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Edge computing at sea:
high-throughput classification of
in-situ plankton imagery for
adaptive sampling
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Christopher M. Sullivan2,3, Su Sponaugle1,4, Charles Cousin5,
Cedric Guigand5 and Robert K. Cowen1

1Hatfield Marine Science Center, Oregon State University, Newport, OR, United States, 2Center for
Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States, 3College of
Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States,
4Department of Integrative Biology, Oregon State University, Corvallis, OR, United States, 5Bellamare
LLC, San Diego, CA, United States
The small sizes of most marine plankton necessitate that plankton sampling

occur on fine spatial scales, yet our questions often span large spatial areas.

Underwater imaging can provide a solution to this sampling conundrum but

collects large quantities of data that require an automated approach to image

analysis. Machine learning for plankton classification, and high-performance

computing (HPC) infrastructure, are critical to rapid image processing;

however, these assets, especially HPC infrastructure, are only available post-

cruise leading to an ‘after-the-fact’ view of plankton community structure. To be

responsive to the often-ephemeral nature of oceanographic features and

species assemblages in highly dynamic current systems, real-time data are key

for adaptive oceanographic sampling. Here we used the new In-situ

Ichthyoplankton Imaging System-3 (ISIIS-3) in the Northern California Current

(NCC) in conjunction with an edge server to classify imaged plankton in real-time

into 170 classes. This capability together with data visualization in a heavy.ai

dashboard makes adaptive real-time decision-making and sampling at sea

possible. Dual ISIIS-Deep-focus Particle Imager (DPI) cameras sample 180 L s-

1, leading to >10 GB of video per min. Imaged organisms are in the size range of

250 µm to 15 cm and include abundant crustaceans, fragile taxa (e.g.,

hydromedusae, salps), faster swimmers (e.g., krill), and rarer taxa (e.g., larval

fishes). A deep learning pipeline deployed on the edge server used multithreaded

CPU-based segmentation and GPU-based classification to process the imagery.

AVI videos contain 50 sec of data and can contain between 23,000 - 225,000

particle and plankton segments. Processing one AVI through segmentation and

classification takes on average 3.75 mins, depending on biological productivity. A

heavyDB database monitors for newly processed data and is linked to a heavy.ai

dashboard for interactive data visualization. We describe several examples where

imaging, AI, and data visualization enable adaptive sampling that can have a

transformative effect on oceanography. We envision AI-enabled adaptive

sampling to have a high impact on our ability to resolve biological responses

to important oceanographic features in the NCC, such as oxygen minimum
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zones, or harmful algal bloom thin layers, which affect the health of the

ecosystem, fisheries, and local communities.
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1 Introduction

Marine plankton form the base of most ocean food webs.

Understanding how these communities are likely to change in the

future in response to climate change is a critical knowledge need

(Ratnarajah et al., 2023). Yet how specific environmental drivers

impact different levels of the food web, and how this might transfer

up and down different food webs remains poorly understood.

Plankton communities in most oceans are diverse and complex.

They range over many orders of magnitude in size, thus

simultaneous sampling of many taxa can be challenging

(Lombard et al., 2019). This issue is exacerbated by plankton net

systems that destroy fragile organisms such as jellies and other

gelatinous animals (e.g., appendicularians and salps; Wiebe and

Benfield, 2003) known to be important to the oceanic carbon cycle

(Hopcroft et al., 1998; Luo et al., 2022). Plankton in-situ imaging

enables the sampling of plankton across a wide range in size, from a

few hundred microns to > 10 cm, while keeping fragile organisms

intact since no net, and thereby no physical contact, are involved.

This can be achieved by a multitude of systems that have different

purposes (e.g., O-Cam, Briseño-Avena et al., 2020a; Scripps

Plankton Camera system, Orenstein et al . , 2020; and

PlanktonScope, Song et al., 2020).

The northernCalifornia Current (NCC) off the coast ofCalifornia,

Oregon, and Washington, is a dynamic, highly productive eastern

boundary current that is of high importance to national fisheries and

food security (Reese and Brodeur, 2006; Hickey and Banas, 2008). As

part of a study of the planktonic food web dynamics of this system, we

used the high resolution In Situ Ichthyoplankton Imaging System-3

(ISIIS-3; Figure 1) to image plankton ranging from250µm to15 cm, in

their in-situ (i.e., natural) environment (Cowen and Guigand, 2008).

While ISIIS was developed initially to enhance research of

ichthyoplankton (i.e., larval fishes), it obtains images of plankters

ranging fromdiatomsandprotists tocopepods, jellies, and larvalfishes,

and has been successfully deployed in a multitude of systems (e.g., the

NCC, Swieca et al., 2020; the Straits of Florida, Robinson et al., 2021;

and in the Gulf of Mexico and the Mediterranean, Greer et al., 2023).

Use of ISIIS and now ISIIS-3 creates a big data challenge. The

combination of high-resolution imagery and the need to image a

large volume of water results in extremely high numbers of imaged

plankton individuals (0.1 to > 1 billion per study; Schmid et al.,

2020; Robinson et al., 2021; Schmid et al., 2021; Schmid et al.,

2023b). The two line scan cameras of the ISIIS-3 gather 10 GB of

data per min, and >35 TB for a typical two-week research cruise

(160 h of imagery).
02
FIGURE 1

ISIIS-3 and its components (A) Lateral view; 1 = CTD; 2 = two
shadowgraph line-scan cameras; 3 = fluorescence and pH sensors
as well as altimeter; 4 = LISST-200X particle imager; 5 = pump and
dissolved oxygen probe; 6 = flowmeter; 7 = main computer
housing. (B) Close-up of the two stacked Bellamare ISIIS-DPI-125
camera units. ISIIS-3 can be deployed through a narrow gate and
boom (e.g., on R/V Langseth, A) or via the A-frame (e.g., on R/V
Sikuliaq, (C), while side deployments using a crane are also possible
and were carried out in the past (e.g., on R/V Atlantis). Photos credit:
Ellie Lafferty.
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Simultaneous with the development of the ISIIS technology

over the last 10 yr., data processing and machine learning pipelines

for plankton imagery have also undergone much development

(Irisson et al., 2021). Initially, plankton underwater imagery was

hand-sorted, but as hard- and software became increasingly

available, plankton sorting was automated on desktops with

dedicated graphics cards. More recently, university and national

supercomputing center machines with enterprise-level graphics

cards for machine learning (e.g., NVIDIA A100/V100/P100;

Schmid et al., 2021) have become widely available. However,

computing time on high-end machines with powerful graphics

cards must often be shared with other labs. One solution to this

limitation is to tap into nationally funded supercomputing centers,

for instance through NSF’s XSEDE infrastructure (now ACCESS;

Schmid et al., 2021). XSEDE and ACCESS themselves allocate

resources on major national supercomputing centers such as the

San Diego Supercomputing Center, or the Pittsburgh

Supercomputing Center. While such computing power is critical

for analyzing large datasets, they are by necessity ‘post-cruise’

analysis tools, as large node clusters are not portable.

The fact that plankton imagery is usually analyzed after the

cruise due to the large quantity of data, precludes it from being used

for adaptive sampling, which by definition needs near-immediate

data availability. With advancements in ocean technology, thanks to

the increased affordability and availability of advanced hard-, and

software, the number of studies working on real-time identification

and adaptive sampling based on different underwater vehicles has

increased though in recent years (Fossum et al., 2019; Ohman et al.,

2019; Stankiewicz et al., 2021; Bi et al., 2022). However, having the

necessary computing power at sea to classify large quantities of

videography remains a bottleneck.

Recent increased availability of edge servers in the civilian

sector may resolve this bottleneck, enabling oceanographers to

take significant computing power to sea with the potential to

acquire and analyze extensive data sets while at sea and even

during active deployments. In the case of plankton imaging, edge

servers coupled with deep-learning pipelines, enable researchers to

not only store and back-up the data on redundant drives, but to

process the incoming videography (i.e., segmentation and

classification), and analyze the data for distributional patterns,

all while the instrument is being towed behind the ship. These

combined technologies enable the scientific sampling plan to

change based on real-time information gathered at-sea. This

approach has major consequences for the way oceanographic

research can be conducted as it makes adaptive sampling

possible - meaning that oceanographic features of interest, e.g.,

accumulations of particular taxa in low or even hypoxic oxygen

waters on the NCC shelf (Chan et al., 2008; Chan et al., 2019), can

be targeted for resampling immediately after their detection. A

separate benefit of processing data at sea is the ability to reduce (or

completely remove) the lag between scientific research cruise

completion and being able to work with data for ecological

analyses. Here we describe a deep learning pipeline for plankton

classification at sea, including databasing and visualization for

adaptive sampling. We describe the necessary hardware setup for

such an adaptive sampling processing pipeline and how it could be
Frontiers in Marine Science 03
adapted for other imaging systems. The major deliverable is the

open-sourced code for the pipeline including classification as well

as automation scripts for databasing and visualization. At-sea

processing of complex data has the potential to transform

oceanographic science.
2 Materials and equipment

2.1 In-situ ichthyoplankton imaging
system-3

The In-situ Ichthyoplankton Imaging System (ISIIS) vehicle has

undergone several design modifications since its early inception

(Cowen and Guigand, 2008). Here we report on the third vehicle

iteration or model - the ISIIS-3. ISIIS-3 (Figure 1) was developed

based on several lessons learned from the original design, including

a robust open-frame sled design and dual tow point bridle that

promotes the shedding of buoyed markers of active fishing gear

(e.g., crab pots). The system includes a dual camera setup (55 mm
pixel resolution) instead of a single camera to enable a narrower sled

design, but without compromising the total sampling volume of 180

L s-1. The system is also more modular than the ISIIS-1 and ISIIS-2

towed vehicles, enabling easier integration of new electronic

components. For instance, ISIIS-3 is fitted with a Sequoia

Scientific LISST-200X particle imager covering the 1 mm - 500

mm size range, a CTD (Sea-Bird SBE 49 FastCAT), dissolved oxygen

probe (Sea-Bird 43), fluorescence sensor (Wet Labs FLRT),

photosynthetically active radiation sensor (PAR; Biospherical

QCP-2300), and a pH sensor (Seabird SBE 18). ISIIS-3 is towed

behind the ship at 2.5 m s-1 where it undulates typically between 1 m

and 100 m depth or as close as 2 m above the seafloor in shallower

waters on the shelf. Data are continuously multiplexed in the ISIIS-3

vehicle, and then sent to the ISIIS-3 control computer on the ship

through the glass-fiber of the oceanographic wire, where data are

then de-multiplexed and time-stamped.
2.2 Edge server configuration at sea

The edge server used here was a Western Digital (WD)

Ultrastar-Edge MR with two Intel Xeon Gold 6230T 2.1 GHz

CPUs, each with 20 cores (40 cores total), a NVIDIA Tesla T4

GPU, 512 GiB DDR4 memory, >60 TB of NVMe flash storage, as

well as 100 GbE and 10 GbE networking (Figure 2). The edge server

ran with Ubuntu 20.04 and DNS, DHCP, TFTP, and HTTP

services, enabling the setup of an intranet around the edge server.

The NVMe file space of the edge server was configured into a RAID

to allow for limited redundancy; specifically, we use ZFS cut with

RAIDZ2 with no spares. This provided around 40 TB of usable

space and allowed failure of a drive without having to rebuild the

drive during data collection. Rebuilding a drive during live data

collection would slow down write speed substantially and

potentially lead to a loss of image frames.

The DHCP on the edge server enabled other machines on the

network (switch and VLAN) to be serviced by the edge server
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(Figure 2). This allowed us to deploy a Dell S4148F switch with 10

GbE, 40 GbE and 100 GbE ports to support a large range of devices

that needed to be connected to the edge server. SFP+ to RJ45

transceiver modules were used to allow laptops and other devices

to connect to the isolated network. The DHCP server was configured

to have known hosts with fixed addresses to best support services that

relied on being on the same IP upon reboots. SAMBA services were

used to allow the ISIIS-3 control computer (running Windows 10) to

directly save incoming video data to the edge server. An additional

Ubuntu 20.04 desktop was used to control the processing pipeline on

the edge server through SSH, and a MacOSX desktop was used for

running the webserver that visualized real-time classified plankton

information (e.g., length of segmented particles and plankton as well

as taxonomic identity), using the Python API 2.0 HeavyDB interface

(Schmid et al., 2023a; see reference to heavyDB). A 10-m 100 GbE

QSFP28 AOC cable allowed the set-up of the edge server in a separate

temperature-controlled server room on the ship, removing the edge

server fan noise from the science labs while retaining an extremely

fast connection and leaving enough I/O for simultaneous writing of

incoming imagery, data offload, pipeline control, and sending of data

to a database. The ISIIS-3 control computer only supported a 10GbE

network card, but over the SAMBA mounts the ISIIS-3 control

computer was able to write to the edge server at ~400MB/s, about

twice the throughput that was needed for the raw imagery, leaving

plenty of I/O on the drives of the edge server to simultaneously

process data.
Frontiers in Marine Science 04
3 Methods

3.1 Image processing pipeline

The image processing pipeline controller scripts are primarily

written in Python 3 and call binaries that need to be compiled first

(Figure 3). Segmentation (https://github.com/paradom/Threshold-

MSER/tree/spectra-dev) and classification binaries are provided in

the zenodo pipeline repository for this paper (http://dx.doi.org/

10.5281/zenodo.7739010). Incoming video files are automatically

ingested into the image processing pipeline by the automate.py script

monitoring the incomingdata folder (Figure3). IncomingAVIfiles are

segmented via threshold-MSER (T-MSER; Panaïotis et al., 2022) using

the CPU cores of the edge server (Figure 3). T-MSER is optimized for

multithreading and general speed due to the volume of data generated

by the two ISIIS-Deep Particle Imager (DPI) cameras. Multithreading

of segmentation and classification is controlled by the OpenMP

Python library and based on available resources. On the edge server

with 40 cores, 20 processes can be run in parallel. After the flat-fielding

of individual frames, T-MSER uses a signal-to-noise ratio (SNR)

switch, after which low noise frames are directly segmented using

Maximally Stable Extremal Regions (MSER,Matas et al., 2004; Bi et al.,

2015; Cheng et al., 2019), and high noise frames are first pre-processed

with a thresholding approach before applying MSER. T-MSER was

written inC++.The lower size cutofffor the segmentation, determining

which size segments (i.e., plankton) are retained, can be set to the
FIGURE 2

The hardware setup associated with the ISIIS-3 control computer and edge server. ISIIS-3 is connected to the ISIIS-3 control computer via fiber (all
optic connections in blue). Incoming data are used for flying the sled (e.g., using depth information, altimeter, and speed through the water) and
incoming imagery and environmental sensor data are time-stamped and deposited directly on the edge server. While the connection from ISIIS-3
control computer to the switch is rated at 10 GbE, the connection from the switch to the edge server is a 100 GbE active optics cable (AOC) to
allow for additional I/O for running the pipeline, offloading data, and sending data to the visualization display.
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desired value based on the study’s objectives; here we used 49 pixels of

object area as the lower size cutoff for retention of segments.

As soon as AVIs are segmented automate.py starts the

classification process on these segments using a sparse

Convolutional Neural Net (sCNN, Graham et al., 2015; Luo et al.,

2018; Schmid et al., 2021). The edge server’s NVIDIA T4 GPU

(Figure 3) supported four classification processes running in parallel.

The sCNN was previously trained on an image library containing 170

classes of particles and plankton from the NCC, until the error rate of

the classifier plateaued at ~ 5% after 399 epochs. After applying the

classifier to new imagery, a random subset of images was classified by

two human annotators and compared with the automated

identifications to create a confusion matrix. Based on the confusion

matrix information (e.g., false positives and true positives) and the

knownunderlyingassignedprobabilities per imagegivenby the sCNN,

we used probability filtering (Faillettaz et al., 2016) to remove very low

probability images from the dataset that lead to false positives and false

negatives. Using LOESS modeling, we established at which assigned

probability a cutoff had to be made to achieving 90% predictive

accuracy for the taxon. Removal of these low‐confidence images
Frontiers in Marine Science 05
retains true spatial distributions (Faillettaz et al., 2016). The process

and accuracies are described in more detail in previously published

work (Briseño-Avena et al., 2020b; Schmid et al., 2020; Swieca et al.,

2020; Schmid et al., 2021; Greer et al., 2023; Schmid et al., 2023b). The

pipeline described here is open-sourced at: http://dx.doi.org/

10.5281/zenodo.7739010.
3.2 Database and webserver visualization

Ship data (e.g., GPS feed), ISIIS-3 environmental sensor data

(e.g., pH, dissolved oxygen), plankton size measurements, and

classification probabilities are merged based on microsecond-

accurate timestamps by the populate_heavyai.py script and its

subroutines (Figure 3). The same script also uploads merged data

into the HeavyDB database as soon as they become available. A

heavy.ai dashboard that is linked to HeavyDB can then visualize the

data in an immersive way, enabling data interpretation and

adaptive sampling.
4 Results

4.1 At-sea processing with the edge server

In July 2022, ISIIS-3 was towed along six transects off the WA

and OR coasts with each transect ranging from 8 to 14 h long.

During these tows, ISIIS-3 imaged plankton ranging from small

phytoplankton and protists, to crustaceans, gelatinous plankton

such as salps and appendicularians, and larval fishes. These

organisms spanned a large size range and differed significantly in

their body form (e.g., fragile gelatinous plankton vs hard-shelled

crustaceans, Figure 4). By imaging these different organisms in a

non-invasive way, we obtained data on their overall distribution

and abundance across multiple scales, as well as insights into their

natural behaviors and orientations in the water column and

potential predators-prey relationships (Ohman, 2019). Along the

six transects, 36 TB of data were collected from the two ISIIS-DPI

cameras, totaling over 120 h of imagery (60 h per camera).

T-MSER segmentation on the edge server’s 40 CPUs took 1.1

mins per 50 sec of video data, while classification on the T4 GPUs

took an additional 2.65 mins on average, bringing the total time lag

between data collection and having classified results to 3.75 mins.

The speed of the pipeline becomes even more apparent when taking

into account that an AVI contains between 23,000 and 225,000

segments of particles and organisms, depending on the biological

productivity (Panaïotis et al., 2022). Especially dense phytoplankton

layers led to longer segmentation and classification times. With that

in mind, segmentation and classification together can take between

2.5 - 5 min per 50 sec AVI.
4.2 Database and visualization of plankton
classifications for adaptive sampling

The HeavyDB database updated automatically as new data were

classified, and included the taxonomic identifications and lengths of
FIGURE 3

Pipeline schematic depicting the imagery data processing pipeline
deployed at sea. The automate.py script controls all subsequent
processes, including ingestion of imagery into segmentation and
classification, merging of the different data products, and upload
into HeavyDB. The HeavyAI dashboard monitors the HeavyDB and
visualizes new data (e.g., depth stratified plankton identifications) as
they become available. The dynamic and interlinked figures in the
dashboard are then used for adaptive sampling. Flowchart text with
file extensions depicts all the files necessary to run the pipeline,
which can be found in the online repository. Text without file
extensions describes larger concepts and gives context.
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each detected object together with their environmental data (e.g., pH,

oxygen), as well as GPS location from ship sensors. Database and

heavy.ai dashboard were very responsive, running on the edge server’s

512 GBmemory and the NVMe flash storage. Hence, visualization of

data on the heavy.ai dashboardwas smooth andupdated quickly based

on the user selections (Figure 5). The dashboard can be customized by

the user to show different data presentations. Shown here are standard

features – number of classified images used in the data presentation,

number of unique taxa classified, allocation of classified images across

taxa, sampling location, as well as location specific sampling depth
Frontiers in Marine Science 06
(note, in this case, our transect ran east-west along a constant latitude).

The user can select which taxa (or all) to display – in this example, we

show the vertical distribution (in 2-mdepth bins) of all taxa combined.

Wealso show the size spectrumof all classified segments across 76 bins

of major axis segmented image size (i.e., based on number of pixels).

Other datapresentations caneasilybedevelopedby theuserbyclicking

“add chart” on the dashboard. Data presentation is updated

continually as new classifications are completed. Heavy.ai dashboard

graphics are dynamic and interlinked so that selection of a taxon, size

range, or time interval, leads to all other plots defaulting to that sub-

selection. For instance, selection of Oithona sp. copepods in the taxa

overview leads to the size spectrum and 3-D vertical distribution plots

showing only data of Oithona sp. copepods. Multiple simultaneous

selections are possible and a powerful and intuitive tool for

adaptive sampling.
5 Discussion

Using the edge server for live classification of plankton imagery

yielded bountiful data for exploration during the cruise and for

adaptive sampling. Use cases for adaptive sampling in biological

oceanography that have the potential to transform oceanography

include on-the-fly and fast detection of species of interest, detection

and resampling of thin layer associated organisms, as well as high

spatial resolution adaptive sampling of taxa present in, or at the

interface of, environmental features of high importance such as low

oxygen zones on the NCC shelf.
5.1 Example applications for
adaptive sampling

Access to real-time or near real-time taxon-specific distribution

and abundance data is novel in most oceanographic studies,

particularly access to very detailed spatial and vertical resolution.

With such data in hand, while at sea, the researcher can be

responsive to short-lived events (e.g., thin layers, sub-mesoscale

eddies, other aggregative features), to specific taxa that might be

ephemeral or highly patchy, and to environmental conditions that

are of particular interest (e.g., low oxygen). With the ability to

identify such features or taxa of interest while still at sea, the

researcher can adapt their sampling to a more specific target.

Below are several examples where sampling could be adapted in

response to the detection of specific features or events.
5.1.1 Vertical migration
Diurnal vertical migration (DVM) is a well-known, but often

challenging process to adequately sample biologically. Acoustic

echograms can help visualize the movement of reflective organisms,

but actual species composition of the observed acoustic signal requires

in situ sampling. While a plankton net might be able to verify the

dominant species present in such a feature, it will not provide detailed

vertical distribution data of different species. Fine spatial separation

may occur under some scenarios as different species may swim/rise at
FIGURE 4

ISIIS-DPI images of key taxa in the Northern California Current
including primary producers, protists, crustaceans, cnidarians,
ctenophores, echinoderms, heteropods, pteropods, chaetognaths,
pelagic tunicates, and larval fishes.
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different speeds, and determination, let alone verification of that

pattern is difficult at best with only acoustic data (Figure 6). Towing

an imaging system such as ISIIS-3with near-real time data output, can

enable a detailed biological survey of the feature, even as it is rising or

falling in the water column.

5.1.2 Thin layers and other patchy features
Algal thin layers are often highly transient in location and

persistence. While their presence may be predictable in some

situations (e.g., Greer et al., 2013; Greer et al., 2020; McManus
Frontiers in Marine Science 07
et al., 2021), actual encounter of them may be a chance occurrence,

and indication of their presence may be vague (e.g., Chl a signal

appearing highly noisy). Verifying the presence, and detailing the

vertical distribution of organisms associated with a thin layer can

only be done with focused vertical sampling. Real-time high

resolution imagery data can more accurately verify the presence

of a thin layer and its various species constituents, and then can be

utilized in developing an adaptive sampling plan to more fully

resolve the dimensions and species interactions associated with the

thin layer.
FIGURE 5

(A) The HeavyAI dashboard displayed on the adaptive sampling display. The user can add and delete different figure types. Clockwise from the upper
left, are: the vertical distribution of plankton counts in the water column, the relative abundance of taxa (as a pie chart), the geolocation of samples
(map), the size distribution of plankton taxa (histogram), and the vertical distribution of plankton taxa with longitude. Selecting a swath of vertical
distribution or a specific taxon in the pie chart automatically adapts all other figures to the sub-selection, for instance only showing a certain taxon –

multiple sub-selections at the same time are possible (e.g., adapting all figures to only show Oithona sp. copepods in the top 20 meters that have a
certain size). The HeavyAI dashboard monitors the underlying HeavyDB for new incoming data to display. (B) This setup lends itself to near real-time
data exploration and adaptive sampling.
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Vertically and spatially discrete aggregations of other organisms

are not uncommon (Robinson et al., 2021), though difficult to

predict. Their presence may be associated with a specific life stage,

or in response to certain biological or physical features and their

relative importance (i.e., as a predator or prey source) may depend

on the extent of the patch (or bloom). For example, small patches of

dense hydromedusae aggregations (Figure 7), which can exert

substantial predation pressure on larval fishes and copepods

(Corrales-Ugalde and Sutherland, 2021; Corrales-Ugalde et al.,

2021), are difficult to sample with nets. As with other

aggregations, when hydromedusae are identified though in-situ

imaging and real-time AI at sea, researchers have the potential to

adjust sampling efforts to resolve the dimensions and density

of patches.
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5.1.3 Specific environmental conditions of
high interest

As with focused sampling around biological aggregations,

adaptive sampling around specific oceanographic conditions can

reveal novel biological patterns and associations. Follow-up

sampling at various physical interfaces, as identified by other

sensors, might reveal changes in organism distributions

warranting further study. For example, vertical or horizontal

frontal features detected by Acoustic Doppler Current Profilers

(ADCP; Figure 8), might suggest broad, then more fine-tuned

sampling as real-time data analyses reveal spatial biological

patterns. Eddie fronts (potentially detected by ADCP) are prime

examples for where adaptive re-sampling of the eddy’s interface

could provide valuable insight into the taxonomic make-up of eddy,

interface, and exterior water masses (Schmid et al., 2020).

Finally, coupling physical and optical sensors can enhance

adaptive sampling capability. On the NCC shelf, in particular, low

oxygen upwelled water can quickly become further hypoxic when

primary productivity decays after phytoplankton blooms (Chan et al.,

2008). Such lowoxygen zones are increasing in frequency andduration

and have become an emerging threat to fisheries (Chan et al., 2008;

Chan et al., 2019) that can lead to substantial financial loss. Sensors on

imagingsystemscandetect such lowoxygenzones (Figure9) andusing

the imager, these low oxygen waters can be re-sampled on transects

passing fromnormoxicwaters, through the interface, and into the core

of hypoxic waters. Near-real-time processing can detect the expected

and unexpected presence of different taxa, which can lead to new

insights and hypotheses. For example, in 2016, anchovy larvae were

imaged in low oxygen waters (Briseño-Avena et al., 2020b) on the

Newport Hydrographic Line, a transect sampled since 1961 (Peterson

and Miller, 1975).

In combination, the examples presented here are a considerable

advancement in our ability to find, identify, and thoroughly sample

ephemeral and other hard-to-detect features in the ocean. Adaptive

sampling using cutting edge technology is critical to expand our

understanding of the processes that are driving ocean biology.
5.2 Processing speeds

The edge server’s NVMe flash drives and CPU succeeded in

segmenting the incoming.avi video files almost at 1:1 ratio of

collection time vs processing time. A single NVIDIA T4 GPU

with 16 GB memory was able to classify data in four parallel

instances, adding on average another 2.65 mins for classification

of each AVI. While the achieved processing times were good and
FIGURE 7

A snapshot of ISIIS-DPI imagery as the sled is towed along a transect in the southern California Current. Dense patches of organisms, in this case
hydromedusae, can be observed and re-sampled to identify the extent of patches and layers. Using near real-time classification with an edge server
enables the identification and quantification of dense patches. The layer shown here spans 1.17 m from edge to edge.
FIGURE 6

A snapshot from the EK80 18 kHz backscatter signal showing
evidence of plankton diel vertical migration to surface waters during
early evening hours. Time is on the x-axis, depth on the y-axis.
Combining live observations from the EK80 with live ISIIS-DPI
imagery and the heavyAI dashboard enables a new way of adaptive
sampling by being able to pinpoint the taxa comprising such diel
migration patterns.
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within our expectations, we envision more powerful hardware in

conjunction with even more specialized software to segment

incoming AVIs at a ratio of 1:0.5 or faster – and cutting down on

classification time in a similar way, in order to go from near real-

time processing and display of data to real-time classification and

display. Depending on the detected oceanographic features or a

priori features the user wants to investigate with regards to the

distribution of taxa, the ability to see which taxa are present with a

1 min time lag vs a 5 mins time lag, likely makes a big difference.
5.3 Implementing the adaptive sampling
pipeline with other imaging system setups
and edge servers

The pipeline code and workflow described here were designed

with the idea of being agnostic to the imaging system used as well as

the specific edge server available. For instance, while our specific

setup receives large quantities of data through a fiber optic cable

that are then ingested into the pipeline on the edge server, this is by

no means a necessary pathway. The output of any imaging system

could be used with this setup by similarly creating network drives

on the imaging system’s data collection computer, pointing to the

edge server for writing files and immediate processing – how the

imagery gets to the edge server is of little importance as long as the

time lag between collecting the data and starting to process is

minimized. This also means that while the presented pipeline is

targeting live data-feed imaging systems, one could easily take the

setup described here and supply data from profilers that do not

transmit data live (e.g., the Underwater Vision Profiler 6), as soon as

the data from a profile is retrieved. In that context, a user can also

replace the segmentation and classification described here with an

instant segmentation approach such as the You Only Look Once

(YOLO; Jiang et al., 2022) algorithm or similar. The idea of an edge

server is to have powerful hardware (i.e., CPU, GPU, memory,

storage) in a relatively low power consumption package that has a

small footprint and is ruggedized. There are a diversity of edge

servers available on the market that can be bought or home-built
FIGURE 9

ISIIS-3 control display during a transect on the Heceta Head line (43.98° N) off Oregon, with environmental data plotted on the left (e.g., dissolved
Oxygen as low as < 1 ml L-1 at 100 m depth). The right panel shows the undulating flight pattern (red line) and demonstrates ISIIS-3’s ability to
sample hypoxic waters at near bottom depths (blue points are the seafloor as indicated by the altimeter).
FIGURE 8

A snapshot of an ADCP vector diagram as seen on the real-time
readout on research vessels. Using real time classification of
encountered plankton in conjunction with ADCP data allows the
immediate re-sampling of ocean conditions of high importance,
such as vertical and horizontal fronts. In this ADCP vector diagram,
surface waters (5-60 m) are characterized by distinct northeastward
flow, while at depths below 75 m water is moving in a northwest to
west direction. Using readouts from the heavyAI dashboard, the
ISIIS-3 imager can be towed specifically at the interface of such
divergent flows in order to collect the most insightful data on taxa
distributions, potential predator-prey interactions facilitated by such
features, as well as behavioral observations. The y-axis shows depth;
however, each arrow has a directional and speed component.
Colors are not quantitative but indicate shallow and deep bins. The
direction of the arrows indicates 360 deg direction, with arrows
upward indicating “North”.
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and that could be used instead of the one used here. When

switching to a GPU-based YOLO or Mask R-CNN (He et al.,

2017) object detection, the user would be less reliant on CPUs and

thus might prefer a setup with fewer CPUs while swapping in

several more powerful GPUs instead.
5.4 Conclusion

ISIIS-3 in conjunction with a deep learning pipeline deployed on

an edge server at sea is a powerful combination for adaptive sampling,

reducing lag between data collection and addressing on ecological

questions, as well as for scientific discussions with cruise participants.

Several applications of adaptive sampling were presented that have the

potential to be transformative for oceanographic research, including in-

situ target species identification, and HAB thin layer characterization.

In the northern California Current, where hypoxia and ocean

acidification are endangering commercially important taxa such as

Dungeness crab and hence the livelihood of communities, adaptive

sampling of taxa distributions in such features could prove a very

effective tool for better understanding the responses of such taxa to

environmental disturbances.
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