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In this study four experiments were conducted to investigate uncertainty in

future longshore sediment transport (LST) projections due to: working with

continuous time series of CSIRO CMIP6-driven waves (experiment #1) or

sliced time series of waves from CSIRO-CMIP6-Ws and CSIRO-CMIP5-Ws

(experiment #2); different wave-model-parametrization pairs to generate wave

projections (experiment #3); and the inclusion/exclusion of sea level rise (SLR)

for wave transformation (experiment #4). For each experiment, a weighted

ensemble consisting of offshore wave forcing conditions, a surrogate model

for nearshore wave transformation and eight LSTmodels was used. The results of

experiment # 1 indicated that the annual LST rates obtained from a continuous

time series of waves were influenced by climate variability acting on timescales of

20-30 years. Uncertainty decomposition clearly reveals that for near-future

coastal planning, a large part of the uncertainty arises from model selection

and natural variability of the system (e.g., on average, 4% scenario, 57% model,

and 39% internal variability). For the far future, the total uncertainty consists of

25% scenario, 54% model and 21% internal variability. Experiment #2 indicates

that CMIP6 driven wave climatology yield similar outcomes to CMIP5 driven

wave climatology in that LST rates decrease along the study area’s coast by less

than 10%. The results of experiment #3 indicate that intra- and inter-annual

variability of LST rates are influenced by the parameterization schemes of the

wave simulations. This can increase the range of uncertainty in the LST

projections and at the same time can limit the robustness of the projections.

The inclusion of SLR (experiment #4) in wave transformation, under SSP1-2.6

and SSP5-8.5 scenarios, yields only meagre changes in the LST projections,

compared to the case no SLR. However, it is noted that future research on SLR

influence should include potential changes in nearshore profile shapes.

KEYWORDS

uncertainty in LST projections, climate change, CMIP6 CSIRO wave projections,
ensemble modelling, coastal evolution
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1 Introduction

Along open sandy coasts, breaking waves and the resulting

alongshore currents drive longshore sediment transport (LST). LST

processes play a significant role on long-term (e.g., interannual to

decadal) coastal evolution of sandy coasts (Anderson et al., 2018;

Antolıńez et al., 2018). The success of coastal engineering and

management projects, such as beach nourishment (e.g., Stronkhorst

et al., 2018), port layout (OCDI, 2009), sand by-passing/back-

passing systems (e.g., Vieira da Silva et al., 2021), and integrated

shoreline management planning (Mangor et al., 2017), relies on the

accurate measurement and prediction of LST rates, longshore

gradients and cross-shore distribution. Generally, providing

reliable estimates of the sediment transport patterns is still a

challenge, as forcing conditions and sediment transport processes

through modelling frameworks are prone to intra and inter-model

uncertainties (i.e., arising from different models and/or different

settings) (D’Anna et al., 2020; Kroon et al., 2020; Chataigner et al.,

2022; Zarifsanayei et al., 2022a). Additionally, providing reliable

measurements of LST patterns for model calibration is quite

challenging (Cooper and Pilkey, 2007). It is important to note

that uncertainty growth in the hindcast of LST patterns is relatively

manageable through development of state-of-the-art strategies (e.g.,

better understanding of coastal processes, employing new

generation models, using extensive benchmark data, calibration,

etc.). However, narrowing uncertainty in the projection of LST

patterns (i.e., future patterns of LST) is more challenging (Vitousek

et al., 2021; Zarifsanayei et al., 2022b).

Long-term coastal management planning requires quantitative

and qualitative estimates of climate change impacts on sediment

transport and coastal evolution patterns (Ranasinghe, 2016; Toimil

et al., 2020; Toimil et al., 2021). In response to global warming,

future wind-wave forcing conditions can change, yielding

significant variations in the patterns of sediment transport

(Ruggiero et al., 2010; Sierra and Casas-Prat, 2014; Zarifsanayei

et al., 2020). The effect of global warming on the wind-wave climate

by the end of 21st century has been widely studied (e.g., Semedo

et al., 2012; Hemer et al., 2013; Hemer and Trenham, 2016; Camus

et al., 2017; Morim et al., 2019; Lemos et al., 2020a, Lemos et al.,

2020b; Lemos et al., 2021). However, the uncertainty ranges of the

projected wave climate patterns, presented by different global wave

modelling efforts (i.e., CMIP3-, CMIP5-, and CMIP6-forced wave

simulations) varies due to differences in assumed emission scenario

pathways [e.g., Assessment Reports (AR) 3, 5, and 6 from the

Intergovernmental Panel on Climate Change (IPCC), along

with the Special Report on Emissions Scenarios (SRES),

Representative Concentration Pathways (RCPs), and Shared

Socio-economic Pathways (SSPs)]. Uncertainty also arises due to

the implementation of different model combinations as models

evolve (i.e., Global Circulation Models (GCMs) and wave models)

under different physics/settings/resolutions. The release of new,

CMIP6-driven wave climate datasets allows for the investigation

of the SSPs emission scenarios, the role of spatio-temporal

resolutions of forcing conditions, as well as the impacts of

different wind-wave parametrizations within the wave models on

wave climate projections outputs (Kumar et al., 2022).
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Recently, the potential impact of climate change on wave-driven

LST patterns has been studied in different regions (e.g., central coast

of England, Zacharioudaki and Reeve, 2011; a stretch of coast in

Italy, Bonaldo et al., 2015; West Africa coastline, Almar et al., 2015;

Spanish coasts, Casas-Prat et al., 2016; Vietnam Coasts, Dastgheib

et al., 2016; a short stretch of coast in southern Australia, O’Grady

et al., 2019; Northwest of Portugal, Fernández-Fernández et al.,

2020; Indian Coast, Chowdhury et al., 2020). A few studies (e.g.,

Zacharioudaki and Reeve, 2011) tried to manipulate the historical

wave patterns to mimic climate change impacts on future wave and

sediment transport patterns. For example, changes in mean wave

direction, and patterns of storms were defined from the historical

record and then the historical wave forcings were modified and used

to force a sediment transport model to project changes in sediment

transport patterns into the future (e.g., Ruggiero et al., 2010).

Although such an approach can show the sensitivity of sediment

transport and coastal evolution to potential changes in wave climate,

relying only on this method for coastal planning is limited because it

relies on historical trends in wave climate. Hence, an approach using

GCM-forced wave simulations (GCM-Ws) under greenhouse gas

emission scenarios, has been increasingly adopted in literature to

project future patterns of wave climate (e.g., Morim et al., 2019;

Meucci et al., 2020). However, due to large computational costs of

wave simulations, only a limited number of datasets were used in the

literature. Similarly, for the projection of LST patterns, due to

computational limitations, the use of process-based sediment

transport models has been less frequent (e.g., Bonaldo et al., 2015;

O’Grady et al., 2019), and the use of simplified models (bulk

formulas) has been generally preferred. The aforementioned

efforts could only partly address the uncertainty in the LST

projections due to limited sampling and quantification of the

uncertainty space.

More recently, Zarifsanayei et al. (2022b) quantified uncertainty

in LST projections for a non-straight coastline (Gold Coast,

Australia) using a more comprehensive sample of the uncertainty

space. They developed two ensembles, formed by original and bias-

corrected wave datasets of CSIRO CMIP5 (eight sets of GCM-Ws)

projected under two emission scenarios, a hybrid wave-

transformation method, and eight sediment transport models

(including both bulk formula and process-based models).

Additionally, they employed a novel scheme for weighting the

ensemble members and explored the robustness of the LST

projections. They acknowledged the need to use ensembles using

a variety of GCM-W datasets projected under different emission

scenarios (at least one optimistic and one pessimistic scenario).

They have shown that a large portion of total uncertainty in the LST

projections (over 80%) was controlled by the selection of emission

scenarios and GCM-Ws, and their nonlinear interactions. This

finding leads us to question the reliability of any sediment

transport projections in which only a few GCM-Ws under one

emission scenario arbitrarily were chosen. Moreover, their results

implied that although applying bias correction techniques to wave

forcings and weighting the ensembles’ members together could

relatively reduce the range of uncertainty in LST projections, still no

robust projected changes in the LST patterns on annual and

seasonal scales were obtained.
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Addressing the uncertainty in LST projections is a vital step

toward the development of more reliable frameworks for

projecting future coastal erosion and accretion patterns. Despite

previous efforts, there are some uncertainty sources in LST

projections that are yet to be considered. For instance,

differences between CMIP5 and CMIP6 experiments, long-term

(>100yr) continuous projections versus block time slice

projections, spatio-temporal resolution and emission scenario

definitions may have a significant influence on the projection of

wave-driven LST patterns. The use of different parameterization

schemes for wind-wave processes within the wave models (or even

different wave models), has shown to be a source of uncertainty in

projecting offshore waves (Kumar et al., 2022). The impact of this

issue on LST patterns is also yet unknown. Moreover, the

inclusion of the influence of Sea Level Rise (SLR) on wave

transformation, where nearshore bathymetry is relatively

complex, might change the wave dissipation patterns and the

resulting LST patterns. This study aims to address these

knowledge gaps using experiments developed using newly

available CMIP6-driven wave simulations with the Gold Coast,

Australia selected as the study site (Zarifsanayei et al., 2022a;

2022b). In particular, the experiments were designed to investigate

the following aspects of uncertainty:
Fron
1. The trend of LST patterns presented by continuous time

series of waves projected under two SSPs and

decomposition of total uncertainty of LST projections

into internal variability, emission scenario and model

uncertainties;

2. Using block time slices waves to compare uncertainty

within CSIRO-CMIP6-Ws driven LST rates, with that of

CSIRO-CMIP5-Ws driven LST rates;
tiers in Marine Science 03
3. Uncertainty in the LST projections due to employing an

ensemble of offshore waves driven by a single GCM under a

single SSP but obtained from different schemes of wind-

wave parametrizations (i.e., presented by different spectral

wave models/parametrizations); and

4. Wave transformation uncertainty arising from inclusion or

exclusion of SLR and its implications for the projection of

wave-driven sediment transport under SSP1-2.6 and SSP5-

8.5.
2 Methodology

The basis of each of the four experiments is to form an ensemble

of forcing conditions (GCM-Ws under one or two SSPs), a

surrogate wave model for nearshore wave transformation and

eight sediment transport models to capture the range of

uncertainty. The methodology of each experiment is illustrated in

Figures 1, 2.
2.1 Study site

The coastal city of the Gold Coast (GC) is located in southeast

Queensland, Australia and has a 35-km sandy shoreline covering a

range of coastline types including sheltered, semi-sheltered, and

open coasts (see Figure 3). For decades, coastal erosion and

sediment deficit have been the main challenges for coastal

management in this region and consequently the GC shoreline is

one of the most highly engineered sites around the world. The

coastal erosion problem is mitigated by periodic beach
Wave forcing conditions from 

CSIRO-CMIP6 driven waves 

(EC-EARTH and ACCESS-CM2

forced wave simulations under 

CDFAC 1.08) for periods 1979-

2014, and 2015-2100 under SSP1-

2.6 and SSP5-8.5

LST calculations

- Trend analysis for LST changes 

obtained from continuous time 

series of forcing conditions

- Uncertainty decomposition

Bias 

correction 

of waves, 

given 

CAWCR 

hindcast 

waves as the 

reference

Weighting the ensemble members

Hybrid wave transformation 1 (No 

SLR included)

F
o

rc
in

g
 c

o
n

d
it

io
n

s 
an

d
 L

S
T

 m
o
d

el
s’

 u
n
ce

rt
ai

n
ty

U
n

ce
rt

ai
n
ty

 a
n

al
y
si

s

Bias 

correction 

of waves, 

given

CAWCR 

hindcast 

waves as 

the 

reference

Wave forcing conditions from 

CSIRO-CMIP6 driven waves 

(EC-EARTH and ACCESS-

CM2 forced wave simulations 

under CDFAC 1.08) for periods 

1979-2005, and 2080-2100 

under SSP1-2.6 and SSP5-8.5

LST calculations

- Projected changes in LST 

rates presented by CSIRO-

CMIP6 and comparison with 

those of CSIRO-CMIP5

- Uncertainty decomposition

Weighting the ensemble 

members

Hybrid wave transformation 1 

(No SLR included)

FIGURE 1

Methodology adopted for experiment # 1 (left panel) and experiment # 2 (right panel).
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nourishment, permanent sand by-passing systems operating at the

north and south of Gold Coast, and a back-passing system to better

manage the northern Gold Coast beaches (DHL, 1992; Vieira da

Silva et al., 2021). Moreover, to protect the city from storm surges

and wave action, the coastline is backed by a sea wall buried under a

primary man-made dune system. The whole coastline is made of

medium to fine, well sorted and uniformly distributed sand.

Offshore waves are predominantly from the south to south-

easterly directions which results in a significant northwards LST

with the annual average net northward LST rate of 635,000 m3 at

the northern end of the coast (GCCM, 2017).

Three distinct seasons can be defined for the offshore wave

climate system of this region (City of Gold Coast, 2015; Zarifsanayei
Frontiers in Marine Science 04
et al., 2022a). During summer (December-May), wave energy is

from the east to south-easterly directions. During winter (June-

August), offshore waves are more from the south to south-easterly

directions in response to the intensification of Southern Ocean

weather patterns. Spring (September-November) is normally

characterised by calmer conditions. In most seasons, extreme

storms can be generated in the Tasman Sea or Coral Sea and

cause severe erosion. Local wind forcing such as sea breezes exist,

however due to limited information and data its influence on local

wave transformation is unknown.

Along the GC, nearshore wave climate patterns vary due to

changes in coastline orientation and refraction patterns. The

southern beaches are mainly semi-sheltered or sheltered, facing
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FIGURE 2

Methodology adopted for experiment #3 (left panel) and experiment # 4 (right panel).
FIGURE 3

(A) Study area (Gold Coast region; highlighted) and locations of wave data; (B) Location of sites selected for LST projections (adopted from
Zarifsanayei et al., 2022b).
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north and thus less exposed to the predominant swells coming from

the south and southeast. However, the northern beaches (with east-

facing coasts) are more exposed to offshore swell wave energy

approaching the coast from all directions (Vieira Da Silva et al.,

2018). The present study utilises the same modelling framework of

(Zarifsanayei et al., 2022a, Zarifsanayei et al., 2022b), where seven

sites along the GC shoreline were selected for investigation of

uncertainty in the LST projections at sheltered (site B), semi-

sheltered (sites A and C) and open coast locations (sites D to G;

see Figure 3, which also shows the locations of offshore wave

data buoys).
2.2 Projected offshore wave datasets

Two datasets of projected offshore waves (GCM-Ws) were used

in this study namely, the CSIRO- CMIP6 wave data (CSIRO-

CMIP6-Ws; Meucci et al., 2022) and EU wave data (EU-Ws;

Lemos et al., 2023). Integrated parameter data from the nearest

grid point to the Gold Coast (see Figure 3A) was extracted from

each dataset and used as the offshore boundary condition of the

local wave transformation model (cf. section 2.3).

The CSIRO-CMIP6-Ws datasets consist of archived 3-hourly

outputs from a WaveWatchIII (WW3) model run on a 0.5 deg

global grid. WW3 was run with the latest observation-based source

term parametrization ST6, using two different values of the wind-

drag coefficient “CDFAC” parameter: 1 and 1.08. The model was

forced using surface winds derived from two GCMs, ACCESS-CM2

and EC-EARTH3, under two pathways, SSP1-2.6 and SSP5-8.5. The

CSIRO-CMIP6-Ws dataset represents a continuous time-series of

waves covering the period 1961-2100 inclusive. The archived

integrated parameter variables used in this study were significant

wave height of total wave energy (Hs), peak wave period (Tp), and

mean wave direction (Dm).

The EU-Ws datasets consist of 3-hourly wave climate outputs

obtained using seven different wave-model-parameterization pairs,

comprising outputs of three common spectral wave models WW3,

SWAN, and WAM under different parameterizations. Each model

was forced with surface wind forcing from EC-EARTH3 under the

SSP5-8.5 scenario. The archived wave parameters (Hs, Tp, Dm) were

available for two time slices, 1984-2014 and 2070-2100.
Frontiers in Marine Science 05
See Supplementary Material, Part A for more details on the

wave projections’ specifications. Table 1 presents how each of the

wave datasets were applied to form the required forcing ensembles

of the experiments.

To rank the reliability of GCMs’ outputs, the GCMs’

performance to properly reproduce historical patterns was first

evaluated against the CAWCR 24 min resolution wave hindcast

(Center for Australian Weather and Climate Research, Smith et al.,

2020). This hindcast has been shown to have good accuracy

compared to in situ wave measurements within this region (i.e.,

Brisbane wave buoy data for the period 2000 to 2020; Zarifsanayei

et al., 2022a). For the comparison of GCM-Ws with the reference

dataset, wave roses and plots of the average wave energy flux per

direction were considered (refer to section results and discussion).

To quantify the performance, the following metrics were adopted:
a) Bias

Biasj =
1
No

N
i=1GCMWj −

1
No

N
i=1REF (1)

Where j is the GCM-W number, N is the length of the

timeseries, i is the index of the data, REF is the reference hindcast

dataset (i.e., CAWCR 24 min).

b) PDF-Score (Soares and Cardoso, 2018; Lima et al., 2019)

which finds the minimum common area between two empirical

probability density functions (PDFs), of the reference data and each

of the GCMs, respectively, yielding values between 0 (no matching)

to 1 (perfect match, i.e., same PDF).

PDFScorej =
Z

min(PDFGCMWj
, PDFREF) (2)

c) M-Score (Semedo et al., 2018) which is a non-dimensional

measure, ranging from a hypothetic zero (no skill) to a maximum of

1000 (perfect skill).

MScorej =
2
p
arcsin 1 −

MSE

VGCMWj
+ VREF + (MGCMWi

+MREF)
2

 !
∗ 100

(3)

Where MSE, V and M stands for mean square error, variance

and mean, respectively. As GCM-Ws are not time constrained to

the reference data, all inputs of the M-Score formula are multi-year

monthly means of Hs, Tp, and Dm.
TABLE 1 Wave datasets used for each experiment.

Specifications Wave datasets name Corresponding GCM Wind wave parametrization Coverage periods

Experiment 1 CMIP6-GCM-Ws CSIRO-2 ACCESS-CM2 CSIRO-W-ST1 1979-2100 under SSP1-2.6 and
SSP5-8.5

CSIRO-4 EC-EARTH3 CSIRO-W-ST1

Experiment 2 & 4 CSIRO-2 ACCESS-CM2 CSIRO-W-ST1 1979-2005; 2080-2100 under
SSP1-2.6 and SSP5-8.5

CSIRO-4 EC-EARTH3 CSIRO-W-ST1

Experiment 3 CSIRO-3 EC-EARTH3 CSIRO-W-ST2 1985-2005 (baseline period)
2080-2100 (future period under
SSP5-8.5)CSIRO-4 CSIRO-W-ST1

EU1 to EU7 EU-W-ST1 to EU-W-ST7
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d) Yule-Kendall skewness coefficient (Ferro et al., 2005) gives

information on the skewness of GCM-Ws distributions in

comparison with reference forcing. The closer this coefficient is to

zero, the more similar GCM-W is to the benchmark/reference data.

YKi =
(P95 − P50) − (P50 − P5)

(P95 − P5)

� �
GCMWj

−
(P95 − P50) − (P50 − P5)

(P95 − P5)

� �
REF

(4)

Where P5, P50, P95 refer to the relative position of 5th, 50th, 95th

quantiles, respectively.

The Bias was calculated for all wave parameters, the PDF score

was applied only to parameter Hs, and YK coefficient was calculated

for the parametersHs and Tp. TheM-Scoremetric was calculated for

all wave parameters condensed into multi-year monthly means.

The capability of GCM-Ws to reproduce the patterns of waves

for the historical period is an important factor to evaluate their

reliability. GCM-Ws may contain significant biases with respect to

observational/reference datasets, mainly inherited from the GCMs’

simulations conducted by different approaches for parametrizations

of climate processes (Morim et al., 2018). To reduce the systematic

errors in GCM-Ws, choosing a reference dataset and applying bias

correction is a common approach (e.g., Lemos et al., 2020a, Lemos

et al., 2020b). The correction methods are time-independent,

modifying the general patterns of wave parameters represented in

each quantile (statistical distribution). It has also been shown that

applying bias correction techniques to offshore wave forcing

conditions (i.e., GCM-Ws) is necessary to capture reasonable

patterns for nearshore wave and sediment transport during the

baseline period (Zarifsanayei et al., 2022b). Moreover, it was shown

that the bias-corrected forcings preserve the signals of climate

change presented by the original forcings. Hence, following

Zarifsanayei et al. (2022b), using the CAWCR wave hindcast as

the reference, the correction approaches of Empirical Quantile

Mapping (EQM) for parameter Dm, and Empirical Gumbel

Quantile Mapping (EGQM) for parameters Hs and Tp were

employed to correct systematic errors of all offshore forcing

conditions used in this study (Table 1).
2.3 Projected nearshore waves and
response of sediment transport models

To significantly decrease the large computational costs of wave

transformation into the nearshore, wave transfer functions were

developed following Antolıńez et al (Antolı́ nez et al., 2016;

Antolı́ nez et al., 2018). Generally, the functions require offshore

wave samples covering the entire parameter range of the datasets,

a calibrated spectral wave model to transfer the samples to

nearshore, and an algorithm for reconstruction of the whole

time series of nearshore waves (i.e., development of wave

transfer functions). The algorithm captures the non-linear

relationships between offshore and nearshore waves represented

by the wave samples. In total, three types of wave transfer

functions were developed by which the nearshore waves for

each site were reconstructed. Figure 4 outlines the steps

followed to generate the transfer functions.
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The spectral wave model employed in this study, was Mike 21

SW (DHI, 2017) which was previously developed and calibrated for

the study site by Zarifsanayei et al. (2022a). Samples of the bias

corrected offshore wave parameters HS, Tp, Dm were utilized for the

offshore boundary condition of a spectral wave model (i.e., Mike 21

SW; DHI, 2017) to transfer offshore waves of GC to the nearshore

sites. The wave parameters were converted to wave spectra whose

frequency and directional spaces complied with a JONSWAP

distribution (with a peak enhancement factor 3.3) and cosn

distribution, respectively. No local wind forcing was considered

for wave transformation, as the spatial resolution of the GCMs used

in this study was not sufficient to capture the local wind patterns

properly (for further details on the effect of local wind on wave

transformation refer to Zarifsanayei et al., 2022a).

To generate transfer functions for the SLR experiment, it was

assumed that the shape of the coastal profiles from the dry beach

out to a the depth of closure (~ 15 m) remained constant meaning

that the relative water depth within the active profile remains

unchanged in response to SLR. This assumption aligns with the

current coastal management strategy of the GC to compensate for

any sediment deficit by the placement of sand locally as well as the

operation of sand by-passing/back-passing systems in the south and

north of Gold Coast. SLR values averaged over the far future period

(2080-2100) under SSP1-2.6 and SSP5-8.5 were extracted from the

NASA sea level projection tool developed for IPCC AR6 (IPCC,

2021) for the nearest output grid point to GC (see Supplementary

Material, Part B for more details). The averaged SLR values were

applied in a stationary form in the wave model (i.e., assumed to be

constant over time; 40 cm under SSP1-2.6 and 80 cm under SSP5-

8.5). In all simulations, waves were extracted at the same water

depth (i.e., 15 m). However, due to SLR the position of wave data

extraction was shifted toward the coast (~ 50 m under SSP1-2.6 &

100 m under SSP5-8.5). Shifts in the position of wave data

extraction for SLR inclusion cases can roughly mimic the SLR

impacts on the patterns of wave dissipation and the resulting wave-

driven sediment transport.

The reconstructed nearshore waves at water depth 15 m, for

historical and future periods were transferred within active zone

of coastal profiles (i.e., less than 15 m depth) using the widely used

wave transformation methods (Battjes and Stive, 1985; Larson

et al., 2010), and the breaker index of Kamphuis (2010).

Afterwards, the transformed waves were introduced into the

LST models previously calibrated for hindcasting LST patterns

along the GC shoreline (more details can be found in Zarifsanayei

et al., 2022a). Two classes of LST models, including simplified

(bulk formula) models (i.e., van Rijn, 2014; modified CERC and

Kamphuis, Mil-Homens et al., 2013; Shaeri et al., 2020) and

process-based models (i.e., DHI-LITPACK with four different

set- ups, Kristensen et al., 2016) were used to capture a wide

range of sediment transport model uncertainty and its interaction

with forcing conditions.

The setup of the LST models is described in detail by

(Zarifsanayei et al., 2022a) but for ease of reference a brief

overview is provided here. The models were set up according to

the available data at the study area including: sediment

properties; an average barred beach profile using the model of
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Holman et al. (2014) fit to beach profiles measured since 1966;

shoreline orientation from historical surveys and post-processed

satellite images; and hourly wave forcing obtained from a

nearshore wave rider buoy located at north Gold Coast. The

models underwent extensive sensitivity analysis before being

calibrated with the forcings obtained from the nearshore wave

buoy at North Gold Coast, and the annual LST rates estimated

from observations and sand bypassing system operation at North

Gold Coast for the period of 2007 to 2020. Note that all settings of

the calibrated models (e.g., beach profiles, shoreline orientation,

sediment size, etc.) remained unchanged for the LST projections

of this study. Morphological changes to the profiles were not

considered as it is assumed that, for the Gold Coast shoreline, no

changes in sediment sources and sinks will occur due to the

current management strategies aimed at maintaining the

shoreline stability. In all simulations, the temporal resolution of

LST models was the same as the temporal resolution of the time

series of the forcing conditions used. No lateral boundary

conditions were required for the LST models because the focus

of this paper was only on projecting the future patterns of

potential LST rates, not on coastal evolution or shoreline

change. Additionally, the response of LST models to the

nearshore waves associated with CAWCR 24 min resolution

offshore data was considered as the reference LST along the coast.
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2.4 Uncertainty analysis

For each experiment and site, the total uncertainty was obtained

by an ensemble that consists of wave forcing datasets projected

under one/two scenarios, and different sediment transport models.

Following Hawkins and Sutton (2010), to narrow the range of the

uncertainty in ensemble modelling a simple weighting scheme was

also adopted. The weighting scheme was based on two criteria:
a) The difference between annual mean LST pattern along the

coast represented by each ensemble member and the

reference LST; and

b) Shoreline orientation along the coast (represented by each

ensemble member) for which mean net annual LST tends to

zero and its difference to that of the reference LST.
The two criteria above were translated into Euclidean distances

by which a weight was calculated and allocated to each ensemble

member individually. More details on this approach can be found in

Zarifsanayei et al. (2022b).

Another important task of uncertainty analysis is detecting

the trends of changes among noisy projected values using

the continuous time series. The modified Mann-Kendall test

(that accounts for autocorrelation of the time series) was used
Generating transfer functions 

Validation of the reconstructed nearshore waves against the ones obtained 

from Mike 21 SW simulations at water depth 15 m (see the Supplementary 

Material Part B for more details)

Forcing conditions from CWCAR 24 min, and all CMIP6 

GCM-Ws 

Only waves at the offshore boundary 

without inclusion of local wind forcing

Wave propagation using Mike 21 SW under a stationary mode for three cases

Selection of 600 multivariate samples covering a wide range of data using 

Maximum Dissimilarity Algorithm (MDA; selection in a 3-D space of Hs, Tp, 

Dm; see the Supplementary Material Part B for more details)

Reconstruction of the whole timeseries of nearshore waves at each site 

associated with the propagation of offshore waves for No SLR, SLR-

included cases under SSP1-2.6, and SLR-included under SSP5-8.5

Case 1: 

No SLR

Case 2 (only for 

experiment 3): 

0.4 m SLR 

under SSP1-2.6

Case 3 (only for 

experiment 3): 

0.75 m SLR under 

SSP5-8.5

FIGURE 4

Flow chart of nearshore wave reconstruction.
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(Hamed and Ramachandra Rao, 1998). To implement the modified

Mann-Kendall test for experiment #1, the 3-hourly continuous

timeseries of LST rates were converted to seasonal and annual

quantities which were then smoothed over annual (seasonal

quantities) and decadal (annual quantities) time scales. The total

uncertainty of LST projections was then decomposed following

Hawkins and Sutton (2009) to establish the uncertainty associated

with emissions scenario, model and internal variability of the Earth-

climate system (cf. Supplementary Material, Part C for details). For

experiment #2 which utilised block time sliced timeseries of waves

(for the far future), the projected changes in the LST patterns were

decomposed into the predefined sources (scenarios, GCMs,

LST model, and non-linear interactions) using an ANOVA

subsampling technique and then compared with the uncertainty

contributions previously found for CMIP5-Ws-driven LST patterns

(Zarifsanayei et al., 2022b).
3 Results and discussion

3.1 Evaluation of GCM-Ws

Figure 5 shows the annual mean wave energy flux (WEF) on a

polar coordinate system for each of the CMIP6 GCM-Ws in

comparison with the CAWCR reference hindcast. In addition,

wave roses are provided in Supplementary Material, Part A.

Overall, the CMIP6 GCM-Ws are unable to accurately reproduce

the reference data (i.e. the predominant S to SE directions). In

particular, the EU1-, EU7- and CSIRO-2-driven waves show the

greatest errors in wave energy patterns predicting the predominant

wave direction to be from the east (Figure 5A). Some of the wave

datasets, such as EU-2 and EU-5, fail to predict the energy

magnitude due to large biases in Hs. Notably, all the EU wave

simulations which use the same wind forcing (EC-EARTH3) but

with different parameterization schemes, indicate large

discrepancies which should challenge the practice of relying only
Frontiers in Marine Science 08
on a single wave model and/or parameterization for

projection studies.

Compared to CMIP5-Ws (Zarifsanayei et al., 2022b), the global

wave models used for the CMIP6-Ws have a higher spatial

resolution (~ 0.5-0.7 deg vs ~ 1 deg res). However, still large

biases relative to the reference forcing are observed (Figure 5A).

Nonetheless, noting that the CSIRO 2-Ws CMIP6 dataset is the

closest to the ACCESS-1.0-Ws in the CMIP5 dataset in terms of

model configuration, it seems that CSIRO CMIP6 wave projections

have improved performance, particularly for parameters Hs and Dm

(~ 0.3 m & 6 degrees decrease in biases respectively; see

Supplementary Material, Part A). Although the ACCESS-CM2

(CMIP6) and ACCESS1.0 (CMIP5) GCMs have the same

horizontal resolutions, the number of vertical layers in the CMIP6

run was 85 layers compared to 35 in CMIP5 which leads to better

performance (Bi et al., 2020). Despite the increase in spatial

resolution of CMIP6 GCMs, they still remain too coarse to

resolve sea surface local wind/sea breeze patterns.

It is important to note that the significant errors in GCM-Ws

are not limited to this study site (Gold Coast). In fact, GCM-Ws

based on global wind (and sea ice concentration) fields, are

generally unable to accurately represent most small-scale, local-

to-regional phenomena. Therefore, bias correction procedures are

important to improve the accuracy of the wave datasets near the

coast which adjust GCM-W outputs towards reference hindcast

datasets that are usually of higher resolution and/or based on

observations. For this particular case study, while there may be

several reasons for the misrepresentation of wave energy flux

patterns, it’s believed that a significant portion of the errors can

be attributed to horizontal resolution and even land-sea masks

(Meucci et al., 2022). This means that GCM-Ws could represent

wave patterns at regional and local scales if the appropriate

resolution, bathymetry, and land-sea mask are provided. Due to

the poor performance of the original GCM-Ws at the site, the bias

correction procedure is necessary, not to introduce new physical

processes, but to incorporate observational features that are too
BA

FIGURE 5

Wave energy flux patterns presented by CMIP6-Ws. (A) original data, (B) bias corrected data at locations P2 and P3.
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local to be accurately captured by the original GCM-Ws. Moreover,

these limitations should remain consistent over time because no

changes in resolution, bathymetry, or land-sea masks were made

during the wave climate projections. Therefore, a consistent bias

correction method is considered capable of providing a realistic

projection of the future wave climate with a low risk of

manipulating the signals of climate change presented by the

original wave datasets (for more discussion on this matter see

Zarifsanayei et al., 2022b).

Figure 5B shows the GCM to reference comparison after bias

correction of the CMIP6-Ws which, as expected, now show

essentially the same patterns to the reference long-term annual

wave energy flux approaching the Gold Coast region. That is, after

bias correction, the original GCM-Ws waves now correctly

demonstrate the predominant S to SE directions rather than from

the E (see Supplementary Material, Part A).

Figure 6 shows that original (uncorrected) CMIP6-Ws

datasets have biases in the range of –0.6 to +0.4 m for Hs, –2 to

2 s for Tp and -5 to -20 degrees for Dm. The wave datasets

associated with EU1, EU2 and EU7 exhibit the greatest errors

across almost all wave parameters. Such large biases in forcing

conditions during the historical period, particularly for

parameter Dm, can lead to remarkable errors in projection of

wave-driven sediment transport and coastal evolution patterns.

After bias correction, consistent improvement of all the accuracy

metrics for all GCM-Ws is seen (also see Supplementary Material,

Part A for PDF-score). Another important point to consider is

that bias correction approaches may not be capable of fully

resolving all systematic errors in GCM-Ws datasets, (e.g.,

signals of climate change), particularly if the original datasets
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exhibit quite large biases in wave direction patterns (e.g., EU1- &

EU5-driven waves).

Comparing the signals of wave climate change (on a monthly

scale) for the far future, under the worst-case scenario associated

with CSIRO-CMIP6-Ws (SSP5-8.5), with those of CSIRO-CMIP5-

Ws (RCP8.5), a consensus on the rotation of waves toward east

direction is found. This is particularly evident during the period of

June to October (on average, 12 degrees anti-clockwise rotation, see

Supplementary Material, Part A). Under SSP1, on average CSIRO-

CMIP6-Ws, indicate a projected decrease in Hs of 5% and a 7

degrees rotation towards the east. It is noted that the number of

GCMs in the CSIRO-CMIP6 wave simulations is presently limited

to 2, as compared to 8 for the CSIRO-CMIP5 ensemble, and

therefore currently has limited ability to accurately capture the

uncertainty associated with GCM selection.

Amongst the ensemble of wave model parameterization

schemes (i.e., CSIRO-3 &4, EU1 to EU7), there is generally a

consensus on the sign of changes (increase or decrease) in wave

parameters but significant differences in the magnitude of the

projected changes exists for all wave parameters (see

Supplementary Material, Part A). For instance, from June to

October, the difference in the projected changes in monthly mean

Dm reaches up to 8 degrees. As shown by Kumar et al. (2022) and

Lobeto et al. (2023) at other regions around the world, the effect of

wind-wave parametrizations on wave simulation outputs can be so

large that it leads to no consensus on either magnitude or the sign of

change, possibly hiding the signals of wave climate change. Such

discrepancies can not only jeopardise the robustness of offshore

wave projections conducted by dynamical approaches, but also have

great implications for statistical wave projections where usually
FIGURE 6

Metrics to evaluate the performance of CMIP6-Ws before and after bias correction; Negative values for Dm indicate anti-clockwise deviation.
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reference forcing is needed to train wind-wave/weather type

transfer functions (e.g., Camus et al., 2017). The reference forcing

is usually obtained from the output of only one dynamic-based

wave hindcasting project (e.g., ERA5; Hersbach et al., 2020), while

an ensemble of wave hindcasting simulations is required (Morim

et al., 2022).
3.2 LST projections, experiment #1

One of the main advantages of the new CSIRO-CMIP6 wave

datasets is the archiving of the long-term (> 100 years) continuous

time series. Continuous time series of waves better depict long-

term, natural climate variability (e.g. Odériz et al., 2021). The

natural variability in wave climate will flow through in to the

nearshore wave forcing and resulting sediment transport patterns,

making the detection of climate change signals challenging. Hence,

experiment #1 was designed to examine this issue. As previously

illustrated in Figures 1, 4, the entire timeseries of offshore waves

were translated into 3-hourly timeseries of LST rates at each site.

The LST timeseries were then converted to seasonal, and annual

LST rates and smoothed within annual and decadal time windows

respectively. For each site, linear trends were fitted to the mean of

each of the seasonal and annual LST rates, and the significance of

the trends checked with the modified Mann-Kendall approach.

The results for site D (located in the middle of the Gold Coast

coastline, see Supplementary Material, Part D) indicate that, at the

seasonal scale, the smoothed net LST rates presented by CSIRO-

CMIP6 wave datasets fluctuate between 65,000 m3/season and

230,000 m3/season. Generally, the mean and standard deviation of

seasonal smoothed LST rates are both approximately 140,000 m3

(i.e. coefficient of variation ~ 1) which suggests significant natural

variability data and likely weak signals/trends on the seasonal

scale. Additionally, although the seasonal LST patterns obtained

from CSIRO2-Ws are relatively consistent with those obtained

from reference forcing, using CSIRO4-Ws does not lead to very

promising LST patterns for the same period (see violin plots for

LST rates in Supplementary Material, Part D). For the SSP1-2.6

scenario, both CSIRO2-Ws and CSIRO4-Ws project decreasing

trends for net LST rates whereas under SSP5-8.5, CSIRO2-Ws and

CSIRO4-Ws project a decreasing and increasing trends for

seasonal LST rates respectively. After applying the modified

Mann Kendall test to the seasonal LST rates, the observed

seasonal trends are found to insignificant (see Supplementary

Material, Part D).

On the annual scale (see Figure 7), the smoothed net LST rates

presented by CSIRO-CMIP6 wave datasets fluctuate between

450,000 m3/year and 680,000 m3/year. The mean and standard

deviation of the smoothed annual LST rates are 530,000 m3/year

and 120,000 m3/year, respectively (coefficient of variation ~ 23%).

The annual trends were found to be significant for all cases however

the trends associated with CSIRO2-Ws and CSIRO4-Ws under

SSP5-8.5 are not consistent (first one is negative and the second one

is positive). It seems that the trends are highly influenced by the LST

rates during the last three decades (i.e., 2070-2100), where the

CSIRO4-SSP5 shows a strong increase during this period which is
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not seen for CSIRO2-SSP5. This highlights the significant

uncertainty associated with far future projections.

Noteworthy points can be perceived from smoothed annual

LST patterns. Firstly, the smoothed signal is periodic in nature with

a period of ~20 to 30 years which suggest significant inter-decadal

natural climate variability (i.e., combination of variability of earth-

climate systems in the presence and absence of external forcing;

IPCC, 2021). This finding suggests that using block time slice

averaging (e.g. far future from 2080-2100) to estimate projected

changes in sediment transport rates/coastal evolution could lead to

erroneous outcomes because of the significant natural variability.

For example, if one decides to employ CSIRO2-Ws under SSP1-2.6

and SSP5-8.5 for the period 2020 to 2040, they might conclude that

global warming yields increasing LST rates, while the long-terms

trends of LST rates for CSIRO2-Ws-SSP1-2.6 and CSIRO2-Ws-

SSP5-8.5 are negative and positive, respectively. Secondly, the

importance of model selection (i.e., both GCM-Ws, large source

of uncertainty and LST models, less uncertainty; Zarifsanayei et al.,

2022b) seems to be significant for both the near future (e.g., 2030-

2050) and the far future (2080-2100). Additionally, scenario

uncertainty becomes increasingly significant for LST projections

after 2050.

These points have vital implications for coastal management

planning, where the time horizon of projects should first be clearly

defined, and then according to that, uncertainty sampling (i.e.,

incorporating sources of uncertainty within the modelling chains)

should be conducted properly to inform the decision-makers about

the range of uncertainty. Continuous time series of wave-driven

sediment transport patterns provide the opportunity for coastal

planners to estimate the contribution of internal variability, model,

and scenario uncertainty to the total uncertainty of sediment

transport projections. The results of uncertainty decomposition

(see Figure 8) clearly show that for near-future planning, a large

part of uncertainty arises from model selection and natural

variability of the system (i.e., for the period 2030-2050 on

average, 4% scenario, 57% model, and 39% internal variability).

To reduce model uncertainty, significant effort in future works

should continue to be directed towards understanding the earth-

atmospheric system and improving models, particularly GCMs.

While the importance of natural variability decreases significantly

in time and the fraction of total model uncertainty slightly decreases

in time, the fraction of uncertainty due to assumed emissions

scenario increases dramatically. For the far future, on average for

all sites, 25% scenario, 54% model and 21% internal variability

contribute to total uncertainty. Note that isolation of the natural

variability in projected LST rates was based on the underlying

assumption that climate change is captured by a linear trend as

assumed in other sediment transport studies (Splinter et al., 2012;

Chowdhury and Behera, 2017; Bas ̧aran and Arı Güner, 2021).
3.3 LST projections, experiment # 2

To compare the CSIRO-CMIP6-Ws driven LST patterns and

the corresponding uncertainty with those of CSIRO-CMIP5-Ws

(Zarifsanayei et al., 2022b), sliced time series of LST rates for both
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baseline and the far future periods (1979-2005 and 2080-2100) for

all sites were analysed. For the historical period, the annual mean

LST rates associated with the ensemble are consistent with those of

the reference, showing a good performance of bias correction and

weighting schemes that were applied to decrease the errors in the

projection of LST patterns (see Supplementary Material, Part D).

Under SSP1-2.6 and SSP-5-8.5, the ensemble mean projects 7% and

9% decreases in net annual mean LST rates, respectively (see

Figure 9). The decrease in the LST rates along the coast, and the

predominance of net northward LST rates under both scenarios are

in agreement with the CMIP5 findings of Zarifsanayei et al. (2022b).

Note that CSIRO-CMIP5-Ws datasets were projected under one

middle scenario (RCP4.5) and a pessimistic scenario (RCP8.5),

while CSIRO-CMIP6-Ws datasets sampled uncertainty from an

optimistic (SSP1-2.6) and a pessimistic scenario (SSP5-8.5). That is
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why the range of uncertainty in LST projections under SSP5-8.5 is

significantly larger than that of SSP1-2.6 (as depicted by the

highlighted areas in Figure 9A in comparison with Figure 9B).

Seasonal LST rates (Supplementary Material Part D) indicate

that a large fraction of the annual net LST rate occurs during

summer and then winter (particularly during March, April and

May). The ensemble mean projects that the net LST rates decrease

during these seasons (5% to 10% (10% to 20%) during summer

(winter), under SSP1-2.6 and SSP5-8.5, respectively). During spring,

significant (relative) changes in LST rates are projected but note that

significantly less LST occurs during spring compared to the other

seasons and so the corresponding absolute changes have an

insignificant influence on annual LST projections (detailed graphs

on the projected changes in seasonal northward and southward LST

rates can be found in Supplementary Material Part D).
B

C

A

FIGURE 7

Smoothed annual net LST rates at site D associated with (A) CSIRO2-Ws and (B) CSIRO4-Ws under SSP1 and SSP5; (C) Violin plots of the response of
all LST modes to the datasets of CAWCR 24 min resolution (Reference), CSIRO2-Ws and CSIRO4-Ws for historical period; all LST models were used
for these plots; The violin plot shaded area is the approximation of the probability density function (PDF) through a kernel density estimation, while
the remaining information corresponds with that of a boxplot.
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FIGURE 9

Uncertainty analysis for sliced timeseries of waves for far future period 2080-2100; projected changes in annual mean LST rates (A) under SSP1-2.6
and (B) under SSP5-8.5, (C) uncertainty contributions obtained from ANOVA, (D) interaction of GCM-Ws and scenarios to project LST rates at site D.
FIGURE 8

Decomposition of total uncertainty into model, scenario and internal variability; averaged over all sites.
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The ANOVA results (Figure 9C) imply that, on average,

scenario uncertainty contributes to 23% of total uncertainty,

which is larger than previous findings for CMIP5 (16% for

scenario uncertainty; Zarifsanayei et al . , 2022b). The

contributions of GCM-Ws and LST model uncertainty to total

uncertainty are 30% and 10%, respectively. Compared to previous

findings for CMIP5 (~ 35% for GCM-Ws uncertainty; Zarifsanayei

et al., 2022b), slight decrease (~ 5% decrease) in contribution of

GCM-Ws to total uncertainty, is observed. Nonlinear interaction of

GCM-Ws and scenario is also significant (24%, see Figures 9C, D),

questioning the reliability of LST projections based on a single

emission scenario (e.g., Chowdhury et al., 2020; Fernández-

Fernández et al., 2020).
3.4 LST projections, experiment # 3

In experiment #3, an ensemble of wave projections, generated

under different parameterizations, was employed to project LST

rates. To determine the importance of this source of uncertainty, the

results of LST rates obtained from the full ensemble forcing

(CSIRO3 and 4 plus EU1 to EU7) were compared with those of
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the subset of ensemble forcing CSIRO-3 and 4 in terms of intra- and

inter-annual variabilities (see Figures 10A, B for site D). Such

discrepancies can increase the range of uncertainty in the LST

projections (as shown in Figures 10C, D) and, at the same time, can

impact the robustness of the projections as the standard deviation of

the ensemble gets larger than the ensemble mean. As wave model

parameterizations also have an impact on the distribution of wave

driven LST rates (see violin plots in Supplementary Material, Part

D) then will also flow on to increased uncertainty in the projection

of erosion and recovery periods of the coast (e.g., Antolıńez et al.,

2018; Toimil et al., 2022). Note that compared to the other sites, a

larger level of uncertainty in the LST projections for site A is

observed. This is likely due to the fact that the nearshore bathymetry

in this area is more complex (reefs and headlands) and as such more

complicated refraction patterns result.
3.5 LST projections, experiment # 4

Experiment #4 examined the influence of SLR on LST

projections based on sliced timeseries of CSIRO-3 and 4 for the

far future under SLRs corresponding to SSP1-2.6 and SSP5-8.5. In
B

C D

A

FIGURE 10

Implications of wind-wave parameterization uncertainty for LST projections; (A) Intra-annual variability (i.e., standard deviation of the monthly
means/time slice mean) of net LST rates at site D; (B) Inter-annual variability (i.e., standard deviation of the annual means/time slice mean) of net LST
rates at site D; (C) LST projections associated with the ensemble forcing CSIRO 3 &4 and EU1-EU7; (D) LST projections associated with the ensemble
forcing CSIRO 3 & 4.
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essence, the effect of SLR on wave transformation depends on the

characteristics of the lower shoreface and shelf, and how wave

dissipation due to bottom friction, wave refraction and shoaling

takes place. The results imply that the inclusion of SLR in wave

transformation, under SSP1-2.6, yields only meagre changes in the

LST projections (~ -0.5%), compared to the case of no-SLR

(compare Figure 11A with Figure 9A). This is due to the small

value of the projected SLR under SSP1-2.6 (i.e., 0.4 m) that does not

have a significant influence on wave transformation. Under SSP5-

8.5, the inclusion of SLR leads to a larger decrease in the projected

rates of LST (~ -2%), compared to the case of no SLR, indicating

that in this case the offshore waves are slightly more dissipated

(compare Figure 11B with Figure 9B).
4 Limitations and the way forward

Although efforts were made in this study to shed light on some

aspects of uncertainty in the LST projections, still many other

experiments are recommended for future work.

First, as shown, continuous time series of waves are required to

reveal climate variability patterns and their implications for coastal

studies. However, only a limited number of projected offshore wave

datasets covering a continuous long-period are currently available

(e.g., CSIRO CMIP6-Ws for two GCMs). Ideally, a larger number of

GCMs for each scenario/pathway are required to understand how

much the wave-driven sediment transport projections are

consistent with each other and to better resolve the significant

uncertainty associated with GCM and scenario selection (e.g.,

Lehner et al., 2020). In this regard, using statistical wave

downscaling rather than dynamical wave simulations is preferred

to consider a large number of GCMs (e.g., 50 GCMs) for wave

projections. However, as the findings of this research showed, the

reference forcing required for statistical downscaling is impacted by

wind-wave parametrizations, using more than one reference forcing

dataset (an ensemble) is also recommended.

Secondly, the spatial resolution of GCMs (e.g., 0.5-3 deg) is too

coarse to resolve local scale wind fields and so finer-scale climate

models are needed for this purpose. The impact of local wind on

wave transformation, as shown by Zarifsanayei et al. (2022a), may

increase the uncertainty in LST calculations. In this study, wave
Frontiers in Marine Science 14
parameters associated with total wave energy were used as the

offshore boundary condition of a wave transfer function. For future

works, working with directional spectral boundary conditions and

transferring them to the nearshore zone is also recommended. In

this regard, bias correction of spectral data at the offshore boundary

of a wave model, transferring offshore forcing, and reconstruction

of the nearshore spectra are very challenging goals.

Another challenge is that, even if nearshore spectra are

projected properly, the current LST models used in this study,

only work with integrated wave parameters rather than full spectral

data. This implies that the nearshore spectrum should be converted

to integral parameters again, increasing the errors in LST

projections, particularly in the case of prevalent multi-modal

nearshore spectra. Hence, development of a new generation of

computationally efficient, wave spectra driven LST models

is encouraged.

The present study examined the effect of SLR on wave

transformation and hence LST projections under the assumption

of a fixed profile shape such that the relative water depth from the

beach to 15m depth remained unchanged. Whilst this assumption

aligns with the current coastal protection policy of the City of Gold

Coast to preserve coastal profiles by beach nourishment, using more

sophisticated approaches in the literature to update the upper and

lower shoreface profiles in response to SLR (e.g., McCarroll et al.,

2021) is suggested for future research.

Finally, for potential future work, it could be valuable to apply

additional bias correction methods (e.g., multivariate bias

correction or correction of the full wave energy spectrum) and

compare their results to the univariate approach used in this study.
5 Summary and conclusions

Four experiments were conducted for seven sites along the Gold

Coast shoreline to investigate uncertainty sources in LST

projections due to: (1) working with continuous time series of

wave forcing (experiment #1); (2) CMIP experiment family based

on sliced time series of waves from CSIRO-CMIP6-Ws and CSIRO-

CMIP5-Ws (experiment #2); (3) wave-model parametrizations to

generate wave projections (experiment #3); and (4) the influence of

SLR on regional wave transformation (experiment #4). For each
BA

FIGURE 11

Projected changes in annual mean LST rates for case SLR inclusion, under (A) SSP1-2.6 and (B) SSP5-8.5.
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experiment, a separate weighted ensemble consisting of offshore

wave forcing conditions, a hybrid wave transformation method and

eight LST models were used.

The results of experiment #1 indicated that the annual LST rates

obtained from continuous time series of waves were subject to the

influence of inter-decadal climate variability acting on timescales of

20-30 years. Such findings imply that LST projections based on

sliced time series of waves (which do not capture inter-decadal

natural variability), would be prone to unreliable conclusions about

the impacts of climate change on LST.

The results of uncertainty decomposition clearly show that for

near-future coastal planning, a large part of uncertainty arises from

model selection and natural variability of the system (e.g., for period

2030-2050 on average, 4% scenario, 57% model, and 39% internal

variability). While the influence of natural variability decreases

significantly over time, model uncertainty only slightly decreases

in time and scenario uncertainty increases dramatically.

Considering the far future, averaged over all sites, 25% scenario,

54% model and 21% internal variability contribute to

total uncertainty.

In experiment #2, sliced time series of waves (for the far future)

were used to facilitate a comparison of LST projections between

CSIRO-CMIP6-Ws and CSIRO-CMIP5-Ws. The results showed

that CSIRO-CMIP6-Ws driven LST projections are broadly similar

to their CMIP5 counterparts, namely decreasing LST rates along the

coast and net northward LST rates. However, due to different

definitions of emission scenarios adopted in AR6 compared to

AR5, the range of uncertainty in the LST projections due to scenario

selection increased. On average, uncertainty of the projected

changes in the LST rates is controlled by scenario (23% of total

uncertainty), GCM-Ws (30% of total uncertainty), LST model (10%

total uncertainty), non-linear interaction of GCM-Ws and scenario

(24%), and other nonlinear interactions (3%). Compared to the

previous findings for CMIP5 (Zarifsanayei et al., 2022b), a slight

increase (~7% increase) was observed in the contribution of

scenarios uncertainty to total uncertainty, while the contribution

of GCM-Ws uncertainty to total uncertainty decreased slightly

(~5% decrease). Additionally, no significant change in the

contribution of other sources to total uncertainty was identified.

The results of experiment #3 indicated that the intra- and inter-

annual variability of LST rates were greatly influenced by the choice

of wave model parameterization schemes. This influence can

increase the overall range of uncertainty in LST projections and

at the same time, can affect the robustness of the projections as the

standard deviation of the ensemble could become larger than the

ensemble mean. Additionally, wave model parameterizations also

have an impact on the distribution of LST rates, potentially leading

to higher uncertainty when trying to project erosion and recovery

periods at the coast.

The results of experiment #4 showed that the inclusion of SLR

in wave transformation, under SSP1-2.6, yields only meagre

changes in the LST projections (-0.5%), compared to the case of

no SLR. Under SSP5-8.5, the inclusion of SLR leads to a greater

decrease in the projected rates of LST (-2%), compared to the case of

no SLR, accentuating that in this case offshore waves are slightly

more dissipated.
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Projecting future patterns of shoreline change/coastal evolution,

as well as shore protection schemes (e.g., beach nourishment), along

open sandy coasts is heavily reliant on the projected patterns of LST

rates. The findings from the present study (CMIP6) along with

those of (Zarifsanayei et al., 2022a; Zarifsanayei et al., 2022b).

(for CMIP5 waves) has clearly demonstrated the importance of

adequately sampling the uncertainty space in the LST modelling

chain. In particular, the following sources of uncertainty should

be considered:
- Wave forcing conditions: This involves utilizing an adequate

number of offshore wave datasets projected by different

wave models, which are forced by different GCMs’ outputs

under different emissions scenarios/pathways. It is highly

recommended to use continuous time series of offshore

wave forcing conditions instead of sliced time series of

forcing conditions. Additionally, applying bias correction

approaches to the forcing conditions (on GCM outputs or

wave simulations) should be explored as a potential way to

reduce uncertainty.

- Wave transformation methods: This includes decisions

regarding the inclusion or exclusion of local wind, the

inclusion or exclusion of SLR, and updating nearshore

bathymetry.

- Sediment transport models: Both simplified and process-

based sediment transport models should be considered.
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AR3 The Fifth Assessment Report produced by the Intergovernmental
Panel on Climate Change (IPCC) in 2001

AR5 The Fifth Assessment Report produced by the Intergovernmental
Panel on Climate Change (IPCC) in 2013-2014

AR6 The Sixth Assessment Report produced by the Intergovernmental
Panel on Climate Change (IPCC), released in 2021

CAWCR Center for Australian Weather and Climate Research

CMIP5 The Coupled Model Intercomparison Project Phase 5

CMIP6 The Coupled Model Intercomparison Project Phase 6

CSIRO Commonwealth Scientific and Industrial Research Organisation. It
is an Australian federal government agency, conducting research
and development in various scientific areas, including climate and
climate change

CSIRO-
CMIP5-
Ws

Projected offshore waves associated with CMIP5 forcing, simulated
by CSIRO

CSIRO-
CMIP6-
Ws

Projected offshore waves associated with CMIP6 forcing, simulated
by CSIRO

Dm Mean wave direction of total wave energy

EQM Empirical Quantile Mapping

EGQM Empirical Gumbel Quantile Mapping

EU-Ws Offshore waves projected by some European groups (the last five
authors of this article are the representatives of the groups)

GC Gold Coast

GCM Global Circulation Model

GCM-
Ws

GCM-driven wave simulations

Hs Significant wave height of total wave energy

LST Longshore Sediment Transport

RCP Representative Concentration Pathway

SLR Sea Level Rise

SRES Special Report on Emissions Scenarios; a set of scenarios developed
by the IPCC in the late 1990s to explore possible future emissions
of greenhouse gases and other substances that could affect the
climate system

SSP Shared Socio-economic Pathways, which are a set of scenarios
adopted in AR6

Tp Mean wave period of total wave energy
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