acetone (90%) under cold conditions (4 °C) and centrifuged. The

absorbance values of the solutions were measured at 665 and 750

nm using a spectrophotometer. The concentration of Chl a was

calculated following the method described by Lorenzen and

Jeffrey (1980).
2.4 Measurement of stable isotope

The carbon and nitrogen isotope ratios of the prepared samples

were measured using an elemental analyzer coupled with an isotope

ratio mass spectrometer (EA-IRMS, Thermo Finnigan MAT Delta-

plus) (Vander Zanden and Rasmussen, 2001). Stable isotope ratios

are expressed in standard d-unit notation, which is defined as follows:

dX = ½(Rsample
Rstandard

�
) − 1� � 1000‰

where X represents 13C or 15N, and R represents the 13C:12C

ratio for carbon or the 15N: 14N ratio for nitrogen. The results were

reported relative to the Vienna Pee Dee Belemnite standard (PDB)

for carbon and air N2 for nitrogen. A laboratory working standard
Frontiers in Marine Science 04
(glycine) was run for every ten samples. The analytical precision for

the carbon and nitrogen measurements was ± 0.01‰.
2.5 Data analysis

Carbon and nitrogen stable isotopes are generally delivered

along food chains with predictable stepwise enrichment between

prey and consumers (Hobson and Welch, 1992). Therefore, TL was

determined relative to the filter-feeding bivalves (Crassostrea gigas)

as primary consumers, assumed to occupy the 2nd TL (Vander

Zanden and Rasmussen, 2001). Using 3.4‰ enrichment of d15N per

TL averaged over multiple TLs (Minagawa and Wada, 1984;

Peterson and Fry, 1987; Post, 2002).

TL = 2 + (d 15Nconsumer − d 15Nreference)=d
15NTEF

where TL is the trophic level, d15Nconsumer is the nitrogen

isotopic ratio of consumers, d15Nreference is the nitrogen isotopic

ratio of marine primary consumers (Crassostrea gigas), and d15NTEF

is the trophic enrichment factor. Because the primary consumers

were at the bottom of the trophic ladder, they were assumed to

occupy the 2nd TL in this study.

Data are presented as means and standard deviations (mean ±

SD). In addition, the values of d13C and d15N of the measured

samples were compared using one-way ANOVA followed by

Duncan’s multiple comparison test. The analyses were performed

using SPSS software (version 17.0; SPSS Inc., Richmond, CA, USA),

and values of p< 0.05 were considered significant.
3 Results

3.1 Water quality of the AR environment

The water quality data are listed in Tables 1, 2. During the

sampling period, salinity varied between 30.29‰ and 32.54‰,
TABLE 1 Water quality of the marine ranching ecosystem1.

Sampling time Temperature (°C) Salinity
(‰) pH dissolved oxygen

(mg/L)

April 15.13 ± 0.25 32.54 ± 0.03 8.30 ± 0.07 6.85 ± 1.21

July 27.66 ± 2.32 30.29 ± 0.06 8.24 ± 0.06 6.26 ± 0.85

September 25.23 ± 0.82 32.45 ± 0.05 8.31 ± 0.05 8.20 ± 1.50

December 6.51 ± 1.37 32.27 ± 0.03 8.21 ± 0.06 8.92 ± 0.98
TABLE 2 Water quality of the marine ranching ecosystem2.

Sampling time PO3−
4 (mg/L) NH+

4 (mg/L) NO−
3 (mg/L) NO−

2 (mg/L) SiO2−
3 (mg/L)

July 0.03 ± 0.02 0.08 ± 0.07 0.08 ± 0.07 0.004 ± 0.003 0.04 ± 0.03

September 0.01 ± 0.01 0.08 ± 0.08 0.14 ± 0.13 0.008 ± 0.007 0.06 ± 0.04

December 0.02 ± 0.016 0.03 ± 0.01 0.18 ± 0.062 0.013 ± 0.008 0.17 ± 0.14

April 0.03 ± 0.028 0.04 ± 0.04 0.18 ± 0.135 0.021 ± 0.011 0.11 ± 0.04
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temperature varied between 6.51–27.66 °C, pH varied between 8.21–

8.31, and dissolved oxygen varied between 6.26–8.92 mg/L. The

concentration of PO3−
4 varied between 0.01–0.03 mg/L, the

concentration of NH+
4 varied between 0.03–0.08 mg/L,

the concentration of NO−
3 varied between 0.08–0.18 mg/L, the

concentration of NO−
2 varied between 0.004–0.021 mg/L, and the

concentration of SiO2−
3 varied between 0.04–0.17 mg/L. Seasonal

fluctuations in Chl a concentration in the AR ecosystem were

observed, as shown in Figure 2. The highest Chl a concentration

was observed in autumn and lowest in winter.
3.2 Isotopic compositions of organic
matters, and primary producers

The carbon and nitrogen stable isotope ratios of POM, SOM, and

macroalgae are presented in Table 3 and Figure 3. The d13C and d15N
values of POM ranged from -21.40‰– -18.20‰ and 7.19‰–8.68‰

during the four seasons, respectively. Significant differences among

POM pools were observed for d13C and d15N values (p<0.05). The

highest d13C value of POM was observed in autumn and lowest in

winter. The highest d13N value of POMwas observed in summer and

lowest in autumn. No significant differences among the SOM pools

were observed (p<0.05). Among all the primary food sources, Ulva

pertusa had the highest d13C and d15N values. No significant

differences were observed for the organic pools of POM and SOM,

except for POM and SOM in autumn (p<0.05), indicating transparent

pelagic-benthic coupling processes.
3.3 Isotopic composition of consumers

The d13C and d15N values of consumers in this AR ecosystem

are presented in Table 4 and Figure 4. Comparison of mean d13C
and d15N revealed substantial isotopic differences (p<0.05) among

all invertebrate species, encompassing isotopic values of 5.09‰ for

d13C, and 3.70‰ for d15N. The mean d13C values of the benthic

invertebrates ranged from the most d13C depleted value of -20.43‰

for C. gigas bivalves, to the most enriched -15.34‰ for crab Eucrate

crenata, with d15N values ranging from 7.97‰ for C. gigas to
Frontiers in Marine Science 05
11.67‰ for shrimp Oratosquilla oratoria. Moreover, crabs of

Charybdis japonica and cephalopoda Octopus vulgaris showed

higher d15N values than the other invertebrates, with mean values

of 11.50. The TL of invertebrate species ranged from 2.0–3.09, and

O. oratoria displayed the highest TL (Figure 5).

A steady enrichment of d13Cwith an increasing trend from the filter

feeders (bivalves) to deposit feeders of P. aibuhitensis and A. japonicus,

then the omnivorous crustaceans and cephalopods. The crustaceans C.

japonica, Portunus trituberculatus, Crangon affinis, C. acanthogaster,

Alpheus distinguendus, and O. oratoria, were considered to have similar

primary food sources, as most of them had similar d13C values.

The deposit-feeding species that graze organic content from the

sediment on the seabed surface, including P. aibuhitensis and A.

japonicus, showed higher d15N values relative to those offilter-feeding

bivalves and zooplankton. In contrast to the stable nitrogen isotope,

the zooplankton group showed higher d13C values than the main

species of bivalves, annelids, and echinodermata. Dorippe japonica

and C. acanthogaster have low d15N values among crustaceans and

cephalopods, indicating lower TL among these species.

For fish species, the range of isotopic ratios measured in fishes

was lower for d13C (2.54‰ only), but higher for d15N (5.19‰) than

invertebrates. Thryssa kammalensis was the main pelagic fish in this

ecosystem, which expressed the lowest d13C and d15N values among

all the investigated fish, with mean values of -19.03‰ and 11.30‰,

respectively. The highest d13C and d15N values were observed for

Lateolabrax japonicus, with mean values of -16.49‰ and 13.63‰,

respectively. Oplegnathus fasciatus and Hexagrammos otakii had

the second-highest d13C and d15N values, respectively. The TL of

fish ranged from 2.98–3.66, T. kammalensis displayed the lowest

TL, and L. japonicus displayed the highest TL (Figure 5).

The position of fish groups on the d13C versus d15N biplot

(Figure 4) indicated that all fish species fit well into the continuity of

the position occupied by invertebrates in the trophic network of AR.

This result was also consistent with the significant correlation

observed between d15N and d13C of all consumers, invertebrates,

and fish combined (d15N = 0.7952 d13C + 24.539; R² = 0.3718, p<
FIGURE 2

Seasonal variations of chlorophyll-a (Chl a).
TABLE 3 Carbon and nitrogen stable isotope ratios of food sources.

Food sources n d13C ‰ d15N ‰

POM-spring 6 -20.18 ± 1.05ab 7.25 ± 0.75AB

POM-summer 6 -20.66 ± 1.19a 7.68 ± 1.15AB

POM-autumn 6 -18.20 ± 0.96c 7.19 ± 0.63A

POM-winter 6 -21.40 ± 0.77a 8.41 ± 1.29B

SOM-spring 3 -20.07 ± 0.37ab 8.22 ± 0.16AB

SOM-summer 3 -20.90 ± 0.29a 8.08 ± 0.13AB

SOM-autumn 3 -20.17 ± 0.36ab 8.59± 0.14B

SOM-winter 3 -21.11 ± 0.27a 7.77± 0.19AB

Ulva pertusa 3 -18.14 ± 0.16c 9.94 ± 0.08C

Enteromorpha prolifera 3 -19.05 ± 0.33bc 8.75 ± 0.23B

Sargassum miyabei 3 -18.42 ± 0.37c 9.85 ± 0.12c
The superscript letters within the same column indicate significant differences (p < 0.05).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1192173
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Feng et al. 10.3389/fmars.2023.1192173
0.05), suggesting that most consumers belonged to a similar trophic

pathway, with fish at its top.
4 Discussion

4.1 Basal nutrient sources of
the AR ecosystem

POM (mainly composed of phytoplankton and other water

detritus), SOM (mainly composed of microphytobenthos and

organic detritus), macroalgae, and benthic microalgae are the

primary food sources of AR ecosystems (Cresson et al., 2014; Xu

et al., 2017; Zhang et al., 2021). The d13C of POM in this study

ranged from -21.40‰ ± 0.77‰ – -18.20‰ ± 0.96‰, which was

similar to the d13C value of POM usually ranged from -18‰ –

-24‰ in temperate waters (Gearing et al., 1984; Fry and Wainright,

1991; Harmelin-Vivien et al., 2008). The d13C of POM in

autumn was significantly higher than that in the other three

seasons, which may be associated with a Noctiluca scientillans

bloom outbreak in the AR in autumn. N. scientillans usually

have a larger particle size than most other phytoplankton cells

(Uhlig and Sahling, 1990; Sriwoon et al., 2010), its d13C value may

also be higher, as phytoplankton with larger sizes were observed to

have higher d13C values than smaller phytoplankton (Rau et al.,

1990; Fry and Wainright, 1991; Grégori et al., 2001; Cresson

et al., 2012).

Except in autumn, no significant differences were found

between the d13C of SOM and POM in this AR ecosystem. These

results differed from those of Cresson et al. (2012) and Xu et al.

(2017), who found that the d13C value of SOM was significantly

lower than that of POM in AR ecosystems. Microphytobenthos,

POM, and macroalgae are considered the main contributors to

SOM in neritic ecosystems (Cahoon, 1999; Letourneur et al., 2013;

Briand et al., 2015; Zhang et al., 2021). Benthic microalgae are

usually d13C enriched compared to planktonic microalgae because

of differences in light temperature and photosynthesis mechanisms

(Wiencke and Fisher, 1990; Fry andWainright, 1991; France, 1995).

In this study, the average Chl a of the benthic microalgae was only
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3.5 mg C m-2 (unpublished data), which was very low compared to

the other neritic ecosystems (Cahoon, 1999), indicating that benthic

microalgae may not be an important energy source of SOM in this

ecosystem. U. pertusa and E. prolifera were the main macroalgal

species in the AR ecosystem, most imported from adjacent sea areas

in summer. The outbreak of E. prolifera was considered a natural

disaster in the Yellow sea (Chen et al., 2018; Xu, 2018), and a large

part of E. prolifera was floated to Fuhan marine ranching in June

and July (the covered area was approximately 20000 m2). The

significantly higher d13C value of the two macroalgal species than

that of the SOM indicated that the macroalgae were also not a

critical energy source for SOM. The similar d13C values of POM and

SOM indicate that POM may be the main contributor of SOM, and

strong coupling of benthic-pelagic mechanism existed in the

AR ecosystem.
4.2 Food sources of consumers in
the AR ecosystem

The sessile filter feeder, oyster C. gigas, is an ecosystem engineer

that creates and maintains the oyster reef structure and provides

resources for other organisms (Padilla, 2010), dominated in the

fauna of this AR ecosystem, which showed a d13C value lower than

that of the POM in autumn. This seems contradictory, as POM is

usually considered the primary food source for oysters. The lower

d13C value of oysters may be ascribed to its qualitative selection for

microalgae, especially for diatoms (Riisgard and Larsen, 2000;

Decottignies et al., 2007; Marıń Leal et al., 2008; Kang et al.,

2009), because most diatoms have a smaller particle size than N.

scientillans, and the diatoms may have lower d13C values that that of

the POM in this AR ecosystem (Sato et al., 2006; Sugie and

Suzuki, 2015).

Snails of Rapana venosa are usually considered carnivorous

predators, such as bivalves (Byon et al., 2015; Song et al., 2016). The

oyster was inferred as its main food source in the artificial oyster

reef (Xu, personal communication); however, the d15N value of R.

venosa was only 1.66‰ higher than that of the oyster, and the TL of

R. venosa was 2.55 in this study, indicating that almost half of its

food originated from TL I. This seems contradictory to previous

results: Qi (2017) discovered that adult R. venosa had a low amylase

activity, which reflected that this species could only ingest a low

level of plant food, and Yang et al. (2020) further discovered that R.

venosa did not feed on phytoplankton based on fatty acid analysis.

Moreover, it seems that only oyster production can support the high

biomass of R. venosa in this AR (the biomass of R. venosa and oyster

in this AR were approximately 270 g m-2 and 1500 g m-2,

respectively) (unpublished data). The relatively low d15N value of

this species may be because R. venosa has a very low nitrogen

fractionation. DeNiro and Epstein (1981) and Vanderklift and

Ponsard (2003) demonstrated that the discrimination factor of

d15N may vary among species. The d15N discrimination factors of

Assiminea japonica and Angustassiminea castanea snails were lower

than one (Kurata et al., 2001). The actual fractionation factor of this

species needs to be estimated to provide a firm explanation for

this phenomenon.
FIGURE 3

Seasonal variations in the d13C and d15N values of particulate organic
matter (POM). Columns with different letters indicate significant
differences at p< 0.05.
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The deposit feeder, A. japonicus, is an important economic

species and has a high biomass in the AR ecosystem. It had a d13C
value similar to that for SOM. Sun et al. (2012) discovered that the

d13C and d15N discrimination factors of A. japonicus were 1.2‰
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and 1.9‰, respectively. Based on these data, it can be speculated

that the d13C and d15N values of sea cucumbers were consistent with

the POM. Therefore, POM may be the main food source for sea

cucumbers in this AR. This result is similar to Yokoyama (2013),
TABLE 4 d13C and d15N values of consumers in the artificial reef ecosystem.

Species n d13C ‰ d15N ‰

Zooplankton 3 -18.24 ± 0.26bc 9.14 ± 0.39B

Molluscs

Crassostrea gigas 3 -20.43 ± 0.79a 7.97 ± 0.18A

Rapana venosa 3 -19.19 ± 0.72b 9.63 ± 0.23C

Polychaete

Perinereis aibuhitensis 3 -20.29 ± 0.72ab 10.47 ± 0.08D

Echinodermata

Apostichopus japonicus 3 -19.43 ± 0.44ab 9.26 ± 0.31E

Crustacean

Dorippe japonica 1 -18.87 ± 0.38b 9.34 ± 0.14BC

Matuta planipes 1 -15.88 ± 0.35f 10.63 ± 0.23D

Eucrate crenata 1 -15.34 ± 0.22f 11.10 ± 0.26E

Crangon affinis 3 -18.86 ± 0.30b 11.30 ± 0.39EF

Charybdis japonica 3 -17.03 ± 0.22e 11.50 ± 0.12DFG

Caprella acanthogaster 3 -17.28 ± 0.12e 9.67 ± 0.19C

Portunus trituberculatus 4 -17.18 ± 0.72e 10.42 ± 0.08D

Juvenile Charybdis japonica 3 -17.68 ± 0.14de 10.62 ± 0.08D

Alpheus distinguendus 3 -17.53 ± 0.15de 11.45 ± 0.16FG

Oratosquilla oratoria 3 -17.74 ± 0.07de 11.67 ± 0.07G

Cephalopoda

Octopus vulgaris 3 -15.98 ± 0.38f 11.29 ± 0.34EF

Sepiella maindroni 3 -15.63 ± 0.13f 11.50 ± 0.30FG

Fish

Thryssa kammalensis 3 -19.03 ± 0.49a 11.30 ± 0.52A

Chaeturichthys stigmatias 3 -18.10 ± 0.18bc 12.33 ± 0.05B

Argyrosomus argentatus 3 -18.28 ± 1.00bc 12.38 ± 0.75BC

Sebastes schlegelii 3 -18.29 ± 0.08bc 13.05 ± 0.26BC

Cynoglossus joyneri 3 -18.27 ± 0.65bc 12.78 ± 0.17BCD

Sillago sihama 3 -18.18 ± 0.22bc 12.93 ± 0.13CDE

Lepidotrigla microptera 1 -17.12 ± 0.07d 12.43 ± 0.17BC

Odontamblyopus rubicundus 3 -17.91 ± 0.67c 12.56 ± 0.09BC

Platycephalus indicus 3 -17.80 ± 0.18c 13.13 ± 0.24DEF

Oplegnathus fasciatus 3 -16.62 ± 0.14d 13.14 ± 0.26DEF

Hexagrammos otakii 3 -18.67 ± 0.29ab 13.42 ± 0.17EF

Lateolabrax japonicus 3 -16.49 ± 0.42d 13.63 ± 0.13F
The superscript letters within the same column indicate significant differences (p < 0.05).
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who found that phytoplankton was the primary food source for A.

japonicus in a sea cucumber-Pacific oyster integrated multi-trophic

aquaculture ecosystem. Oysters may play an important role in

supporting food sources for sea cucumbers. The filtering activity

of oysters can transfer a large part of POM to the bottom of the AR

(Cheung et al., 2010; Cresson et al., 2014), and the pseudofeces and

feces from bivalves are an important food source for sea cucumbers

(Yuan et al., 2008; Slater et al., 2009; Zamora et al., 2014).
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Most crustaceans are omnivorous in marine ecosystems, usually

positioned at intermediate levels, and play important roles in

transferring energy from lower to higher TLs (Wilson et al.,

2001). The crustaceans showed a narrow range of d13C values,

except for D. japonica and Matuta planipes, indicating that most

crustaceans may have similar primary food sources. The d13C of the

crustaceans was close to that of POM in autumn, U. pertusa, and S.

muticum. Considering the integration time of crustaceans (Fry and

Arnold, 1982), d13C may reflect the diets of these crustacea–1–2

months ago, when a lot of macroalgae were floated into the AR.

Therefore, the macroalgae U. pertusa and S. muticum were probably

important food sources for these crustaceans. These results

conformed to Feng et al. (2014), who found that macroalgae were

an important contributor to the nutritional support of crustaceans.

Cephalopods O. vulgaris and Sepiella maindroni showed the

lowest d13C values in the AR ecosystem, significantly lower than

those of POM and macroalgae. The stable isotope signatures in

animal tissues reflect the local food source where the animal resides

(Peterson and Fry, 1987; Michener and Schell, 1994). The

particularly low d13C values of these two species indicate that

they may consume their food from entirely different

surroundings. These results were consistent with our observation

that these two species usually moved into the AR from other sea

areas in autumn. Zhang et al. (1997) reported that S. maindroni

usually stayed in coastal areas for spawning fromMay to November,

suggesting that S. maindroni may have migrated into the AR

ecosystem from another coastal sea area. Stomach content

analysis indicated that S. maindroni and O. vulgaris mainly feed

on fish and crustaceans (Yang, 2001; Yang et al., 2018), whose TLs

were 4.2 and 4.5, respectively, in the Bohai Sea, which was

significantly higher than those (3.04) in this study. However, the

isotopic analysis conducted by Zhang et al. (2020) indicated that the

TL of O. variabilis in AR was only 2.72. This may be ascribed to the

differences between stomach content analysis and SIA, as the

stomach content analysis only reflects the organism ’s

instantaneous food information, while the SIA provides integrated

food information over a long period (Hobson and Welch, 1992; Qu

et al., 2016).

The d13C and d15N values of fish in this AR ecosystem ranged

from -19.03‰ –16.62‰ and 12.33‰–13.63‰, respectively. The

average d13C values of the fish species were quite similar, except for

O. fasciatus, L. japonicus, and T. kammalensis. T. kammalensis is a

pelagic predator that mainly feeds on plankton (Guo and Tang,

2000), so its d13C values were relatively lower and close to the

phytoplankton. L. japonicus is a seasonal migratory predator whose

food sources may come from a significantly larger area than the AR,

thereby showing a different d13C value. S. schlegelii and

Hexagrammos otakii are typical reef fishes that usually remain in

the AR area (Zhang et al., 2015), which were discovered in the AR

with high biomass (unpublished data). Similar d13C values of these

fishes indicate that they may have similar primary food sources.

Assuming a d13C discrimination factor of 0.75‰ or 1‰,

phytoplankton should be their main primary food source.

However, similar d13C values did not indicate similar food

compositions. According to Zhang et al. (2018) and Zhang et al.

(2021), no significant niche overlap was observed between H. otakii
FIGURE 4

Bi-plots of d13C against d15N (mean ± SD) of SOM, POM,
zooplankton, and different species of fish, cephalopods, crustaceans,
echinoderms, annelids, shellfish, and macroalgae in the artificial reef
ecosystem.
FIGURE 5

Trophic positions of the animal species based on the nitrogen stable
isotope analysis. Trophic levels were calculated using the
enrichment factor of 3.4‰ per trophic level.
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and S. schlegelii in ARs based on stomach content analysis and SIA.

H. otakii tends to eat decapods and amphipods, whereas S. schlegelii

tends to eat fish and shrimp (Wei and Jiang, 1992; Park et al., 2007;

Ji, 2014; Zhang et al., 2014; Zhang et al., 2018; Zhang et al., 2021).

The d15N values of these species also indicated that they had

relatively different ecological niches. Cresson et al. (2014)

highlighted that crustaceans are the most commonly ingested

prey type in the AR ecosystem. However, most fishes in the

Fuhan AR ecosystem showed lower d13C values than the

crustaceans, and the TL of these fish mostly ranged from 3.00–

3.66; the crustaceans mostly ranged from 2.40–3.04, these indicated

that food sources such as zooplankton and bivalves with higher

d13C values and lower TLs were also important food sources for fish.

These results differed from Zhang et al. (2018) and Deng et al.

(1997), who found that S. schlegelii, P. argentata, and H. otakii

consumed very few bivalves, annelidas, and zooplankton as their

food sources.
4.3 The TL and food web structure
of the AR ecosystem

In this study, TLs of C. gigas, zooplankton, and A. japonicus

were close to TL II. TLs of most crustaceans were close to but lower
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than TL III, and TLs of most fish ranged from 3.28–3.66. Fish were

the top predators of this ecosystem, however, even the fish with the

highest TL did not reach four. The reason for the short food chain

length of this ecosystem may be due to the fact that the most fish

individuals are relatively small, even the largest fish sampled in the

reef was not heavier than 500 g (unpublished data). These fishes

were unable to consume large invertebrates or fish at high TL. The

TL of S. schlegelii, P. argentata, and H. otakii was lower than that in

the Bohai Sea, as reported by Yang (2001). These results were

supported by Zhang et al. (2020), who found that TLs of fish in AR

were lower than those in the natural ecosystem.

Based on the SIA, a simplified diagram of the food web in the

AR ecosystem was obtained, as shown in Figure 6. Four energy flow

pathways were observed in the simplified food web: (1) POM!
zooplankton! planktivorous fish; (2) POM! bivalves!
carnivorous snails/crustaceans ! carnivorous fish; (3) SOM!
detritivorous echinoderm; (4) SOM/macroalgae ! detritivorous

annelids and crustaceans! omnivorous crustaceans! carnivorous

fish. As most species were benthic predators, the food web was

mainly dominated by the benthic energy flow pathway in the AR.

The bivalve C. gigas seemed to play a key role in the benthic food

web structure, as C. gigas transported large amounts of

phytoplankton to the bottom environment, which provided

sufficient energy for benthic food webs.
FIGURE 6

Conceptual model of the trophic structure and energy flow of the artificial reef ecosystems. Thick arrows with orange, green, yellow, and blue
colors demonstrate the main energy flow pathways.
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4.4 The clues for “producer” or “attractor”
of the AR

The AR ecosystem is the “producer” or “attractor” for

swimming creatures is a controversial issue ((Bohnsack and

Sutherland, 1985; Bortone 1998; Wilson et al., 2001; Cresson

et al., 2014; Brickhill et al., 2015). In this study, most crustaceans

showed similar d13C values, and were close to those of POM and

macroalgae. The fish species showed similar d13C values, and their

d15N values showed good continuity concerning crustaceans,

indicating that the AR ecosystem may produce most crustaceans

and fish species. However, it is worth noting that these native fish

species tend to prey around ARs (Prince and Gotshall, 1976;

Hueckel and Buckley, 1987), so the AR and its adjacent waters

both play the role of producers. Species ofM. planipes, E. crenata,O.

vulgaris, S. maindroni, and L. japonicus, which are not typical

species of the AR ecosystem, showed lower d13C values than

other typical reef species, may only spend part of their lives in the

AR. Another stable isotopic analysis research (unpublished data)

revealed that the d13C of POM values from near shore in

Rushankou were higher than those in the AR, and the d13C of

POM values from the outer sea area were lower than those in the

AR. It is quite probable that these species immigrated from the

near-shore area.
4.5 Implications for AR management

Scientific management plays an important role in the

sustainable development of AR ecosystems. Oyster C. gigas

transferred a large part of POM to the bottom, which played a

key role in coupling the pelagic-benthic environment and

sustaining the benthic energy flow pathway. Therefore, it is

necessary to protect it from excessive predation by predators,

such as R. venosa. The fishing activities targeted for the migratory

species (e.g., O. vulgaris and L. japonicus) should be conducted with

sufficient caution, because excessive harvesting may make the AR a

trap attracting these species, resulting in the decline of these

resources in the surrounding waters. It is necessary to evaluate

the carrying capacity and maximum sustainable yield of economic

species in the AR, and the sustainable yields of the migratory species

should be evaluated in an area larger than the AR. S. maindroni was

once an important economic species on China’s coast, almost

disappearing in China’s northern coast in the past 20 years due to

habitat degradation and overfishing (Wu et al., 2010). It was

discovered that this AR ecosystem was a spawning ground for

this species (Zhang et al., 2020), indicating that the construction of

ARs was beneficial for recovering the population of this species on

the northern coast of China. Managers can specially design and

introduce suitable spawning reefs to improve the resource

restoration efficiency of this species.
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4.6 Future prospects

This study shows that stable isotope technology is a useful way

to investigate the food sources of organisms in AR. The investigated

results can provide important clues for exploring the “production”

or “attraction” issue of AR, and provide important data for

constructing the energy flow model of the AR ecosystem.

However, as the sampling area is limited in the marine ranching

ecosystem, it is unable to clarify the possible impact of the adjacent

sea area on the food web of the AR, which makes the research

results have certain limitations. By measuring the distribution of

stable isotopes of biotic and abiotic samples in the adjacent area of

the marine ranching, we can further clarify the effects of nutrient

inputs and biological migration on the food web structure of the

AR. In addition, based on SIA, we can only roughly determine the

possible food sources of consumers, but cannot determine the

specific food composition. Combined with other methods, such as

stomach content analysis and fatty acid analysis, we can further

determine the food sources and composition of the consumers with

higher accuracy to optimize the research results.
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