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Temporal dynamics of
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oyster farming area of the Yellow
Sea in China via metabarcoding
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Introduction: The coastal ecosystem is a hub of both marine organisms and

human activities. It plays a crucial role in human food production and affects

facilities through biofouling. Long-read amplicon sequencing provides more

accurate species identification and demonstrates numerous advantages in

community diversity studies, making it an effective tool for ecological

monitoring.

Methods: To investigate the zooplankton community characteristics in the

oyster aquaculture area, the composition and temporal dynamics of

zooplankton near Longwan Bay, Qingdao, China, were determined by the 18S

rRNA gene long reads sequencing technique.

Results: A total of 89 zooplankton species were identified, among which

copepods were the most abundant. Zooplankton composition and

proportional abundances showed significant seasonal variations. The species

richness in summer was the highest, while the species abundance in spring was

the highest. Oyster farming showed weak influence on the zooplankton

community variation. Paracalanus parvus abundance was higher in most

assayed months. Chthamalus stellatus showed a strong temporal preference,

with the highest percentage in May. Sea water temperature and species-species

interactions were revealed to be the main contributors to the shifts in the

community composition.

Discussion: The ubiquitous positive correlation between zooplankton suggests

that species interactions are important in adaptation to the changing

environment. The results reveal the seasonal occurrence of several major

biofouling organisms and help improve biofouling management efficiency.

KEYWORDS

mariculture, Crassostrea gigas, copepod, metabarcoding, temporal dynamic,
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Introduction

Zooplankton functions as a bridge between producers and

consumers. The changes in the zooplankton abundance affect

primary and higher-order productivity in the oceans (Hernández-

MIranda et al., 2022). The study of zooplankton composition is of

great value to support research on ecosystem dynamics (Shi et al.,

2020) and biofouling management. Many zooplankton species have

short life cycles, and their richness and distribution are greatly

affected by environmental factors. Community structure can serve

as an indicator of local ecological conditions and environmental

health and provide basic data for ecosystem detection (Pearson,

1978; Zhao et al., 2022). Oysters are the predominantly cultured

species in China, potentially changing the composition of

zooplanktonic and biofouling organisms around the oyster farm

(Das et al., 2012). However, the structure and dynamic patterns of

the zooplankton community in the oyster farm are poorly studied.

DNA barcoding technology has become increasingly important

in ecological research (Valentini et al., 2009; Mugnai et al., 2021).

Compared with traditional methods, it has the advantages of fast

identification and high accuracy (Savolainen et al., 2005). The 18S

rRNA gene includes conserved and highly variable regions, which

can reflect genetic relationships among species and show the

differences between species. It has been successfully applied in

many studies: the discovery of new species (Kakui and Munakata,

2022; Kumar et al., 2022), the assessment of marine biological

diversity (Liu et al., 2020), community characteristics and

environmental correlation analysis (Liu et al., 2022). This study

analyzed the species richness, diversity, and temporal dynamics of

zooplankton in an oyster farm area using the third-generation

sequencing-based DNA barcoding technique. The correlation

analysis indicated significant interactions between zooplankton

species and provided a basis for in-depth research on the

interactions between human activities and marine ecosystems.
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Materials and methods

Sampling sites and sample collection

The study was carried out from May 2020 to May 2021 in the

Pacific oyster farm located in Longwan Bay, the northern part of the

Yellow Sea (Figure 1A). A total of 33 monthly zooplankton samples

were collected from three sites by a shallow water type- II plankton

net (∼50 mmmesh size) at a depth of ~1 m where the Pacific oysters

were cultured. Samples were fixed in 70% ethanol at 4°C for further

processing. Water temperature, salinity, pH, and dissolved oxygen

(DO) were measured in situ with a multi-parameter portable meter

(Multi 3630 IDS, Germany).
Genomic DNA extraction,
PCR amplification and high-
throughput sequencing

Samples were pretreated by centrifugation at 5000 ×g, and the

pellets were washed twice with PBS. The total genomic DNA was

then extracted using the Tissue DNA Kit (Omega, USA) according

to the manufacturer’s protocol. DNA quality and quantity were

examined by 1% agarose gel electrophoresis and NanoDrop 2000

(Thermo Fisher Scientific, USA). The 18S rRNA genes were

amplified using universal primers: the forward primer 5’-

AACCTGGTTGATCCTGCCAGT-3’, and the reverse primer 5

‘-GATCCTTCTGCAGGTTCACCTAC-3’ (Bradley et al., 2016).

The specific steps of PCR are as below: one cycle of denaturation

at 95°C for 4 min, 32 cycles of amplification (95°C for 1 min, 65°C

for 2 min, at 72°C for 2 min), and one cycle of extension at 72°C for

10 min. The products were confirmed by 1% agarose gel

electrophoresis and purified by the Qiagen Gel Extraction Kit

(Qiagen, Germany). The high-throughput sequencing of 18S
B
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FIGURE 1

Zooplankton richness and relative abundances. (A) Locations of 3 sampling sites (point A, point B and C) in the aquaculture area. (B, C) Operational
taxonomic units (OTUs) richness and reads numbers of zooplankton phyla and classes. The pie chart represents richness. The bar chart represents
abundance (the number of reads). (D) Reads number and the percentage distribution of reads per month changes for Top30 species (ranking based
on reads number).
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rRNA gene was conducted on the PacBio Sequel platform by the

BioMarker Technologies Company (Beijing, China).
Data analysis

Raw sequences were firstly trimmed to remove the adapters and

primers using Cutadapt v2.7 (Martin, 2011) and filtered by LImA

v1.7.0 (https://lima.how/) and UCHIME v4.2 (Edgar, 2016) to

eliminate most of the low-quality data. All low-quality sequences

or unassembled sequences, including chimeric sequences, fuzzy

sequences, short sequences (<1200 bp), long sequences (> 2000

bp), and non-specific amplifications, were eliminated for further

analysis (Chen et al., 2022). The sequences were clustered into

Operational Taxonomic Units (OTUs) based on 97% similarity by

using the USEARCH (version 10.0) (Edgar, 2010; Edgar, 2013).

Species annotation was mainly conducted in two steps: The feature

sequences of OTUs gained by Blast in the QIIME2 software package

(Bolyen et al., 2019) were aligned to the SILVA_138 reference

database, and then supplementary annotations were obtained with

Feature-classifier Classify-sklearn at the confidence threshold of

70% in the QIIME2 software package.

The richness and abundance of species were calculated to reflect

the composition characterization of zooplankton communities.

Spearman correlations between zooplankton at the phylum or

class levels and environmental factors were analyzed by the R

package Corrplot (Wei et al., 2021). Correlations between

zooplankton OTUs and environmental factors were analyzed and

visualized by the R packages Psych (Revelle, 2017) and ggplot2

(Wickham, 2016) respectively. Correlations between zooplankton

from phyla to OTU levels were analyzed by R Package Psych and

visualized using R Package Circlize (Gu et al., 2014) and ggplot2.
Results

Annual composition of the
zooplankton community

A total of 369,875 circular consensus sequences (CCSs) were

obtained through PacBio Sequel sequencing, of which 344,712 were

retained after quality filtering. After cluster analysis by Usearch, 179

OTUs were obtained by filtering with a threshold of 0.005%. Twelve

OTUs were annotated at the kingdom level, while others were

annotated to the phylum level or below the phylum levels:

Arthropoda (35 OTUs, 92.21%), Chordata (5 OTUs, 3.34%),

Mollusca (16 OTUs, 2.22%), Cnidaria (8 OTUs, 0.77%),

Ciliophora (6 OTUs, 0.72%), Annelida (14 OTUs, 0.31%),

Bryozoa (2 OTUs, 0.12%), Chaetognatha (1 OTU, 0.093%),

Echinodermata (1 OTU, 0.079%), Cercozoa (1 OTU, 0.067%),

Endomyxa (1 OTU, 0.036%), Platyhelminthes (4 OTUs, 0.032%),

Phoronida (1 OTU, 0.007%), Ctenophora (1 OTU, 0.003%), and

Porifera (1 OTU, 0.002%) (Figure 1B). The top five zooplankton

classes included Copepoda (29 OTUs, 74.76%), Thecostraca (3

OTUs, 17.41%), Appendicularia (1 OTU, 3.14%), Bivalvia (9

OTUs, 1.92%), and Hydrozoa (5 OTUs, 0.74%) (Figure 1C).
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A total of 93 OTUs were annotated at the genera and species

level, including 86 genera and 89 species. Most genera contain only

one species, except for Centropages (3 species), Oithona (2 species)

and Ciona (2 species). The Paracalanus parvus, Chthamalus

stellatus, and Centropages abdominalis were the top 3 species with

extremely high abundance (Figure 1D).
Variations of zooplankton abundance
and richness

The species richness (species-level OTU numbers) and relative

abundance (total reads of species-level OTUs) analysis of

zooplankton samples from May 2020 to May 2021 revealed

obvious temporal dynamics (Figure 2). The ANOSIM and NMDS

analysis results indicated that samples from the same season were

clustered together, and samples in autumn, winter, and spring had

overlap, summer samples were independent of other seasons

(Figure 2A). The highest richness value appeared in September,

while the relative abundance showed the highest in March. Species

richness in summer and autumn is much higher than that in spring

and winter. Many species exhibit strong temporal dynamics with a

seasonal preference, while others are evenly distributed throughout

each month. For example, the arthropod C. stellatus mainly

presented in May, while Paracalanus parvus was detected in each

month with little difference in proportion (Figure 2B).

With copepods being the dominant species, the species richness

of Arthropoda is consistently the highest throughout the year.

However, molluscan richness was mainly dominated by Bivalvia

and Gastropoda, and showed significant seasonal patterns (high

abundance in summer) (Figure 2C). Changes in the abundance of

zooplankton communities also showed temporal variations. Among

all detected OTUs, the relative abundance of Arthropoda was the

highest throughout the year (>83%) (Figure 2D), with Copepoda

being the most dominant Arthropoda taxon.
Impact of the environmental parameters
and taxa interactions

The annual changes in the seawater temperatures showed an

opposite pattern with the DO (Figure 3A), while the salinity

(29~31.2) and pH (7.9~8.4) were relatively stable (Figure 3B). The

highest temperature was recorded in August, with an average value of

28.2˚C. An abnormally high DO value was recorded during the

August sampling, while a low salinity was also recorded. It was

suspected to be caused by river flow or windy weather. The canonical

correlation analysis (Kordas et al.) indicated that temperature, DO,

and salinity significantly influenced the composition of zooplankton

communities, in which, the temperature exerts a dominant influence

(Figure 3C). Further correlation analysis with the spearman method

on the class-level taxa and environmental factors indicated that the

abundance of 48 taxa had significant correlations with environmental

factors (50 negatives and 43 positives) (Figure 3D). The abundances

of different taxa showed different relationships with the

environmental parameters. For example, the Acantharea showed an
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extremely significant (p<0.01) correlation between salinity and

temperature, while the Gastropoda abundance was significantly

affected by dissolved oxygen and temperature (p<0.01).

Gymnolaemata also showed an extremely significant correlation

with salinity (p<0.01) besides a significant correlation with

temperature (p<0.05) (Figure 3E).
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Correlation analysis among 12 phyla indicated significant taxa

interactions. The correlation between Mollusca and Annelida was

extremely significant (p<0.01), while Ctenophora, Endomyxa and

Phoronida had a significant positive correlation (p<0.05)

(Figure 4A). Significant correlations were also identified among

14 classes. Except for the negative correlation between Spirotrichea
B

C D

E F

A

FIGURE 2

Temporal dynamics for zooplankton community. (A) NMDS and ADONIS analysis for the zooplankton community, demonstrated the differences in
zooplankton composition in different seasons. (B) The number of reads in each month is used as a whole to show the proportion of each species in
each month, the legend only shows the species with the largest proportion in each month. (C, D) Relative abundance and richness of top 5 phyla,
two charts use the same legend. (E, F) Relative abundance and richness of top 10 class, two charts use the same legend.
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FIGURE 3

Annual changes in environmental factors and correlation analysis with zooplankton. (A, B) Variation of the environmental factors (Tem, DO, pH and
Sal) in the 13 months, take the numerical average of the three sample points. (C) Based on the scatterplot analyzed by CCA, A-M represents the
sample collection of different months, showing the similarity between samples in each month and the influence of environmental factors. (D) The
Edge Bundling plot based on spearman’s method shows the correlation between each environmental factor and phylum, which only shows a
significant correlation (p<0.05), |r| indicates the strength of the correlation, represented by the thickness of the line segment, and Degree represents
the number of environmental factors affecting OTU, represented by the size of the point. (E) Based on the sector chart of Spearman’s method,
whether the correlation between different classes and environmental factors is significant, red represents negative correlation, blue represents
positive correlation, ** represents p<0.01, * represents p<0.05.
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and Copepoda, the other pairs were positively correlated

(Figure 4B). Similarly, among the 898 OTU-level correlations, 868

were positively correlated, while only 30 were negatively correlated.
Dominant species in Longwan Bay and
seasonal variations

Copepods were the year-round dominant species in this study

except for May, when the barnacle C. stellatus boomed (Figure 2B).

A total of 21 Crustacea species from 18 genera were identified, with

the most abundant species from copepods Paracalanus and

Centropages (Figure 4C). The maximum abundance of

Centropages typicus was at the end of July, with the maximum

richness of Centropages abdominalis was observed in January and

April. Paracalanus parvus was the most abundant species in other

months (Figure 2B). Spearman correlation analysis indicated that

the abundances of Labidocera euchaeta, C. typicus, Canuella

perplexa, and Acartia pacifica were significantly correlated with

seawater temperature (p<0.01). The dominant genera Paracalanus,

Centropages, Calanus showed significant correlations with 29 OTUs

(Figure 4D). The abundance of C. gigas peaked in July, and showed

a significantly positive correlation with 16 OTUs (Figure 4E)
Discussion

The zooplankton community diversity

A total of 89 zooplankton species were identified with the highly

reliable 18S rRNA gene long reads sequencing, including the

dominant species P. parvus (OTU1 + 172), Oithona similis

(OTU7), C. abdominalis (OTU3), Ditrichocorycaeus anglicus

(OTU20), and C. typicus (OTU124 + 136). The distribution of
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these species was consistent with their temperature preference

(Hsieh and Chiu, 2004). The species number identified in this

study was higher than some other similar studies on aquaculture

areas (Guo et al., 2015), which may be a result of different local

hydrological conditions (Domıńguez et al., 2017) or species

identification techniques (Gao et al., 2020). Compared to the

traditional morphological identification, the metabarcoding

technique has a great advantage in the case of zooplankton larvae

or rare species, which leads to the discovery of a larger number of

species and facilitates subsequent differential studies (Ayala et al.,

2016; Yin et al., 2022). For example, Centropages hamatus and

Phyllodoce groenlandica were rarely reported in the studied sea area

by traditional morphological identification. However, Acartia

bifilosa and Calanus sinicus, the dominant species in the Yellow

Sea (Huo et al., 2012; Shi et al., 2020), were not identified in this

study. This should be the consequence of the incomplete database

which did not deposit the reference sequences of corresponding

species (Djurhuus et al., 2018). With the improvement of the

molecular marker database, the sequencing result can be re-

annotated, and more comprehensive survey results are

possibly revealed.

Copepoda is widespread (Cornils and Held, 2014) and one of

the most abundant marine organisms in many marine ecosystems

(Escribano and Hidalgo, 2000; Hwang et al., 2006). Copepods are

thus often used as indicator species for water monitoring (Hsieh

et al., 2005; Tseng et al., 2008; Shin et al., 2022). While early studies

of copepods are mainly on large copepods (Shimode et al., 2012;

Gong et al., 2013), the roles of small and medium-sized zooplankton

in marine ecosystems were gradually realized (Middelbo et al., 2019;

Tarrant, 2020). Many studies have been conducted on tiny

zooplankton species composition, community characteristics, and

life habits (Tiselius et al., 2013; Van and Park, 2016; Uttieri et al.,

2021). Paracalanus (4 OTUs identified in this study) and

Centropages (2 OTUs) are the most common small and medium-
B
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FIGURE 4

Interaction networks between zooplankton OTUs. (A, B) The Spearman method was used to analyze the correlation between zooplankton inside
(phylum and class). (C) Pie chart based on the reads number showing the quantitative composition of each species in the dominant class.
(D, E) Analysis of inter-species correlation based on OTU data shows the relationship between C. gigas and OTU, the most dominant species and OTU.
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sized copepods and are the main contributors to the richness of

copepods. They are dominant species in many ocean areas, such

as Helgoland, Germany and Maryland Coastal Bays, USA

(Oghenekaro et al., 2018; Hirche et al., 2019; Prusova and

Galagovets, 2022), as well as the Bohai, Yellow Sea, and East

China Sea (Wang et al., 2001; Wang et al., 2002). Previous studies

have shown that copepods’ abundance change dramatically impacts

the density and diversity of marine zooplankton (Michel and

Herring, 1984; Zakaria et al., 2016). Centropages are omnivorous

animals, usually preying on eggs and other copepods (Turner et al.,

1985; Slater and Hopcroft, 2005). They have been widely identified

in multiple sea areas (Dagg and Grill, 1980; Liang et al., 1994). The

aquaculture area provides extraordinary biomass and may provide

appropriate conditions for the growth and development

of Centropages.
Temporal dynamics of
zooplankton community

Tiny marine organisms are highly susceptible to environmental

factors and show significant seasonal variation (Zhang et al., 2019).

The abundance of P. parvus exhibited seasonal variations,

consistent with the observations from other areas of the China

Seas (Ke et al., 2001; Rong et al., 2002; Zheng et al., 2022). However,

the maximum abundance season of P. parvus varied among

different reports. The optimum temperature range for the growth

of P. parvus is 13-24°C (Zhang et al., 2006), which should be

responsible for the different peak occurrences for different sea areas.

The abundance of C. typicus in the Longwan Bay reached the

highest in summer, differing from the April boom in the southern

Mediterranean Sea (Halsband-Lenk et al., 2001). It should also be

caused by the local temperature of the corresponding seasons. At

the same time, the growth of C. abdominalis starts at 5°C, and the

optimal temperature is between 10-15°C (Slater and Hopcroft,

2005). It is also consistent with the seasonal distribution of its

abundance observed in this study.

Barnacles (Thecostraca) are one of the most common marine

biofouling crustaceans, with planktonic larvae and sessile adults

(Pérez-Losada et al., 2012). The abundance of Thecostraca was

mainly contributed by C. stellatus in this study. The interaction

between oysters and barnacles may impact their abundance and

distribution. They are all habited in the intertidal zone, forming

partial competition on the limited substrates, which will then lead to

a decrease in the population. However, barnacles and oysters

showed significant niche differences in this area. The barnacle

larvae occurrence (May) was earlier than oyster larvae (July).

Furthermore, barnacles adapt to longer dry exposure

environments and mainly distribute around high tide lines. The

high abundance of C. stellatus larvae in Longwan Bay indicated that

oyster farming did not adversely affect its living. The relative

abundance of other Mollusa peaks in March, May, and July,

mostly were Mytilus edulis, Musculus cupreus, and Hiatella

arctica. The molluscan abundance peaks in March and May were

mainly contributed by the larvae of mussel M. edulis, which is

consistent with its common spawning season (Nordsieck, 2006;
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Tyler-Walters, 2008). At the same time, the July molluscan

occurrence peak was mainly contributed by M. cupreus larvae.

The study results indicated a relatively low proportion of oyster

larvae in the collected zooplankton samples, even within the oyster

farm region. Oyster culture in Longwan Bay should have a limited

impact on the marine zooplankton community. It should also

benefit from the well-controlling aquaculture density in

Longwan Bay.
Effects of environmental factors and
species interactions

The diversity of species distribution in marine ecosystems is

affected by physicochemical and biological factors (Tittensor et al.,

2010), where temperature is the main controlling factor (Gillooly,

2000; Lewandowska et al., 2014; Yasuhara and Danovaro, 2016).

Temperature determines the general dissolved oxygen level and

affects the composition and species interactions of the zooplankton

community (Portner and Farrell, 2008; Kordas et al., 2011).

Temperature is also a fundamental determinant of organisms’ life

cycle. Too high or too low temperatures can be associated with a

high mortality rate (Heinle, 1969). Studies have suggested that

increasing temperature accelerates zooplankton metabolism and

sexual maturation and reduces zooplankton lifespan (Huang, 1985).

Adult survival and larval occurrence were also influenced by

changing ocean temperatures. The Pacific oyster C. gigas is one of

the main mariculture species in Longwan Bay, whose optimal water

temperature for growth is 15-25°C. According to our field

investigation, this bay is very close (~100 km) to the southern

distribution limit (around Lianyungang, Jiangsu Province) of C.

gigas. Severe summer mortality occurred in recent years, possibly

because of environmental changes caused by global warming. The

high temperature observed in August (~28°C) has exceeded the

optimal temperature range of the Pacific oyster and could cause

heat stress. Correspondingly, the development and maturity of

oyster gonads may also be influenced by environmental change.

The swimming larvae of C. gigas were mainly sampled at the end of

July, indicating a dominant mass spawning during July. The

newborn oyster spats will then face heat stress during August. If

global warming persists, the wild Pacific oyster population and

distribution limits may change in this area.

The composition of tiny zooplankton communities is also

driven by their biological activities, which are sensitive to

temperature and dissolved oxygen (Bērziņs ̌ and Pejler, 1989; Zhao

et al., 2020). In marine ecosystems, many animals (e.g. ctenophores)

feed on zooplankton and have a wide range of adaptations to DO.

However, the movement frequency of copepods is reduced in the

relatively low DO environment, which improves the predation rate

and thus affects the composition of the community (Mary Beth

et al., 2004). A previous study indicated that both the survival rate

and the reproduction of the copepod Acartia tona and Oithona

colcarva were inhibited at a low DO state (Roman et al., 1993).

Indirect and direct species interactions are widely present in

marine communities and play an important role in the formation

and maintenance of biodiversity (Sun, 2011). Zooplankton is crucial
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for the marine ecosystem as a hub in species interaction networks

(Greve, 1977), where Spirotrichea is significantly associated with

Copepoda. Spirotrichea is a microplankton which feeds on

photosynthetic algae and bacteria and then as the primary food

for copepods and young fish (Calbet and Saiz, 2005; Lima-Mendez

et al., 2015; Santoferrara et al., 2017). OTUs in Ascetosporea, the

parasitic protozoans infecting aquatic invertebrates (Bass et al.,

2019), were significantly correlated with OTUs in Tentaculata.

The species interactions revealed by this study indicated that food

chain and parasite-host relationships also play important roles in

stabilizing plankton communities.
Conclusion

The special and complex environment of the ocean is an

important driving force for the formation and evolution of marine

biodiversity. Human activities have created new challenges for

marine zooplanktons, which were driven to constantly evolve many

adaptive traits: morphological, behavioural, physiological traits and

reproductive patterns (Shen and Shi, 2002). Species living in the same

environmental pressure also exert selective pressure on each other to

form a relatively stable biome. The metabarcoding analyses of the

zooplankton community in this study not only lay the foundation for

the spatiotemporal dynamic mechanism of zooplankton in the

aquaculture area but also provide supporting evidence for further

understanding of the impact of human activities and global climate

change on biome composition. This study provides highly reliable 18s

full-length sequence data and reveals major planktonic organisms’

structure and seasonal dynamics in Longwan Bay. The results will be

helpful for further monitoring the planktonic community change and

improving biofouling management efficiency.
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