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Introduction: Seagrass meadows are among the most valuable ecosystems,

providing numerous ecosystem services and functions. Despite its importance,

there is a lack of knowledge about soil’s biogeochemical process variability,

which can control microbiological communities. Thus, this study aimed to

evaluate whether seagrass meadows in different geo-environments exhibit

varying Fe and sulfate reduction intensities, shaping distinct archaea and

bacteria communities.

Methods: Soil samples were collected in seagrass meadows under contrasting

climatic, geological, vegetational and hydrological settings along the Brazilian

coast (e.g., Semiarid Coast - SC, Southeastern Granitic Coast –GC, and Southern

Quaternary Coast - QC). The soils were characterized by particle size, pH, redox

potential (Eh), total organic C and total N content, acid-volatile sulfides (AVS), and

simultaneously extracted Fe. Furthermore, a solid-phase Fe fractionation was

performed to characterize the decomposition pathways in these soils, and the

shifts in the microbial community along this spatial variation were analyzed using

denaturing gradient gel electrophoresis.

Results: The studied soils presented a sandy texture (values ranging from 74 ±

11.8 to 80.5 ± 6.4%) caused by energetic hydrodynamic conditions. The pH

values were circumneutral, while redox conditions presented significant

distinction among the studied sites, ranging from anoxic to oxic (values

ranging from -63 to +334 mV). The degree of pyritization (DOP) ranged from<
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10% to values higher than 80%, highly influenced by rhizospheric oxidation, and

higher AVS content was recorded for sites with lower DOP (i.e., GC and QC).

Discussions: Thus, biogeochemical processes in the seagrass soils present a

wide variation in response to the geo-environmental settings. Plants influence

the soil’s geochemical and microbiological communities, retaining fine particles,

promoting rhizosphere oxidation, and inducing anoxic conditions controlling the

Fe and S forms. Moreover, the same plant species can result in distinct soil

conditions and microbial communities due to geoenvironmental settings.
KEYWORDS

coastal wetlands, Ruppia maritima , Halodule wrightii , Fe fractionation,
Metabolic pathways
1 Introduction

Seagrass meadows consist of a worldwide distributed ecosystem,

primarily composed of plant species that typically grow fully

submerged in shallow coastal areas forming extensive meadows

with high productivity and biodiversity (Olsen et al., 2016;

Turschwell et al., 2021). The seagrasses are a phylogenetically

related plant group (order Alismatales) with low taxonomic

diversity (66 known species) assigned to six families (e.g.,

Cymodoceaceae, Hydrocharitaceae, Posidoniaceae, Zosteraceae;

Ruppiaceae and Zannichelliaceae; Zidorn, 2016). These plant

species interact with a wide range of megaherbivores (e.g.,

dugongs, manatees, green turtles) and smaller species (e.g., fishes,

molluscs, crustaceans, sponges), supporting complex and diverse

communities along the coastal zone of all continents except

Antarctica (Nordlund et al., 2016; Unsworth et al., 2019).

This ecosystem can be found along the coast of 163 countries,

covering 160,000 to 267,000 km2 (McKenzie et al., 2020) and, thus,

widespread over contrasting climatic, geological, vegetational and

hydrological settings. However, estimations suggest that it may

cover up to 600,000 km2 (Fourqurean et al., 2012), corresponding

to 0.2% of the ocean areas (Charette and Smith, 2010), which equals

twice the area of mangroves forests (Siikamäki et al., 2013).

Seagrass meadows provide a wide range of ecological services,

e.g., support marine food webs (Cui et al., 2021; Valentine and

Heck, 2021); supply raw material and food (Connolly et al., 2005;

Barbier et al., 2011); provide habitat and nursery (Orth et al., 2006;

Liquete et al., 2016); water purification (Fernandes et al., 2009);

coastal protection (Ondiviela et al., 2014); but also educational,

recreational, spiritual and touristic services (de la Torre-Castro and

Rönnbäck, 2004; Nordlund et al., 2016). As a result, seagrass

meadows represent one of the most valuable ecosystems on the

planet with values higher than U$ 28,000.00 ha−1 yr-1 (2011 values;

Barbier et al., 2011; Costanza et al., 2014).

Recently, numerous studies have been conducted to

comprehend and highlight the role of seagrass meadows as

globally significant carbon (C) sinks, storing significant amounts

of C on their soils (Kennedy et al., 2010; Fourqurean et al., 2012;
02
Rozaimi et al., 2016; Serrano et al., 2016; Ricart et al., 2020). The C

storage in seagrass meadows results from high productivity (Duarte

and Chiscano, 1999; Duarte et al., 2010), refractory plant tissues

(Serrano et al., 2015; Kaal et al., 2016; Piñeiro-Juncal et al., 2020a),

and the anoxic soil conditions, which may drive microbial

communities and the anaerobic organic matter decomposition

pathways of iron (Fe) and sulfate reduction (Fourqurean et al.,

2012; Ugarelli et al., 2019; Sun et al., 2020).

In this ecosystem, due to the permanent flooding from seawater,

with abundant sulfate supply, the organic matter decomposition

occurs through Fe oxyhydroxides and sulfate reduction pathways

since water column prevent oxygen diffusion through soil profile

(Brodersen et al., 2017; Nóbrega et al., 2023). Consequently, Fe2+

and sulfides (including HS- and polysulfides) are produced, which

can eventually form iron sulfides such as FeS and FeS2 (Otero and

Macias, 2002; Queiroz et al., 2018). In anaerobic conditions,

bioauthigenic pyrite (FeS2) emerges as the most stable product of

sulfate reduction, holding diverse ecological significance (Otero

et al., 2023).

In fact, the dynamics of Fe and sulfate in seagrass soils play an

essential role in controlling several other processes that affect the

very maintenance of this ecosystem, such as the bioavailability of

nutrients (Delgard et al., 2016), trace metals (Tripathi et al., 2014),

the fate of phosphorus (Brodersen et al., 2017), the geochemical

control over dissolved sulfide (a highly phytotoxic compound for

seagrass species (Azzoni et al., 2005; Holmer et al., 2005) and the C

dynamics (Yu et al., 2021). Therefore, Fe and sulfate reduction,

which are controlled by microbial processes (Brodersen et al., 2018;

Piñeiro-Juncal et al., 2020b), play essential roles in the maintenance

of different ecosystem services provided by seagrass meadows (e.g.,

carbon sequestration and pollutants immobilization) (Nordlund

et al., 2016; York et al., 2017; Ramıŕez-Flandes et al., 2019; Ricart

et al., 2020; Sun et al., 2020).

However, despite the ecological importance of Fe and sulfate

biogeochemistry for seagrass meadows and other coastal wetlands

(i.e., controlling pollutant, nutrient and C dynamics), there is still a

global knowledge gap on its relationship with the microbial

communities and how these groups are shaped in response to the
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geo-environmental conditions (e.g., distinct climatic, geological

conditions and vegetation), which may control the intensity of

biogeochemical processes.

Because seagrass meadows colonize highly diverse

environments (Gorman et al., 2020; Ricart et al., 2020; Nóbrega

et al., 2023), the intensities of these geochemical processes may vary

widely and shape different microbial communities. The present

study tests the hypothesis that seagrass meadows at contrasting geo-

environments (e.g., climate, geology, and plant species and cover)

will operate under different Fe and sulfate reduction intensities and,

thus, will shape different microbiological communities. This is a

novel study bridging the core soil processes of coastal wetlands (i.e.,

Fe and sulfate reduction) and microbial communities (bacteria and

archaea) in diverse tropical geo-environments. Our results provide

knowledge for a better understanding of the processes related to

organic C accumulation, bioavailability of nutrients, and pollutant

cycling in seagrass meadows.
2 Material and methods

2.1 Study site

Soil samples were collected in seagrass meadows located in three

contrasting compartments along the 9,200 km of the Brazilian coast

(Figure 1), presenting distinct climate (hot semiarid, humid

tropical, and humid subtropical climates), geological setting

(sedimentary and magmatic rocks), coastal conditions (estuary,

beach, and coastal lagoon), and different plant species (Halodule

wrightii. and Ruppia maritima) aiming to assess a maximum soil

variability. Thus, seagrass soils from the semiarid coast (SC),

granitic coast (GC) and quaternary coast (QC) compartments

were samples and analyzed (Figure 1).

The semiarid coast (SC) extends from the states of Piauı ́ to
Pernambuco (Figure 1), marked by a semiarid climate (mainly
Frontiers in Marine Science 03
classified tropical savanna and hot semi-arid climates; i.e., Aw and

BSh climate types, respectively, according to Köppen-Geiger

Climate Classification; Peel et al., 2007). The SC presents an

annual rainfall (approximately 800 mm) lower than the

evapotranspiration; and an average water temperature ranging

from 27 to 29°C during the year (average minimum water

temperature: 26°C and maximum: 30°C; seatemperature.org). In

addition, this compartment is marked by close contact of the

“Barreiras” group formation to the coastline, which results in

sandy beaches and coral reefs close to the estuaries favouring

seagrass beds formation (Copertino et al., 2016). The Barreiras

group is a Miocene-Pliocene (Tertiary) transitional-coastal

sedimentary deposit whose upper portion is composed

dominantly of poorly sorted sand (Vilas Bôas et al., 2001; Arai,

2006). The seagrass meadow soils were collected in an estuary (at

Ceará state, NE-Brazil) highly densely vegetated byH. wrightii Asch.

(Figure 1); surrounded and close to (< 100 m) mangrove forests

under low anthropogenic impacts due to the low occupation of the

estuary (Silva and Souza, 2006), and found at water depths ranging

from 1.7 to 2.9 m (water depth corrected to the mean water level).

The granitic coast (GC) covers the area from the Guanabara

Bay (Rio de Janeiro state) to the Praia dos Sonhos (Santa Catarina

state). In this compartment, narrow coastal plains are interrupted

by the Serra do Mar’s granitic-gneiss rock with small bays and

beaches protected by rocky shores and almost 2,000 islands close to

the shore (Schaeffer-Novelli et al., 1990). The humid tropical

climate of the region (tropical rainforest climate – Af, according

to Köppen-Geiger Climate Classification; Peel et al., 2007) presents

an annual rainfall average higher than 1,600 mm during the entire

year, with lower monthly precipitation higher than 60 mm,

resulting in a hydric surplus, and the average monthly water

temperature ranges from 21 and 27°C during the year (average

minimum water temperature: 20°C and maximum: 28°C;

seatemperature.org; Minuzzi et al., 2007). At this compartment,

the representative H. wrightii. meadow was collected in an
FIGURE 1

Location of sampling sites along the Brazilian coast. In detail, plant species and canopy characteristics for the three studied sites. The x and y axes in
the satellite images indicate the coordinates in UTM.
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urbanized beach area (at São Paulo state, Southeastern Brazil),

presenting sparse vegetation with low plant density (Figure 1) at a

water depth of 1.3 m (corrected to the mean water level).

The south quaternary coastal (QC) compartment extends 600 km

from the Granitic coast to the border with Uruguay. This part of the

coast presents a humid subtropical climate (Cfa according to Köppen-

Geiger Climate Classification; Peel et al., 2007), with low annual

temperature mean and a high-temperature oscillation (>10°C),

annual precipitation of 1,300 mm, besides the hydric surplus (> 400

mm; Schaeffer-Novelli et al., 1990; Alvares et al., 2013). The average

water temperature ranges from 13 to 24°C during the year (average

minimum: 12°C and average maximum 26°C; seatemperature.org).

The soil samples were collected at the Lagoa dos Patos (Patos Lagoon),

at the Rio Grande do Sul State (S-Brazil), a 10,000 km2 water body

formed by sandy deposits during transgressive events during the

Pleistocene (Toldo Jr. et al., 2000). The ephemeral and euryhaline

Ruppia maritima seagrass meadow was collected at an average water

depth of 1.5 m (corrected to the mean water level).

Seagrass meadows were observed and visually analyzed in each

coast compartment to identify representative meadows (e.g., most

frequent plant species, plant density and coverage), avoiding bare

areas or seagrass meadows highly colonized with epiphytes

or macroalgae.

2.2 Soil sampling procedure and
physicochemical (Eh and pH)
characterization

Three soil cores were randomly collected inside the representative

seagrass meadows in each coast compartment using transparent

polycarbonate tubes (60 mm diameter) attached to a submerged

soil auger (Uwitec surface corer), which resulted in minimum sample

compactation (Erich and Drohan, 2012). Soil samples were carefully

extruded from the cores, partitioned into sections (0-3 cm, 3-6 cm, 6-

10 cm, 10-13 cm, 13-16 cm, and 16-20 cm, with additional 5 cm

increments) and, subsequently, pH and redox potential (Eh) values

were promptly recorded to prevent oxidation. Following the

characterization of physico-chemical conditions (Eh and pH), the

samples were placed in plastic bags and transported to the laboratory

under refrigeration (<4°C). In the lab, sub-samples (from the core’s

central region) were immediately frozen for subsequent analysis,

while other sub-samples were dried (at 45°C until reaching a constant

weight) and sieved through a 2 mm mesh.

The pH values were measured using a glass electrode calibrated

using pH 4.0 and 7.0 buffer solution during core sectioning. The

redox potential (Eh) was determined using a platinum electrode,

with the final readings corrected by adding the potential of the

calomel reference electrode (+ 244 mV) (Passos et al., 2016). All

readings were taken after equilibrating the soil samples and the

electrodes for several minutes (~2 min).
2.3 Soil characterization

The soils from each seagrass meadow were characterized by

particle size composition, total organic C, and total nitrogen.
Frontiers in Marine Science 04
The hydrometer method was used for the particle size analysis

(Gee and Bauder, 1986) by a combination of physical (overnight

shaking) and chemical (1 mol L-1 NaOH + 0.015 mol L-1 (NaPO3)6)

dispersion after the organic matter elimination using hydrogen

peroxide (30% vol). Total nitrogen (TN) and total organic carbon

(TOC) were determined in an elemental analyzer (LECO 628

series). The TOC quantification was the difference between the

total C and inorganic C contents (obtained after organic matter

combustion in a muffle furnace at 550 °C for two hours; Howard

et al., 2014).
2.4 Fractionation of Fe and Sulfur

The partitioning of the solid phase of Fe was performed via a

sequential extraction designed by the combination of methods

proposed by Tessier et al. (1979); Huerta-Dıáz and Morse (1990),

and Fortin et al. (1993) using frozen samples, obtaining six

operationally distinct fractions as follow: exchangeable Fe (FeEX),

extracted with 30 mL of MgCl2 1 mol L-1 for 30 minutes; Fe

associated with carbonates (FeCA), extracted with 30 mL of 1 mol L-

1 sodium acetate buffer solution (pH = 5.0) for 5 hours; ferrihydrite

(FeFR), extracted with 0.04 mol L-1 hydroxilamine + acetic acid 25%

(v/v) at 30 °C for 6 hours; lepidocrocite (FeLP), extracted with 0.04

mol L-1 hydroxilamine + acetic acid 25% (v/v) at 96 °C for 6 hours;

crystalline Fe oxyhydroxides (FeCR), extracted with 0.25 mol L-1

sodium citrate + 0.11 mol L-1 + 3 g of sodium dithionite for 30

minutes; and Fe associated with pyrite fraction (FePY), extracted

with concentrated nitric acid for 2h, after the removal of silicate

fraction (10 M HF during 16 hours, then added 5 grams of boric

acid and agitated during 8 hours) and organic matter (concentrated

H2SO4 during 2 hours). For further details, please see Otero et al.

(2009) and Osterrieth et al. (2016).

All solutions used for extraction were pretreatment for

removing dissolved oxygen (i.e., purged with N2 for 2 hours) to

prevent possible Fe and S oxidation during the extraction steps. The

extractants were collected between each step after centrifugation at

6,000 RPM (4 °C) for 30 minutes. The samples were washed with 20

mL of ultrapure water between each step and followed by

centrifugation. The concentrations of Fe in each extract were

quantified by flame atomic absorption spectrophotometry

(Thermo Fisher Scientific, Waltham, MA, USA). Curve

calibration solutions were prepared by diluting a certified

standard solution (iron standard, TraceCERT®) to determine Fe

concentration and a certified reference material (NIST SRM 2709a)

was employed for quality control, with triplicate measurements

yielding Fe concentration recovery values exceeding 92%. The

results of the fractionation are presented as mmol g-1 (micromole

per gram) of dried soil, corrected by sample water content.

The degree of Fe pyritization (DOP), which determines the

percentage of reactive Fe incorporated into the pyrite fraction, was

calculated as follows: DOP (%) = 100*FePY/(FeREACTIVE + FePY)

(Huerta-Diaz and Morse, 1992). The reactive fraction (FeREACTIVE)

was considered the sum of the fractions exchangeable to crystalline

(SFeEX → FeCR), whereas the pseudo-total content was determined

by the sum of the six fractions (SFeEX → FePY).
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The acid-volatile sulfides (AVS) fraction was extracted from

frozen wet samples by acid distillation with HCl (20 mL, 3 mol L-1)

in a gas-tight reaction flask after 40 minutes under continuous N2

flow (Allen et al., 1993; Otero et al., 2009). The evolved H2S was

trapped in a Zn acetate solution (3%). The concentration of sulfides

was colourimetrically determined by the method proposed by Cline

(1969), and the simultaneously extracted Fe (Fe-AVS) was

quantified by flame atomic absorption spectrophotometry (Allen

et al., 1993).
2.5 Microbial molecular procedures

Frozen soil samples (400 mg) from different coastal

compartments and depths (e.g., upper: 0-3 cm; intermediate: 16-

20 cm; and deeper: 55-60 cm for SC and QC coast, and 35-40 cm for

GC, due to soil depth limitation) were subjected to a total DNA

extraction using the Power Soil DNA Isolation kit (MoBio

Laboratories, Carlsbad, CA, USA) following the manufactory

instructions. First, DNA extraction and integrity were assessed

onto a 1.2% agarose gel electrophoresis with 1x TAE buffer (400

mmol L-1 Tris, 20 mmol L-1 acetic acid, and 1 mmol L-1 EDTA).

Subsequently, the gels were stained with GelRed™ (0.5 mg mL-1),

visualized, and photo-documented under ultraviolet light (DNR–

Bio Imaging Systems/MiniBis Pro).

The amplification of the V6 region of ribosomal gene 16S rDNA

for the bacterial community was performed with primers F968-GC

and R1378, generating fragments of 410 bp (Heuer et al., 1997). The

archaeal amplicons from rrs genes were obtained with primers

Arch21F and Arch958R in the first reaction and Arch340FGC and

Arch519R in the second nested-PCR reaction (Ovreås et al., 1997).

The PCR reactions of bacterial communities were conducted in

Veriti Thermal Cycler (Applied Biosystems, Waltham, USA), in a

final volume of 50 µL, containing 1X Taq Buffer containing 2.50

mmol L-1 MgCl2, 0.25 mmol L-1 of each dNTP, 0.4 mmol L-1 of each

primer, 1% formamide and 1U Taq DNA Polymerase (Fermentas,

Burlington, Canada). For archaea communities, 1x Taq Buffer

contained 3.0 mmol L−1 MgCl2, 0.2 mmol L−1 of each dNTP, 5

pmol L-1 of each primer, and 1U Taq DNA polymerase (Fermentas,

Burlington, Canada). The amplification reactions for bacterial DNA

were performed in the following conditions: initial denaturation at

94°C and then 35 cycles of denaturation for 1 minute; annealing at

56°C for 1 min and elongation at 72°C for 2 min. At the end of 35

cycles, a final extension step was conducted at 72°C for 10 min.

Amplification reactions for archaea communities were performed at

95°C for 5 minutes; and 30 cycles of 1 min at 95°C, 1 min at 55°C, 1

min at 72°C, and final extension for 10 min at 72°C.

The PCR products were loaded onto 6% (16S rRNA genes) and

8% (rrs genes) (w/v) polyacrylamide gels with denaturing gradients

of 45 to 65% for bacterial and 30 to 55% for archaea community,

using urea 7 mol L-1 and 40% deionized formamide as 100%

denaturing solution. The gels were run for 16 h at 100 V at 60°C

using the phorU2 systems (Ingeny International, Goes,

Netherlands) and stained with SYBR Green I (Invitrogen, Breda,

the Netherlands). The DGGE gels were photo-documented with

Storm 845 (General Electric) and analyzed using the Image Quant
Frontiers in Marine Science 05
TL unidimensional (Amersham Biosciences, Amersham, UK,

v.2003), where band patterns were converted into richness

(number of bands) and abundance matrices.
2.6 Statistical analysis

Differences between soil variables were analyzed by the non-

parametric Kruskal-Wallis test, followed by the Bonferonni-Dunn

method for multiple pairwise comparisons (XLSTAT, Addinsoft,

New York, USA, 2014). Kruskal-Wallis text was used since it was

not observed a normal distribution and equal variance. Since few

assumptions are required for non-parametric analysis, this test is

considered more robust for environmental data (Reimann et al.,

2008). Pearson’s correlation coefficient (R) established the

relationships between different variables. Finally, a Discriminant

Analysis (DA) was performed to develop a function that yields

optimal discrimination of the study sites (SC, GC, and QC coasts).

Through the DA, the relative contribution of the variables could be

identified to the separation of the groups, i.e., the most relevant

variables for separating the study sites (Reimann et al., 2008).

The bacterial and archaeal community structure changes

among sites were obtained through beta-diversity estimations.

The beta-d ivers i ty analys is compares the groups of

microorganisms revealed by the DGGE band patterns among the

samples, relying on the microorganisms’ profile structure and

relationship with the environmental soil parameters (Lozupone

et al., 2007). For the beta-diversity calculation, similarity matrices

were produced using the Bray-Curtis algorithm on square-root

transformed data, allowing the observation of the distribution of the

groups between the samples on a two-dimensional scale.

PERMANOVA analyses, based on two factors (i.e., coastal

compartment and depth of soil sample), were followed by a

Monte Carlo method with fixed effects, sums of squares type III

(partial) under a reduced model, and 999 permutations. The

ANOSIM test followed a one-way analysis based on one factor

allowing the comparison among treatments under 999

permutations based on a p-value<0.05. Finally, we performed a

redundancy detrended analysis (RDA) regarding the environmental

factors correlated to the bacterial distribution and sampling depth.

The statistical tests regarding microbial communities were

performed using the software PAST (Hammer et al., 2001),

PRIMER 6+PERMANOVA (Clarke and Gorey, 2006), and

Canoco (Canoco 4.5, Biometris, Wageningen, The Netherlands).
3 Results

3.1 Characteristics of the physicochemical
environments

The particle size of soils from all studied sites presented a

predominance of sand, with mean ± standard deviation from 74.0 ±

11.8% at the QC to 80.5 ± 6.4% at the SC (Figure 2; Table 1). In

contrast, silt content varied from 6.2 ± 4.9% at SC to 12.2 ± 5.4% at

the QC coast, and clay varied from 8.1 ± 4.1% at the GC to 14.1 ±
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2.3% at the SC coast. All three particle sizes presented a statistically

significant difference (Table 1). Additionally, the soils from the

three studied sites presented an erratic sand distribution throughout

the soil profiles (Figure 2).

Regarding the physicochemical conditions, the pH values

recorded for the three sites were circumneutral, with lower pH

values recorded at the SC (mean value ± standard deviation: 7.0 ±

0.2), whereas GC (7.4 ± 0.1) and QC (7.4 ± 0.4) did not differ

statistically (Table 1). Additionally, whereas the pH values of the

GC coast soil did not present a significant variation through soil

profiles, the soils from the SC coast present higher values at the

deeper soil layers (> 10 cm), and the soils from the QC coast

presented oscillating values, with a decrease at the intermediate soil

layers (10-30 cm) followed by an increase at deeper layers (>30

cm) (Figure 3A).

The Eh values presented a wide variation, ranging from −63 to

+334 mV, evidencing significantly contrasting conditions between

the studied sites (Figure 3B; Table 1). Significantly lower Eh values

were recorded for the SC (mean ± standard deviation: +12 ± 134

mV), whereas the values recorded for QC (+166 ± 136 mV) and GC

(+227 ± 60 mV) did not differ statistically. The redox contrasts were

also evidenced in the surface soil horizons (down to 40 cm depth).
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While the Eh values recorded at GC and QC evidenced an oxic

environment (average mean for the surface soil horizons ± standard

deviation: +209 ± 113 mV), significantly lower values were recorded

at SC (−22 ± 44 mV), thus, evidencing an anoxic environment. As

occurred to the pH, the Eh values presented different trends in-

depth among the different geoclimatic zones (Figure 3A). At the SC

coast, the Eh values increased in-depth, whereas for both GC and

QC coast, a decreasing trend in the recorded values (Figure 3B).

Significantly higher TOC contents were found at the SC coast

(mean ± standard deviation: 2.49 ± 0.95%; Figure 3C) when

compared to QC (0.53 ± 0.17%) and GC (0.41 ± 0.14%; Table 1).

Similarly, significantly higher TN contents were recorded at the SC

coast (0.14 ± 0.11%; Figure 3D; Table 1), while the values recorded

for QC (0.07 ± 0.02%) and GC (0.05 ± 0.01%) coast did not differ

significantly (Figure 3D; Table 1). When considering the variation

through the soil profile, the TOC and TN values recorded for the

GC and QC coast presented a slight variation. On the other hand,

for the SC coast, higher values were recorded for the upper (0-10

cm) compared to deeper (>35 cm) soil layers. The C:N ratios were

also significantly different among the three sites, with lower values

at QC (6.8 ± 2.8), followed by GC (8.7 ± 1.8) and SC (17.8 ±

5.7; Figure 3C).
A

B

FIGURE 2

(A) Particle size distribution along seagrass meadows’ soil profiles collected along the Brazilian coast. (B) Natural variability of particle size distribution
in the seagrass meadows soils from the Brazilian coast under contrasting geo-environment conditions, according to Flemming (2000).
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3.2 Fe fractionation

The values of pseudo-total Fe (FeT) contents were statistically

similar among the three sites (means ± standard deviation for the

SC:78.1 ± 29.6 mmol g-1; GC: 73.3 ± 19.9 mmol g−1; and QC: 63.7 ±

26.1 mmol g−1; Figure 4; Table 1).

On the other hand, statistically significant differences were

recorded for all Fe fractions (Figure 4; Table 1). At QC and SC,

FePY was the most important fraction (mean ± standard deviation:

51.9 ± 21.8 mmol g-1 for SC coast and 45.0 ± 26.5 mmol g-1 for QC

coast) representing more than 50% of the FeT (DOP > 50%)

whereas, for the GC, FePY represent less than 50% of the FeT
(DOP< 50%; Figure 4), with significantly lower contents (17.7 ± 9.5

mmol g-1). Additionally, the DOP values presented a significant

variation throughout the soil for GC and QC, with a lower DOP at

the upper soil layers (0-10 cm; Figure 4). In contrast, the DOP at the

SC did not oscillate with soil depth (Figure 4).

Both FeEX and FeCA were the fraction with a lower contribution

to FeT, with mean ± standard deviation values of FeEX contents

oscillating from 0.4 ± 0.1 to 1.7 ± 0.3 mmol g-1 for QC and SC coast,

respectively; and mean values of FeCA varying from 0.6 ± 1.2 and 1.0

± 0.3 mmol g-1 for the QC and GC coast, respectively (Figure 4).
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Regarding the Fe oxides fraction (i.e., FeFR + FeLP + FeCR),

significantly higher contents were quantified at GC (mean ±

standard deviation: 54.0 ± 16.0 mmol g-1; Table 1), followed by SC

(23.7 ± 7.9 mmol g-1), and QC coast (17.7 ± 9.5 mmol g-1). For the

three sites, the lepidocrocite (FeLP) was the most dominant

oxyhydroxide fraction, with mean ( ± standard deviation) values

ranging from 10.0 ± 2.1 to 24.3 ± 2.7 mmol g-1 at the QC and GC

coasts (Figure 4; Table 1). Moreover, for the GC, the FeCR fraction

was the less relevant oxyhydroxide fraction (10.4 ± 1.9 mmol g-1),

whereas the ferrihydrite (FeFR) was the less important Fe

oxyhydroxide fraction for the other sites (4.2 ± 1.5 mmol g-1 for

NE and 2.6 ± 2.5 mmol g-1 for QC coast; Figure 4).
3.3 Acid volatile sulfides (AVS) and
simultaneously extracted Fe (AVS-Fe)

The AVS contents ranged from 0.05 to 2.03 mmol g-1

(Figure 3F) among the studied sites. Significantly, lower AVS

contents were recorded at the SC (mean ± standard deviation:

0.11 ± 0.09 mmol g-1), followed by QC (0.22 ± 0.36 mmol g-1) and

GC (0.25 ± 0.22 mmol g-1; Figure 3F).
TABLE 1 Average and Kruskall-Wallis statistical results (p-value) for the variables in the three studied sites.

Variable p-value

Site

Semiarid Coast (SC)
(n=39)

Granitic Coast (GC)
(n=30)

Quaternary Coast (QC)
(n=39)

Sand (%) 0.002 79.7 ± 5.1a 80.5 ± 6.4a 74.0 ± 11.8b

Silt (%) <0.01 6.2 ± 4.9b 11.4 ± 5.3a 12.2 ± 5.4a

Clay (%) <0.01 14.1 ± 2.3a 8.1 ± 4.2b 13.8 ± 6.8a

pH < 0.01 7.0 ± 0.2b 7.4 ± 0.1a 7.4 ± 0.4a

Eh (mV) < 0.01 +12 ± 134b +227 ± 60a +166 ± 136a

TOC (%) < 0.01 2.49 ± 0.95a 0.41 ± 0.14b 0.53 ± 0.17b

TN (%) < 0.01 0.14 ± 0.11a 0.05 ± 0.01b 0.07 ± 0.02b

C:N ratio < 0.01 17.8 ± 5.7a 8.7 ± 1.8b 6.8 ± 2.8b

FeT (µmol g-1) 0.37 78.1 ± 29.6a 73.3 ± 19.9a 63.7 ± 26.1a

FeEX (µmol g-1) < 0.01 1.7 ± 0.3a 0.7 ± 0.0b 0.4 ± 0.1c

FeCA (µmol g-1) 0.43 0.8 ± 0.1a 1.0 ± 0.3a 0.6 ± 1.2a

FeFR (µmol g-1) < 0.01 4.2 ± 1.5b 19.4 ± 15.4a 2.6 ± 2.5b

FeLP (µmol g-1) < 0.01 14.7 ± 5.2b 24.3 ± 2.7a 10.0 ± 2.1c

FeCR (µmol g-1) < 0.01 4.8 ± 1.4b 10.4 ± 1.9a 5.1 ± 1.6b

FeOXIDES (µmol g-1) < 0.01 23.7 ± 7.9b 54.0 ± 16.0a 17.7 ± 4.4b

FePY (µmol g-1) < 0.01 51.9 ± 21.8a 17.7 ± 9.5b 45.0 ± 26.5a

DOP (%) < 0.01 62.8 ± 4.0a 23.3 ± 10.6b 58.8 ± 27.4a

AVS (µmol g-1) 0.04 0.11 ± 0.09b 0.25 ± 0.22a 0.22 ± 0.36 a

Fe-AVS (µmol g-1) < 0.01 11.1 ± 7.5b 30.2 ± 5.7aa 7.0 ± 3.2b
Mean values followed by the same letter did not present a statistically significant difference.
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Regarding the AVS-Fe, statistically significant higher values

were recorded for the GC (30.2 ± 5.7 mmol g-1), whereas the

values recorded for SC (5.6 ± 1.5 mmol g-1) and QC (7.0 ± 3.3

mmol g-1) did not differ statistically (Figure 3G; Table 1).
3.4 Discriminant analysis of soils variables

The discriminant analysis indicated the most relevant variables

for the differentiation of the studied sites (Figure 5). For the soils

from SC, the vectors position indicates an association with higher

TOC, TN, FeEX contents, higher C:N ratio values, and lower pH, Eh,

and AVS contents. The GC soils were associated with higher Fe

oxyhydroxides (FeFR, FeLP, FeCR, and FeOXIDES) and Fe-AVS as

observed by the vectors positioned in its direction and lower DOP,

FePY, and clay contents as evidenced by the vectors positioned in the

opposite direction (Figure 5). On the other hand, the vector’s

position indicates that soils from QC differ from the SC and GC

by lower sand and FeEX contents and higher silt and pH (Figure 5).

Furthermore, when comparing SC and QC, it can be stated that SC

presents higher values of FePY and DOP.
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3.5 Bacteria and archaea community
characteristics (PCR-DGGE Results)

PCR-DGGE results evidence a clear differentiation in the

bacteria and archaea community structure among the coastal

compartments and soil depths, shown by the PERMANOVA data

analysis (Table 2). In fact, the coastal compartments played a higher

influence in the distribution of the archaea (Pseudo-F = 15.657; p =

0.001) and bacteria (Pseudo-F = 8.097; p = 0.001) communities;

followed by the influence of soil depth (Pseudo-F = 4.395 and 3.519

for archaea and bacteria communities, respectively; p = 0.001). In

addition, the results demonstrated the integration of factors (coastal

compartment vs. depth) in the distribution of the bacteria (Pseudo-

F = 3.745; p = 0.001) and archaea (Pseudo-F = 6.294; p = 0.001)

communities (Table 2).

Moreover, the separation of the archaea community is also

demonstrated by the ANOSIM-test (coastal compartment: Global R

= 0.947; p = 0,001 and soil depth: Global R = 0.786; p = 0.001).

Regarding the bacterial community, the ANOSIM-test

demonstrated a clear separation among the sites (Coastal

compartment: Global R = 0.967; p = 0,001). However, some
A B D

E F G

C

FIGURE 3

Characterization of the physico-chemical environment of the soil profiles from the three studied seagrass meadows: pH (A), Eh (B), total organic
carbon contents, TOC (C), total nitrogen contents, TN (D), C:N ratio (E), concentration of acid volatile sulfides, AVS (F) and Fe associated with AVS
fraction, AVS-Fe (G).
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profile overlap was found regarding the soil depth (Global R = 0.58;

p = 0.001), indicating some similarity among the bacterial group

sampled in distinct soil depths.

According to the redundancy analysis, the soils from SC archaea

communities were positively associated with TOC, FeT, TN, DOP,

and clay, whereas the GC were associated with FeOXIDES and sand

(Figure 6A). The upper horizons of the QC archaea communities
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were positively associated with higher Eh and pH, whereas the

intermediate and deeper soil layers were negatively associated with

FeOXIDES (Figure 6A). The intermediate and deeper soil layers from

GC were, comparatively, more associated with the deeper layers

from SC soils. The GC bacterial communities were positively

associated with FeOXIDES, whereas QC communities were

negatively associated with FeOXIDES (Figure 6B). The SC
FIGURE 4

Solid-phase fractionation of Fe for the soils at the SC, GC, and QC coasts. The stacked bars indicate de fractions of soluble and exchangeable Fe
(FeEX), Fe bounded to carbonates (FeCA), Fe associated with ferrihydrite (FeFR), Fe associated with lepidocrocite (FeLP), Fe associated with crystalline
Fe oxyhydroxides (FeCR), and the Fe associated with pyrite (FePY). The interconnected white circles indicate the degree of Fe pyritization (DOP).
FIGURE 5

Discriminant analysis results of seagrass meadows’ soils variables in the three studied geo-environment (i.e., SC, GC, and QC) along the Brazilian coast.
TOC, Total organic carbon contents; TN, total nitrogen contents; AVS, acid volatile sulfides; AVS-Fe, Fe associated with AVS fraction; FeEX, soluble and
exchangeable Fe; FeCA, Fe bounded to carbonates; FeFR, Fe associated with ferrihydrite; FeLP, Fe associated with lepidocrocite; FeCR, Fe associated
with crystalline Fe oxyhydroxides; FePY, Fe associated with pyrite; FeOXIDES, the sum of FeFR; FeLP; and FeCR; and DOP, degree of Fe pyritization.
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communities were positively associated with TOC, TN, FeT, DOP,

and clay and negatively associated with Eh and pH (Figure 6B).

4 Discussion

4.1 Physicochemical diversity of seagrass
meadows and its effects on soil
biogeochemical processes

Diverse studies have shown that soils of coastal wetlands (e.g.,

mangroves, salt marshes, and hypersaline tidal flats) can be very

dynamic and spatially variable, resulting from an interaction

between biotic (e.g., plant species and bioturbation; Araújo Júnior

et al., 2012; Cabral et al., 2020), and abiotic factors (i.e.,

physiographic position, flooding frequency, geological bedrocks,

and climate; Seybold et al., 2002; Du Laing et al., 2009; Albuquerque

et al., 2014; Ferronato et al., 2016; Ferreira et al., 2022).
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Our findings indicate that the distinct geo-environments and

observed vegetation characteristics (e.g., plant biomass, density, and

species) resulted in differentiated soil physico-chemical conditions

at the studied sites (Figures 2 and 3; Table 1). Overall, the

predominance of sand in the three studied sites reflects a high

hydrodynamics energy which influences the particle size

distribution in the studied sites. A more energetic hydrodynamic

condition favours fine particle transportation and coarse particle

accumulation (Flemming, 2000; Pejrup, 1988). Accordingly, it can

be stated that a more energetic condition was recorded for soils

from GC, where the seagrass meadows were in a beach area with

coarse soil textures, and from estuarine soils at SC. Conversely, QC

seagrass meadows are located in a closed estuary, i.e., a choked

lagoon (Figure 1; Toldo Jr. et al., 2000; Lanari and Copertino, 2017),

and thus present characteristics of a slightly lower energetic

environment according to Flemming (2000) (i.e., higher contents

of fine particles such as silt and clay; Figure 2; Table 1).
TABLE 2 Permanova analysis of the in a Monte Carlo test arrangement with 999 permutations, under a p-value MC< 0.05.

Factors
Permanova table

df F test Permutations p-value (MC)

Archaea

Study Sites (SS) 2 15.657 999 0.001

Soil Depth (SD) 3 4.395 997 0.002

ES x SD 3 6.294 999 0.001

Bacteria

Study Sites (SS) 2 8.097 997 0.001

Soil Depth (SD) 3 3.519 998 0.001

SS x SD 3 3.745 999 0.001
The results evaluated the significance of the role of each factor and its combinations on the variation of the microbial community structure.
A B

FIGURE 6

Results of redundancy detrended analysis regarding the environmental factors correlated to (A) archaea and (B) bacteria distribution and depth.
TOC: Total organic carbon contents, TN: total nitrogen contents, FeOXIDES: the sum of FeFR, FeLP, and FeCR, FeT: pseudo total Fe, and DOP: degree
of Fe pyritization.
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On the other hand, SC soils present finer soil texture (mean clay

content: 14.1 ± 2.3%; Table 1), mainly at the soil surface, compared

to GC soils. These characteristics can be attributed to the increased

plant biomass within the meadow in SC, which has developed over

coarser soils (Figure 1), which attenuates the effects of turbulence

and wave action, promoting sedimentation of finer suspended

particles and decreasing its resuspension in the upper soil layers

(Gacia et al., 1999; Ondiviela et al., 2014). On the other hand,

specifically for the QC samples, the higher sand contents on the

upper soil layers (down to 10 cm depth) may result from a recently

enhanced erosive event that may have delivered coarse particles to

the lagoon (Toldo Jr. et al., 2000).

The contrasting geo-environments reflect significantly distinct

redox conditions (Figure 3). For example, at the SC coast, anoxic

conditions (Eh< +100 mV; Otero et al., 2009) were predominant,

whereas sub-oxic conditions (+100 mV< Eh< +350 mV; Otero et al.,

2009) predominate at GC and QC, despite anoxic conditions

recorded at deeper layers (deeper than 30 cm) of the QC

(Figure 3). Furthermore, despite the SC and GC seagrass

meadows presenting similar plant species (H. wrightii; Figure 1),

the redox conditions recorded for the GC were closely related to the
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QC (vegetated by Ruppia maritima; Figure 3). This fact highlights

that seagrass plant species do not solely drive redox conditions,

since same plant species may present distinct redox conditions.

Additionally, compared to seagrass meadows from other sites

(Table 3), the redox potentials at GC and QC were consistently

higher, indicating the importance of abiotic factors (e.g., particle

size distribution, hydrodynamic) for seagrass meadows’

soils characteristics.

In this sense, the different plant biomass among sites (Figure 1)

and the potentially higher input of labile organic matter from the

surrounding mangroves and seagrass meadows in the SC soil

produced lower Eh values. This explanation corroborates the

opposite association observed in the discriminant analysis

(Figure 5) and the significant negative correlation between TOC

and Eh (Figure 7A). As labile organic matter is produced, exuded, or

trapped by seagrasses vegetation, there is an intensification of the

microbial respiration processes (Kaldy, 2012; Barrón et al., 2014),

depleting the dissolved oxygen concentrations, leading to the

consumption of other electron acceptors substituting O2 and

resulting in lower Eh values (Canfield et al., 1993; Miller

et al., 2007).
TABLE 3 Physicochemical (Eh and pH), sand, and total organic carbon (TOC) contents quantified for different seagrass meadows around the globe.

Site Seagrass specie Eh pH Sand TOC Reference

(mV) (%)

Global data 2.5 ± 0.1 Fourqurean et al., 2012

Moreton Bay, Australia Zostera muelleri* and others
100 ± 0 0.1 ± 0.1 Samper-Villarreal et al.,

201691 ± 6 0.5 ± 0.4

Rhode Island, USA Z. marina
7.3 to
8.5

14 to
97

0.2-30 Bradley and Stolt, 2003

Cockburn Sound, Western Australia Posidonia sinuosa 0.4 - 1.3 Serrano et al., 2015

Port Curtis, Australia Z. muelleri 1.5 - 2.0

Ricart et al., 2015

Slipshavn, Nyborg Fjord, Danish Baltic Z. marina
0.2 ± 0.1

2.1 ± 0.1

Sint Annaland, Eastern Scheld, The
Netherland

Z. marina 0.7 ± 0.1

Arcachon Bay, France
Z. marina 0.3 ± 0.01

Z. noltii 1.8 ± 0.3

Palk Bay, India -52 to +56
7.2 to
8.2

39-90 Thangaradjou et al., 2015

Awerange Bay, Indonesia
Halodule uninervis* and

others
-300 to 0

6.4 to
7.2

1.2 ± 0.1
to

4.3 ± 0.8
Alongi et al., 2008

Leschenault Estuary, Western Australia

Ruppia megacarpa -120 to +49
54 to
62

3.8 to 4.9

Kilminster, 2013

Halophila ovalis +40 to +70
42 to
61

2.5 to 3.7

Fangan bay, Australia Z. muelleri
72 to
93

1.7 ± 0.8 Macreadie et al., 2014

Blanes Bay, Spain
−74 to
+396

Marbà and Duarte, 2001
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On the other hand, it must be considered the role of seagrass

plants diffusing photosynthetic-generated O2 to protect the basal

meristem from the damages arising from sulfides (Brodersen et al.,

2015). This fact would explain the higher Eh values found in the

uppermost soil layers from the GC and QC (Figure 3B). These roots

have an oxidative effect resulting from an effective photosynthetic

system (Olsen et al., 2016), and its well-developed aerenchyma

enables rapid gas diffusion to roots, rhizomes, basal meristem, and

soil (Koren et al., 2015). However, the oxidation of the seagrass

rhizosphere can be diminished by an intense soil microbial

metabolism, which rapidly consumes the diffused oxygen. As

extensive mangrove forest borders the seagrass meadows at the

SC sampling site, an intensification of the labile organic matter

input (dissolved and particulate; Bouillon et al., 2007; Maher et al.,

2013), stimulating microbial respiration, may have prevented the

establishment of sub-oxic and oxic conditions at the upper-most

soil layers as occurred at GC and QC coasts (Figure 3B).

The circumneutral pH values recorded for the studied sites

(Figure 3A) are also related to the reductive processes of Fe and

sulfate reduction in these soils. Both geochemical processes

consume H+ or produce alkalinity (Equation 1 and 2; Otero et al.,

2009). Conversely, the lower pH values at the upper layers of SC (0-

10 cm depth) may result from intense rhizospheric activity since the

higher roots’ density may result in higher organic acid exudation to

increase nutrients bioavailability, especially phosphorus (Long et al.,

2008).

4FeOOH + CH2O + 7H+ → 4Fe2+ + HCO3− +6H2O (1)
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SO  2−
4 + 2CH2O → HS− + H+ + 2HCO3− (2)

The soils’ organic C and N contents were significantly higher on

the SC, presumably derived from the higher plant biomass and the

input from surrounding mangroves (Figure 1). The higher C:N ratio

recorded for the SC coast (Figure 3) supports a hypothesis for C

inputs from mangrove forests bordering the seagrass (Kennedy

et al., 2010; Garcias-Bonet et al., 2019). Furthermore, there is a

significant correlation between TOC and TN for all studied sites

(Figure 7B), also represented by the strong association of the TOC

and TN by the discriminant analysis results (Figure 5).

This association indicates that the soil organic matter is the

source of N in these areas and is possibly attributed to the N fixation

and assimilation processes promoted by sulfate-reducing bacteria

(Welsh, 2000; Mohr et al., 2021). Additionally, the higher TOC

content in the SC results from the less energetic metabolic pathway,

corroborated by the lower Eh recorded in this site (Figure 3B). Thus,

the intensity of anaerobic microbial metabolism associated with

primary productivity may vary and is responsible for the C

accumulation in seagrass meadow soils. In this case, the lower

metabolic yield (e.g., SC) promotes soil organic matter

accumulation, generally with low humification and unsaturation

degree but enriched in H, N, and alcoholic and methoxyl groups

(Neue et al., 1997; Kristensen et al., 2008).

Compared to seagrass meadows located in other parts of the

world, the TOC contents were lower than the global average

(average: 2.5%, median 1.8%; Fourqurean et al., 2012; Armitage

and Fourqurean, 2016) but comparable to other sites around the
A B
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FIGURE 7

Spearman’s correlations between (A) TOC and Eh, (B) and TN, and between (C) DOP and FeFR, and (D) FeLP.
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globe (Table 3). However, a marked variability was observed

between the studied sites, probably associated with the interaction

of multiple environmental factors (e.g., seagrass species, landscape

configuration, and soil redox conditions; Ricart et al., 2015; Ricart

et al., 2020). However, our study evidence that geo-environmental

factors controlling microbial metabolisms may be more relevant for

C accumulation than plant species since the meadows formed by

the same species present significant TOC contents (e.g., SC and

GC). Additionally, TOC contents were a significant variable for

differentiating microbial communities among studied sites

(Figure 7). Thus, more studies must be conducted to improve

comprehension of the spatial variability of seagrass meadows,

improving the accuracy of the C stored in these ecosystems

(Ricart et al., 2020), and how the effects of organic C control

microbial communities.
4.2 Fe and S dynamic and metabolic
pathways

Despite the differentiated geological setting of the studied sites,

with the influence of granitic-gneiss rocks at the GC (Valeriano

et al., 2016) and the predominance of quaternary sandy deposits at

the SC and QC (Toldo Jr. et al., 2000; Vilas Bôas et al., 2001), the FeT
contents did not differ statistically (Table 1). However, the Fe

fractionating presented significant differences among the sites.

Accordingly, the intensity of Fe and S metabolic pathways

contrasted among the studied sites.

The seagrass meadow located at the SC differed from other sites

by the significantly higher DOP values, which remained above 60%

(Figure 4). Under the anoxic conditions at the SC (Table 1),

microbiologically mediated Fe3+ reduction decreased Fe

oxyhydroxide contents while increasing the soluble Fe2+ and Fe

associated with sulfides (e.g., pyrite). On the other hand, at GC, the

higher Eh values indicate an unfavourable environment for Fe

reduction (i.e., oxic conditions) and the maintenance of Fe in

oxyhydroxide forms (Figure 4). In such environments with redox

oscillations between suboxic to oxic and circumneutral pH

conditions (e.g., GC; Table 1), soluble Fe2+ is oxidized to Fe3+ and

precipitated as oxyhydroxides (Ferreira et al., 2021; Ferreira et al.,

2022) For the QC, fairly high DOP values occurred (>60%,

especially at soil layers deeper than 10 cm; Figure 4) despite the

high redox potentials (suboxic environment). In this case, the

presence of pyrite could result from former (or transient)

environmental conditions favourable to pyrite formation (Ferreira

et al., 2015). Remnant pyrites may be protected by Fe oxyhydroxide

coatings, preventing complete pyrite oxidation (Huminicki and

Rimstidt, 2009). Furthermore, the presence of poorly crystalline

Fe oxyhydroxides, especially FeLP, at the upper layers of GC and QC

could be considered a result of the oxidation of sulfides by the

rhizosphere (Azzoni et al., 2001; Brodersen et al., 2015) since

lepidocrocite is the main product of Fe oxidation in saline

environments (Equation 3; Otero et al., 2009).
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FeS2 + 3:5O2 + H2O → FeðOHÞ3 + 2SO  2−
4 + 4H+ (3)

The higher content of crystalline Fe oxyhydroxides (i.e., FeCR) at

the GC could also explain the lower DOP registered at this site since

crystalline Fe forms are less prone to reduction due to their

mineralogical features such as lower surface area, reactivity, and

crystal structure (i.e., rhombohedral and hexagonal or irregular

plates) when compared to poorly crystalline Fe oxyhydroxides

(Cornell and Schwertmann, 2003). Conversely, the higher

susceptibility of poorly crystalline Fe oxyhydroxides to microbial

Fe reduction could also explain the negative correlation between

DOP vs. FeFR and vs. FeLP (Figures 5, 7C, D).

Moreover, the AVS and AVS-Fe contents also varied among the

studied geo-environments (Figures 3F, G), corroborating its effects

on Fe and S dynamics. These fractions correspond to a complex

mixture of aqueous H2S and its dissociated form, Fe-S complexes,

polysulfides, and solid-phase mackinawite and greigite (Rickard

et al., 2017), with significant ecological importance once it may

control trace metals dynamics and bioavailability (MaChado et al.,

2010). Thus, the higher AVS content in the GC compared to SC and

QC reinforces the different intensities of Fe and S metabolic

pathways among the studied sites. Furthermore, due to its

phytotoxicity, high sulfide production has been associated with

declining seagrass meadows(Holmer et al., 2005). Accordingly, the

higher AVS content at the GC, especially on surface soil layers, may

be related to the lower plant density at this site (Figure 1), especially

compared to the SC vegetated by the same plant species, since lower

plant density and lower organic C content prevents Fe

oxyhydroxides reduction (and lower DOP).

Regarding microbial communities, we observed a positive

correlation with higher FeOXIDES and sand contents, higher Eh

values, and negatively correlated with TOC at GC site (Figure 7).

This fact indicates that the low plant density and high Fe inputs

from the Fe-rich geological surroundings affected the microbial

structure. A recent study has reported that forming distinct Fe-

cycling bacterial genera (e.g., Lewinella and Woeseia) communities

in seagrass meadows positively correlates with greater Fe contents

in its soils (Martin et al., 2022). On the other hand, previous studies

have reported that sandy sediments (e.g., GC) with high sulfide

production favour the dominance of archaea communities (Llobet-

Brossa et al., 2002; Buhring et al., 2005). Specifically, high sulfide

production increases genes related to sulfate reduction in a

Posidonia spp. ecosystem (Fraser et al., 2023).

The higher plant cover in SC possibly changes microbial activity

in the seagrass rhizosphere (Jankowska et al., 2015) since we

observed a clear cluster in microbial communities, mainly driven

by clay content, TOC, TN, and DOP (Figure 6). Accordingly,

previous studies have reported that gross primary production in

tropical seagrass bacteria communities increases the amount of C

available for sulfate-reducing bacteria metabolism (Pollard and

Moriarty, 1991; Williams et al., 2009). Moreover, Zhang et al.

(2022) revealed that higher clay contents play an important role

in seagrass soil biogeochemistry. For example, these authors

reported that seagrass soils with a predominance of fine particles
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have a higher capacity for root exudate retention, increasing its

concentration around the roots and enhancing the abundance of

sulfate-reducing bacteria (see DOP values in Table 1). Interestingly,

in a Thalassia hemprichii system it was demonstrated that induced

carbon addition changed the bacterial community, mainly those

functional groups related to N cycle (Zhang et al., 2021). A higher

TOC content in SC could increase N uptake and, consequently,

boost photosynthetic performance of seagrass and modified

rhizosphere microbial communities.

Changes in seagrass microbial communities seem to be context-

dependent since microbial groups changed according to

geographical location. More importantly, the same plant species

(H. wrightii. at SC and GC) shapes different microbial communities

in the soil (Figure 6). Thus, probably seagrass microbial

communities change according to plant type, but microbial

rhizosphere core strongly depends on soil geochemical properties

(Cúcio et al., 2016). For example, Vogel et al. (2021) demonstrated

that the main drivers of microbial community structure in Thalassia

testudinum seagrass were local geo-environmental conditions.

Therefore, our findings reveal that seagrass meadows soils at

contrasting geo-environments (e.g., climate, geology, and plant

species and cover) present different intensities of Fe and sulfate

reduction, ultimately shaping different microbiological

communities. More importantly, we provide evidence that

bacteria and archaea communities responded similarly to geo-

environmental conditions, indicating that both could be equally

important to microbial activity and nutrient cycling in seagrass

ecosystems. These results shed light on the knowledge gap about the

intensities of geochemical processes involving Fe and S dynamic

and metabolic pathways in seagrass meadows’ soils.
5 Conclusions

In this study, we identify that seagrass meadows are a

heterogeneous ecosystem in which the variability of soil

composition affects the intensities of geochemical processes due

to distinct geo-environments (e.g., climate, geology, salinity, plant

species and coverage, and anthropic influence). For example, in

soils under higher plant cover that enhances the C contents and

geology that favors higher Fe contents, there are higher contents of

fine particles (e.g., clay), an abundance of sulfate-reducing bacteria,

and microbial-mediated processes involving Fe and S. This

environment favors metabolic pathways with low oxidation rates

(e.g., sulfate reduction), Fe sulfides formation, and ultimately, high-

capacity C sequestration. On the other hand, in seagrass meadow

soils with higher contents of sand and low plant density, a more

oxidizing environment is established that favors Fe oxyhydroxides

and AVS formation. This contrasting environment presents a lower

capacity for organic C accumulation and contaminants

immobilization. In addition, the differentiated geo-environmental
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conditions markedly influenced microbial communities, even when

vegetated with the same plant species. Our findings revealed novel

insights into the heterogeneity of seagrass meadow soils and a better

understanding of the biogeochemical processes inherent to

these ecosystems.
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Ferreira, T. O., Queiroz, H. M., Nóbrega, G. N., de Souza Júnior, V. S., Barcellos, D.,
Ferreira, A. D., et al. (2022). Litho-climatic characteristics and its control over
mangrove soil geochemistry: A macro-scale approach. Sci. Total Environ. 811,
152152. doi: 10.1016/j.scitotenv.2021.152152

Ferronato, C., Falsone, G., Natale, M., Zannoni, D., Buscaroli, A., Vianello, G., et al.
(2016). Chemical and pedological features of subaqueous and hydromorphic soils along
a hydrosequence within a coastal system (San Vitale Park, Northern Italy). Geoderma
265, 141–151. doi: 10.1016/j.geoderma.2015.11.018

Flemming, B. (2000). A revised textural classification of gravel-free muddy sediments
on the basis of ternary diagrams. Cont. Shelf Res. 20, 1125–1137. doi: 10.1016/S0278-
4343(00)00015-7

Fortin, D., Leppard, G. G., and Tessier, A. (1993). Characteristics of lacustrine
diagenetic iron oxyhydroxides. Geochim. Cosmochim. Acta 57, 4391–4404.
doi: 10.1016/0016-7037(93)90490-N

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A.,
et al. (2012). Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5,
505–509. doi: 10.1038/ngeo1477

Fraser, M. W., Martin, B. C., Wong, H. L., Burns, B. P., and Kendrick, G. A. (2023).
Sulfide intrusion in a habitat forming seagrass can be predicted from relative
abundance of sulfur cycling genes in sediments. Sci. Total Environ. 864, 161144.
doi: 10.1016/j.scitotenv.2022.161144

Gacia, E., Granata, T., and Duarte, C. (1999). An approach to measurement of
particle flux and sediment retention within seagrass (Posidonia oceanica) meadows.
Aquat. Bot. 65, 255–268. doi: 10.1016/S0304-3770(99)00044-3

Garcias-Bonet, N., Delgado-Huertas, A., Carrillo-de-Albornoz, P., Anton, A.,
Almahasheer, H., Marbà, N., et al. (2019). Carbon and nitrogen concentrations,
stocks, and isotopic compositions in red sea seagrass and mangrove sediments.
Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00267

Gee, G. W., and Bauder, J. W. (1986). Particle-size analysis.Methods Soil Anal. Part 1
—Physical Mineral. Methods 1, 383–411. doi: 10.2136/sssabookser5.1.2ed.c15

Gorman, D., Sumida, P. Y. G., Figueira, R. C. L., and Turra, A. (2020). Improving soil
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