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Toward efficient deep learning
system for in-situ plankton
image recognition

Junbai Yue1†, Zhenshuai Chen1†, Yupu Long1, Kaichang Cheng1,
Hongsheng Bi2 and Xuemin Cheng1*

1Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China,
2University of Maryland Center for Environmental Science, Solomons, MD, United States
Plankton is critical for the structure and function of marine ecosystems. In the past

three decades, various underwater imaging systems have been developed to

collect in-situ plankton images and image processing has been a major

bottleneck that hinders the deployment of plankton imaging systems. In recent

years, deep learning methods have greatly enhanced our ability of processing in-

situ plankton images, but high-computational demands and longtime

consumption still remain problematic. In this study, we used knowledge

distillation as a framework for model compression and improved computing

efficiency while maintaining original high accuracy. A novel inter-class similarity

distillation algorithm based on feature prototypes was proposed and enabled the

student network (small scale) to acquire excellent ability for plankton recognition

after being guided by the teacher network (large scale). To identify the suitable

teacher network, we compared emerging Transformer neural networks and

convolution neural networks (CNNs), and the best performing deep learning

model, Swin-B, was selected. Utilizing the proposed knowledge distillation

algorithm, the feature extraction ability of Swin-B was transferred to five more

lightweight networks, and the results had been evaluated in taxonomic dataset of

in-situ plankton images. Subsequently, the chosen lightweight model and the

Bilateral–Sobel edge enhancement were tested to process in-situ images with

high level of noises captured from coastal waters of Guangdong, China and

achieved an overall recall rate of 91.73%. Our work contributes to effective deep

learning models and facilitates the deployment of underwater plankton imaging

systems by promoting both accuracy and speed in recognition of plankton targets.

KEYWORDS

in-situ plankton images, image processing, knowledge distillation, model deployment,
deep learning
1 Introduction

Plankton play a pivotal role in marine food webs and are essential for integrated

ecosystem assessment (Brun et al., 2015; Piredda et al., 2017; Braz et al., 2020). For example,

plankton often provide information on living resources (Wang et al., 2022), environmental

conditions (Lv et al., 2022), and fisheries (Azani et al., 2021). Effective monitoring of
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plankton allows researchers to deduce their dynamics and identify

the underlying processes (Bi et al., 2022). Thus underwater imaging

systems are increasingly being deployed to collect in-situ plankton

images on various platforms (Davis et al., 1996; Benfield et al., 2000;

Gorsky et al., 2000; Cowen and Guigand, 2008) to estimate

abundances of different plankton groups and examine their

spatial and temporal dynamics (Bi et al., 2013; Hermand et al.,

2013; Guo et al., 2018; Luo et al., 2018). In recent years, imaging

systems have increasingly been used for high-frequency long-term

plankton monitoring (Campbell et al., 2020; Orenstein et al., 2020;

Song et al., 2020; Bi et al., 2022).

In plankton image processing, it is difficult to balance accuracy

and processing speed. To improve accuracy, researchers utilize not

only advanced optical mechanisms to acquire more information

(Buskey and Hyatt, 2006; Hermand et al., 2013; Guo et al., 2018) but

also deep learning systems to achieve high accuracy (Li and Cui,

2016; Luo et al., 2018; Kyathanahally et al., 2021; Li et al., 2021;

Kyathanahally et al., 2022). As a result of these evolutions, the

speeds of computing have dropped, making it difficult to deploy

excellent algorithms on site because of the following: (1) The

amount of raw data increases with the continuous sampling; (2)

neural networks in deep learning have a huge number of parameters

and computations; (3) as data transmission is often limited in open

ocean, the processing ability of underwater computing hardware is

extremely limited. Therefore, it is necessary to develop portable data

processing procedures for independent underwater equipment to

deal with abovementioned problems. In other words, the algorithm

should be improved in terms of computing speed and storage

capacity while ensuring the accuracy and generalization.

In the era of deep learning, researchers try to compress the

neural network models to reduce the amount of parameters and

complexity of calculation. The mainstream methods include model

pruning (Tanaka et al., 2020), model quantization (Fan et al., 2020),

parameter sharing (Wu et al., 2018), and knowledge distillation

(Hinton et al., 2015). Knowledge distillation is able to realize the

interaction of parameters and features among multiple neural

networks and possesses excellent performance and flexibility. In

general, large-scale models tend to have better learning abilities and

can accurately extract the key features of the samples in datasets.

According to the core idea of knowledge distillation, large-scale

models are taken as the teacher networks, and the iterative

operations aim to reduce the loss function between the

probability distributions or feature vectors output of the teacher

networks and other smaller scale models (called the student

networks). With the progress of training, the student networks

gradually learn the feature extraction mechanisms guided by the

teacher networks. It means that small-scale models can achieve

equal accuracy in specific tasks as large-scale models through this

method. Knowledge distillation was proposed by Hinton et al., 2015

and initially used Kullback–Leibler (KL) divergence as the loss

function. Subsequently, various works were proposed in multiple

distillation strategies. For example, Romero et al., 2014 proposed

the distillation method using feature maps computed by middle

layers in neural network (FitNet). Peng et al., 2019 and Tung and

Mori, 2019 demonstrated the distillation processes based on
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correlation congruence (CC) and similarity preserving (SP),

respectively. Similarly, it is also worth exploring to propose model

compressing techniques in the scenarios of in-situ plankton

image processing.

Based on the characters of PlanktonScope (an in-situ underwater

imaging system proposed by Bi et al., 2022 and attached algorithm

pipeline), the present study attempts to introduce knowledge

distillation method and demonstrate efficient detection and

recognition tasks on in-situ plankton images. We designed and

implemented an inter-class similarity distillation algorithm based

on feature prototype projection (prototype projection distillation,

PPD) to realize the compression of forward calculation model. In

order to seek the appropriate teacher network and ensure the original

accuracy, we carried out a comparative study and examined the

accuracy of five convolution neural networks (CNNs) and three

Transformer architectures. Combined with transfer learning, the

Swin-B network model (from Transformer architectures) was

found to express the highest accuracy and was selected as the

preliminary algorithm for classification (teacher network).

Meanwhile, a Bilateral–Sobel edge enhancement method was

proposed to highlight the edge pixel regions of targets to suppress

the noise and background of in-situ images. This technique aimed to

solve the segmentation difficulties caused by noise stickiness and edge

destruction. Finally, the selected student networks and Bilateral–

Sobel edge enhancement were integrated into algorithm pipeline, and

these schemes were evaluated in accuracy and time consumption on

the dataset captured via PlanktonScope in the coastal areas of

Guangdong, China.
2 Materials and methods

The knowledge distillation and edge enhancement method are

employed in the procedures of recognition and detection in

algorithm pipeline, respectively. In Section 2.1, the algorithm

pipeline of PlanktonScope is presented and the datasets applied in

experiments are described. In Section 2.2, the basic theory and

mathematical model of the proposed inter-class similarity

knowledge distillation method based on feature prototype

projection (PPD) are illustrated in details. In Section 2.3, as

candidates for the teacher network in distillation, Transformer

and CNN model families are described. In Section 2.4, the

Bilateral–Sobel edge enhancement algorithm used to improve

effect of detection is presented.
2.1 Description of algorithm pipeline
and datasets

2.1.1 Basic algorithm pipeline of PlanktonScope
Figure 1 presents the content of algorithm pipeline. Plankton

image detection and recognition include two stages: extraction and

classification (Bi et al., 2015). Extraction is to extract the pixel

regions of the targets from the in-situ images to separate the targets

and background. Classification is to extract the features of the
frontiersin.org
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segmented targets and judge the class of the targets according to

their features. The steps can be summarized as follows: (1) input the

in-situ image and adjust the brightness; (2) operate denoising and

edge enhancement; (3) implement the threshold segmentation

proposed by (Otsu, 1979) based on maximum between-cluster

variance to finish binarization; (4) demonstrate the morphological

closing operation (Said et al., 2016) to fill the discontinuities, holes,

and edge breaks; (5) implement the contour extraction based on

boundary tracking (Suzuki, 1985; Marini et al., 2018) to obtain the

regions of interest (ROIs) of the targets; (6) classify the detected

targets using the selected calculation model; and (7) operate

statistics of the quantity and species of plankton. The

contributions of PPD method and Bilateral–Sobel edge

enhancement are in steps (6) and (2), respectively.

2.1.2 Test dataset for detection and
recognition tasks

The dataset for efficiency test of the proposed methods was

collected by PlanktonScope in the coastal area of Guangdong,

China. This dataset contains 209 in-situ images (2180 × 1635) for

testing. These images are all 8-bit, and the whole set contains a total

of 494 plankton targets, of which 258 areMedusaes. In addition, the

other classes include Copepoda, Spirulina, Appendicularia,

Chaetognatha, and Echinodermata (in Figure 2). The ground

truths of ROIs are manually annotated. As the result of deep

diving depth and illumination conditions of the monitoring

system, the collected in-situ images are relatively dark, with pixel

value of brightness ranging from 22 to 163. Even the human eye
Frontiers in Marine Science 03
cannot distinguish a target in such weak contrast. Therefore,

brightness adaptive processing is carried out for images:

I0u,v =

pmax          Iu,v > pmax

Iu,v        pmax ≥ Iu,v ≥ pmin

pmin          Iu,v < pmin

8>><
>>: (1)

I00u,v =
255(I0u,v − pmin)
pmax − pmin

(2)

When the pixel values of one image are sorted, if the first 1%

and last 1% pixel values are removed, pmin to pmax is the value range

of rest pixels. Moreover, Equation 1 removes the extreme values,

and Equation 2 normalizes the other values to obtain the final result

of brightness adjustment. Figures 2A, B show a pair of original and

processed images.

2.1.3 Plankton dataset for classification training
To train and evaluate the classification networks, we used a

large-scale and standardized taxonomic dataset of plankton

captured in the South China Sea. This dataset was created over a

long period via PlanktonScope, and it has 30,720 segmented targets,

which have been divided into 12 classes. Each class contains 2,560

images (8-bit), of which 2,048 are in the training set, and 512 in the

test set. In addition, the size span of ROIs is in the range of 152–

12002 (pixels). The actual field of view corresponding to one image

is 4.796 cm × 3.597 cm, and one pixel converts to 22 microns.

Figures 2C–N show examples from different classes.
FIGURE 1

The flowchart of the algorithm pipeline and related results.
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2.2 Knowledge distillation framework for
model deployment

2.2.1 Basic theory of the method
Processing image on-site often suffers from limited computing

hardware. Therefore, it is necessary to reduce the number of

parameters and improve computing speed. An inter-class similarity

distillation method based on feature prototypes projection (PPD) was

proposed for model compression. This method can reduce the scale of

parameters and time consumption under the maintenance of accuracy.

The intermediate data output by the hidden layers of neural

networks are abstract representations after undergoing nonlinear

calculations and feature transformations. These data are the results

of feature extractions, and the corresponding calculations are the

expected knowledge. The core idea of knowledge distillation is to

impart expected knowledge from the teacher network (usually with

large parameters and high-recognition performance) to the student
Frontiers in Marine Science 04
network (usually with small parameters and high-computing

speed). The expected knowledge is generally the intermediate or

final result (feature or probability, etc.) from the teacher network

(Romero et al., 2014; Hinton et al., 2015; Peng et al., 2019; Tung and

Mori, 2019). Therefore, the loss function in the training of the

student network consists of two parts: one is the cross-entropy (CE)

loss L1 between the real label and the logical value output from the

student network and the other is the difference L2 of the

intermediate or final result between teacher and student

networks. The linear combination of these two parts constitutes

the final loss function L(L = aL1 + (1 − a)L2) to guide the training,

where the weight a balances the loss of the two parts and it is a

hyperparameter which needs to be selected artificially. This

hyperparameter a would bring great uncertainty to the

distillation effect, so we proposed a distillation method without

this hyperparameter through the experiments on the plankton in-

situ images.
FIGURE 2

Samples of datasets. (A) Original image before brightness adjustment; (B) processed result after brightness adjustment; (C–N) examples of taxonomic dataset
captured in South China Sea: (C) Appendicularia; (D) Chaetognatha; (E) Spirulina; (F) Copepoda_1; (G) Copepoda_3; (H) Unknown classes; (I) Skeletonema;
(J) Euphausiids; (K) Copepoda_2; (L) Creseis; (M) Medusae; and (N) Echinodermata.
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Figure 3 shows the overview of our distillation process. First, the

teacher network was trained on taxonomic dataset and converged

after multiple epochs. Then, we used the trained teacher network to

calculate (extract) the features of all samples, and took the

arithmetic mean value of features in each class as the respective

feature prototypes c. Subsequently, the training of student network

started. On forward calculation, both the teacher and student

network operated the calculation (extraction) of all samples to

obtain the feature expression ti andsi(the vectors output from

hidden layers). Then, the cosine similarity between the features of

all samples and the feature prototypes of each class is calculated to

obtain j(Teacher) and j(Student). Therefore, we could arrange the

results and obtain the inter-class similarity matrix of both teacher

and student networks. Next, we took the mean square error (MSE)

between the two matrices as loss function and operated

back propagation.

The inter-class similarity matrix of the teacher network was

regarded as the expected knowledge, so we only updated the

parameters of the student network to learn the distribution of

inter-class similarity. This resulted in the gradual improvement of

the recognition accuracy of the student network. Compared with

the classical knowledge distillation methods, the advantages of our

method are as follows: (1) The selection of feature prototype helps

to avoid the interference of feature outliers. (2) Only one loss

function relying on inter-class similarity is used, without extra

calculation of classification loss. (3) There is no need to set

hyperparameters a , which reduces the impact of manual factors

on performance.

2.2.2 Mathematic details of the model
The learning mechanism of neural network can be understood

as the mapping from the sample space (input data) to the high-

dimensional feature space. Using xi and fi to represent the sample

and feature vectors, respectively, the cosine similarity between two

feature vectors is defined as follows:

si,j =
fif

T
j

‖ fi ‖2 ‖ fj ‖2
(3)
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For classification tasks, the ideal situation is that the feature vectors of

different classes are orthogonal to each other, and those of the same

classes are toward the common direction, corresponding to 0 and 1 in

similarity, respectively. The network is aimed at reducing the inter-class

similarity and increasing the intra-class similarity. A trained network

which satisfies the test standard is considered to satisfy the

aforementioned requirements. The network can be regarded as a

feature extractorF to encode the sample vectors:

ti = F (xi) (4)

for the class labeled byk, we calculate the means of all vectors tk in

feature space T k and normalize them by l2-norm to obtain the feature

prototype:

ck =
t0k

‖ t0k ‖2
=

t0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
D

j=1
(t0k,j)

2

s , t0k =
1
Mk o

ti∈T k

ti
(5)

C = Concat(c1, c2,…, cK) (6)

whereMk donates the number of vectors labeled by class k and D

donates the dimension of tk. Equation 6 is the matrix representation

of the combination of all classes’ feature prototypes.

Furthermore, the inner product of the teacher feature ti (also

standardized by l2-norm), and the feature prototype ck is performed to

obtain the cosine similarity distance, which is the expected knowledge in

distillation, as shown in Equation 7. To simplify the calculation, the

cosine similarity calculation between the teacher feature ti and all feature

prototypes can be obtained in the form ofmatrices, as shown in Equation

8.

ji,k =
tic

T
k

‖ ti ‖2
=
o
D

j=1
ti,jck,jffiffiffiffiffiffiffiffiffiffi
o
D

j=1
t2i,j

s (7)

F(ti) =
tiC

T

‖ ti ‖2
=

tiC
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
D

j=1
(ti,j)

2

s (8)
FIGURE 3

Process overview of the proposed PPD methods.
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For the student network, the untrained encoder is considered

unreliable. However, it can calculate the student feature si initially.

Using Equations 7, 8, we obtain Equations 9, 10 to calculate the

cosine similarity of student features:

ji,k =
sic

T
k

‖ si ‖2
=
o
D

j=1
si,jck,jffiffiffiffiffiffiffiffiffiffi
o
D

j=1
s2i,j

s (9)

F(si) =
siC

T

‖ si ‖2
=

siC
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
D

j=1
(si,j)

2

s (10)

We calculate the MSE loss and use the gradient descent

algorithm to guide the student network to learn the similarity

between the individual samples encoded by the teacher network

and finally improve the recognition ability of the lightweight

networks. The loss function is expressed as follows:

LPPD−MSE =
1
No

N

i=1
‖F(ti) −F(si) ‖22 (11)
2.3 Transformer models

Underwater plankton images are often acquired under

suboptimal imaging conditions. Despite the complete extraction

of ROIs, targets often remain visually unclear. A CNN model can

continuously be iterated into a forward computing graph for feature

extraction through gradient descent. The spatial perception of CNN

is the regular expansion of receptive field with the convolutional

layers increasing. This implies a fixed interaction mode of global

and local information of the image and causes a trend of overfitting

and parameter redundancy. Therefore, plagued with complex

features and high requirements of data processing, new neural

network architecture, that is, the Transformer was chosen to

improve the recognition accuracy at the beginning of teacher

networks’ training. This network architecture has demonstrated

its strong performance over CNN in ecological automatic

classification (Kyathanahally et al., 2022).

Transformer was proposed by Google in 2017 (Vaswani et al.,

2017) and has achieved great success in the field of natural language

processing (NLP). It employs a multi-head attention mechanism to

extract features at any distance in the entire text, so that a single

piece of information can flexibly implement multi-position and

cross-scale interactive encodings. In 2020, Vision Transformer

(ViT) was proposed (Dosovitskiy et al., 2020), and the encoder

part of the initial Transformer was applied to extract image features.

This scheme achieved the highest results in various computer vision

(CV) tasks. To further incorporate the characteristics of image

processing, the hierarchy of feature interactions in sub-regions of

image (tokens) and their internal pixels were considered, which led

to the proposal of Swin Transformer (Liu et al., 2021). This network

shows better performance in characterization process and improves
Frontiers in Marine Science 06
computational efficiency, which renders it potentially applicable to

various fields.

This study focuses on the performance of Transformer

architectures on the plankton taxonomic dataset (Section 2.1.3).

We utilized several CNN and Transformer neural networks to

evaluate the classification accuracy and computing speed.

Furthermore, given the effectiveness of transfer learning (Pan and

Yang, 2010) in plankton classification studies (Orenstein and

Beijbom, 2017; Lumini and Nanni, 2019), we introduced transfer

learning to provide pre-trained models (PTMs) for neural networks.

These PTMs showed excellent performance in general CV scenarios,

and their parameters experienced many iterations on large-scale

public datasets. In some applications with specific requirements,

these models can reach the accuracy by secondly training on the

small datasets and fine-tuning the parameters. Under traditional

training modes, the same accuracy needs a large amount of data and

training times. The pre-training is beneficial to save computing

resources and reduce data consumption.
2.4 Bilateral–Sobel edge enhancement

We proposed an edge enhancement method for fragile image

texture to preprocess the images. The edge enhancement was divided

into two steps: suppression of high-frequency noise and highlight of

visual edge. The kernel of Bilateral filtering (Tomasi and Manduchi,

1998; Bhonsle et al., 2012) was used, and on the basis of Gaussian

kernel which considers the spatial relationship of pixels, it pays extra

attention to the value distribution of adjacent pixels. Therefore,

Bilateral filtering can protect the weak edge while denoising, so we

choose it as the denoising procedure. In an odd-order Bilateral

filtering kernel, the weights of matrix are set as follows:

Gx,y =
1
tG

exp −
x2 + y2

2s2
G

� �
(12)

Wx,y,u,v =
1
tW

exp −
(Iu+x,u+y − Iu,v)

2

2s2
W

� �
(13)

where (u, v) denotes the global position of the central pixel; xandy

represent the local coordinates of adjacent pixels; sG and sW are the

standard deviations of the normal distribution; tG and tW are weight

coefficients applied to ensure the sum of the weights in the kernels are

1; and I is the pixel value before processing. As one can see, in the

spatial kernel G and value kernel W, the closer the adjacent pixel to

the central pixel in Euclidean distance and grayscale value,

respectively, the greater its contribution to smoothing calculation.

Furthermore, the final kernel function B is the inner product of the

two matrices.

The above design can prevent the smooth denoising from

breaking slight and thin edges and, thus, preserve the complete

foreground information within in-situ images. However, the

foreground and background remain indistinguishable in case of

close pixel values of areas. To extract the objects submerged into the

background, we further applied the Sobel operator (Vincent and

Folorunso, 2009) to completely separate the edge part in the
frontiersin.org

https://doi.org/10.3389/fmars.2023.1186343
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yue et al. 10.3389/fmars.2023.1186343
gradient dimension for the images obtained after bilateral filtering.

The gradient values in the two directions of images, Sx and Sy are

calculated using standard Sobel kernels Dx and Dy , respectively, and

synthesize into the final result Sxy through vector addition. The

entire process is expressed as follows:

Dx =

−1 0 1

−2 0 2

−1 0 1

2
664

3
775, Dy =

−1 −2 −1

0 0 0

1 2 1

2
664

3
775, Sxy = ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2x + S2y
q

(14)

After the gradient image Sxy is obtained through the above steps,

and it is used as input for steps (3) to (7) in the algorithm pipeline

described in Section 2.1.1.

3 Results

In order to examine the effectiveness of proposed methods and

their contribution to the performance of algorithm pipeline, in this

part, we designed a set of experiments and present the results. The

sequence of results is shown in the order of algorithm pipeline. In

Section 3.1, the effects of Bilateral–Sobel edge enhancement on in-situ

images from test dataset (Section 2.1.2) are shown. In Section 3.2, we

compared the performance of CNN and Transformer families on

taxonomic dataset (Section 2.1.3), and took the outstanding model as

the teacher network to verify the superiority of the knowledge

proposed distillation method over the traditional ones in Section

3.3. Finally, in Section 3.4, we validated the selected methods using

test dataset, and paid extra attention to the results on gelatinous

plankton (Medusae). These experiments were conducted on the same

computing hardware, using an Intel Core i7-8750H processor, 16GB

of RAM, and Nvidia GeForce GTX 1060 graphics cards.
Frontiers in Marine Science 07
3.1 Effects of Bilateral–Sobel
edge enhancement

3.1.1 Visualization of Gaussian, Bilateral, and
Sobel processing results

First, we compared Gaussian and Bilateral operators to filter an

image of an individual of Medusae and evaluated the results of

subsequent binarization. As shown in Figure 4A, the boundary on

both sides of the upper part in the raw image is weakly connected.

Upon the application of Gaussian filtering, as shown in Figure 4C,

the concerned edge breaks, whereas Bilateral filtering retains the

shape of the edge to the best extent (Figure 4B).

Figures 4D–G show the independent and united results of the

Bilateral and Sobel operators. As shown in Figure 4E, it is obvious

that the single gradient calculation cannot suppress the high-

frequency noise of the background. Although a single Bilateral

filter can preserve the weak edges as much as possible while

denoising, some too weak edges are still stick together with the

background (Figure 4F). This will make some background regions

be recognized as part of ROIs. Therefore, we used a combination of

Bilateral–Sobel edge enhancement to perform a comprehensive

operation in spatial, value, and gradient domains, so as to achieve

complete segmentation of the target in binarization step.

3.1.2 Comparative experiments on
edge enhancement

In order to quantitatively analyze the effect of Bilateral–Sobel edge

enhancement and other preprocessing methods on target extraction,

we used steps (1)–(5) of the algorithm pipeline described in Section

2.1.1 for target extraction. We used the find contours function in the

OpenCV library for target extraction at step (5). In addition, we set the
A B

D E F G

C

FIGURE 4

Visual evaluation of enhancement methods. (A) Before processing; (B) Bilateral filtering; (C) Gaussian filtering; (D) before processing; (E) operation by
Sobel kernel only; (F) operation by Bilateral kernel only; and (G) operation by Bilateral and Sobel kernels; (B–G) experienced subsequent binarization.
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denoising and edge enhancement operations for step (2) as follows: no

denoising and edge enhancement, only Gaussian filtering, only

Bilateral filtering, combination of Gaussian filtering and Sobel

gradient calculation, and combination of Bilateral filtering and Sobel

gradient calculation. All experimental subjects were raw images from

the dataset presented in Section 2.1.2. The evaluation indicators were

the precision (the quantity ratio of complete ROIs to extracted ROIs)

and recall (the quantity ratio of complete ROIs to the total targets), as

well as the extraction speed [number of images processed by steps (1)

to (5) within 1 s]. In in-situ images, some targets have blurry edges,

which can easily cause edge breaks during the process of extraction,

resulting in one target being divided into multiple ROIs. The complete

ROI refers to the fact that the specific target does not have broken pixel

connections, which means that the complete ROI does not share a

target with other ROIs. The results present in Table 1 show that our

preferred method exhibits the best extraction result, implying our edge

enhancement renders the target much easier to be detected.
3.2 Performance of CNN and
Transformer schemes

In this section, we compared the performance of neural networks

with extensive parameter volumes both in CNN and Transformer

families. We demonstrated the test on the taxonomic dataset from

South China Sea (Section 2.1.3). Furthermore, the effectiveness of the

parameters pre-trained by the ImageNet dataset (Ridnik et al., 2021)

was verified in the plankton classification task. In this experiment,

MobileNet V2 (Sandler et al., 2018), ShuffleNet V2 (Ma et al., 2018),

ResNet50, ResNet101, and ResNet152 (He et al., 2016) were selected

from the CNN architectures; Swin-T (Liu et al., 2021), ViT-B

(Dosovitskiy et al., 2020), and Swin-B (Liu et al., 2021) were selected

from the Transformer architectures. We conducted two types of

training modes: (1) direct training on the taxonomic dataset and (2)

loading the pre-training model and then fine-tuning by the taxonomic

dataset. The accuracy (the number of correctly classified samples

divided by the total number of samples) results and the size

(quantified as storage memories) of models are presented in Table 2.

The CE loss function was used in the training process.

As shown in Table 2, the best performance is reached by pre-

trained Swin-B with an accuracy of 94.34%. Furthermore, for both

two network families, transfer learning yields higher accuracy than
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direct training. In addition, the performances of the Transformer

variants are inferior to that of the CNN variants in direct training

when the network is initialized by random parameters. Thus, the

Transformer architectures may not be suitable for medium and

small-scale datasets without any priori information, and its feature

perception is not as experienced as the mode of CNNs in this case.

However, pre-training may equivalently improve the amount of

data in the source domain, and resulted in the Transformers’

performance exceeding that of the CNNs. We have discussed this

situation at the end of this paper. From the results, we considered

that the pre-trained Swin-B model stood out in the application of

plankton classification and planned to integrate it into the following

knowledge distillation algorithm.
3.3 Experimental results of the proposed
knowledge distillation method

3.3.1 Comparison with classical knowledge
distillation methods

The trained Swin-Bmodel in Section 3.2was selected as the teacher

network to guide the convergence of student network. This model

occupies storage of 87M and its reasoning speed is 26 targets per

second. We compared the proposed knowledge distillation method

with the other four classic technologies reported in recent years

mentioned in Part 1, including: KD: knowledge distillation (Hinton

et al., 2015); FitNet (Romero et al., 2014); SP: similarity preserving

(Tung and Mori, 2019); CC: correlation congruence(Peng et al., 2019);

and CE: cross-entropy (Ferdous et al., 2020). Five neural networks with

different parameter volumes and reasoning speeds were used as student

networks. In addition, a multi-layer perceptron structure was used to

match the output dimensions of student networks with the teacher

network. Using the dataset described in Section 2.1.3, the final results of

the five methods are presented in Table 3.

The column of CE (baseline) represents classification training

by using cross entropy loss function, without any knowledge

distillation processes. The accuracy achieved in this column is

taken as the baseline. As shown in the table, the proposed

method (PPD) guides five student networks to improve the

accuracy (number of correctly classified samples divided by the

total number of samples), and achieves a higher or nearly equal

increase compared with other methods. Moreover, the accuracy of
TABLE 1 Results of comparative experiments on edge enhancement.

Methods
Precision
(%)

Recall
(%)

Extraction speed
(images/s)

No denoising and edge enhancement 89.21 50.40 19

Gaussian 89.47 69.11 18

Bilateral 93.41 69.10 8

Sobel 79.25 17.07 16

Gaussian–Sobel 87.34 84.14 14

Bilateral–Sobel 98.73 94.71 7
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ShuffleNet V2 with the help of PPD (93.13%) exceeds ResNet50

under traditional training (93.02%), whereas the parameter volume

of the former is only 5% of the latter. This implies that our method

can make the lightweight network show better recognition ability

than large scale neural networks under traditional training.

All networks use Adam (Kingma and Ba, 2014) as the training

optimizer. After each epoch of training and validation, the model

parameters were saved once, and the current highest validation

accuracy rate was recorded. If the highest validation accuracy rate

remained unchanged for several epochs, the learning rate was reduced

(the learning rates of ShuffleNet V2 and MobileNet V2 are reduced by

10 times; the learning rate of ResNet50, Swin-T and ResNet101 are

reduced by four times.) and load the model parameters corresponding

to the highest accuracy to continue the training.

3.3.2 Evaluation of different loss functions
One of the key points of the proposed method is the similarity

enhancement of feature descriptions between teacher and student

networks. In the experiments above, we used MSE as the loss

function (Equation 11), which usually appears in regression tasks. In

this section, we discussed other two common loss functions from

classification tasks: the CE and KL divergence loss functions. ShuffleNet
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V2 and Swin-T with better performance in Table 3 were used as the

student network and the results are presented in Table 4. It can be seen

that theMSE was most applicable to our frameworks, implying that the

learning of our defined knowledge should be regarded as a regression

process. The reasons for the poor performance of the other two loss

functions can be inferred as follows: The dot product of the similarity

matrix and the one-hot coding resulted in the loss of the relationship

information between classes, leading the degradation of the final effect;

Because the features are processed by the l2-norm during distillation,

the value of similarity was distributed in a narrow range of [−1,1], and

both CE and KL loss need to perform softmax operation on the outputs

similarity value; thus, they caused the output probability distribution

being excessively smooth and weakening the positive response of intra-

class features.
3.4 Examination of the update of
algorithm pipeline

We finally demonstrated the experiments to examine the

upgrade of algorithm pipeline, hoping that the quality of image

processing can reach excellent performance. As for the
TABLE 2 Performance of different neural networks and training strategies on taxonomic dataset.

Neural network
Size
(megabytes)

Accuracy(%)

Random initialization
of parameters

Pre-trained model

CNNs

MobileNet V2 0.3 86.47 90.97

ShuffleNet V2 1.3 88.26 92.35

Res50 24 90.84 93.23

Res101 43 91.05 93.42

Res152 58 89.55 92.99

Transformer

Swin-T 27 89.70 93.93

ViT-B 86 88.54 94.09

Swin-B 87 89.13 94.34
TABLE 3 Comparative experimental results of different knowledge distillation methods.

Student networks
Size

(megabytes)

Classification
speed

(targets/s)

Accuracy(%)

CE
(baseline)

PPD
(ours)

CE + KD CE + FitNet CE + SP CE + CC

ShuffleNet V2 1.3 301 92.35
93.13
(+0.78)

92.94
(+0.59)

92.92
(+0.57)

92.48
(+0.13)

93.15
(+0.80)

MobileNet V2 1.6 310 91.59
92.46
(+0.87)

92.51
(+0.92)

92.56
(+0.97)

91.94
(+0.35)

92.35
(+0.76)

ResNet50 26 76 93.02
93.62
(+0.60)

93.02
(+0.00)

93.41
(+0.39)

93.25
(+0.24)

93.12
(+0.10)

Swin-T 28 68 93.82
94.21
(+0.39)

94.22
(+0.40)

93.86
(+0.04)

94.04
(+0.22)

93.98
(+0.16)

ResNet101 45 36 93.23
93.82
(+0.59)

93.59
(+0.36)

93.15
(−0.08)

92.55
(+0.32)

93.20
(−0.03)
f
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segmentation stage, the Bilateral–Sobel edge enhancement aided in

the target extraction and location. In the stage of classification, we

further verified the three student networks that performed well in

the previous experiments (Section 3.3.1) and the selected teacher

network, Swin-B (Section 2.1.2). In addition, Medusae is difficult in

target extraction and classification due to its weak edge connection

and similar gray value to background and so forth, so we paid extra

attention to the detection effect of Medusae. The results are

presented in Table 5.

It can be summarized that the trained Swin-B still exhibits the

best performance. However, the model is very large and the

processing time is more than 1 s, which is not suitable for

terminal deployment. ShuffleNet V2 and Swin-T, which were

guided by Swin-B with the proposed PPD, also perform better.

The lightweight ShuffleNet V2 exhibits better performance than

ResNet50 and requires only 273 milliseconds to process one in-situ

image. Swin-T exhibits a better accuracy and also satisfies the

acceptable storage capacity and processing speed.
4 Discussion

4.1 Deep understanding of the operations
on plankton features

We applied knowledge distillation and updated the algorithm

pipeline to pursue better detection and recognition effects of

targets in plankton in-situ images. Here, it should be

emphasized that our design inspirations of the methods focus

on the mathematical operations on plankton features. In order to

explain understandably, we define two temporary terms of

plankton ROIs: (1) regional features, which represent the relative
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spatial position of ROIs in the background, and (2) classification

features, which represent the class properties (including shape,

texture features, etc.). Regional features and classification features

are the features of ROIs in space and as objects, respectively.

According to the steps of algorithm pipeline, we enhance the

regional features and extract the classification features.

Bilateral–Sobel edge enhancement enhances the regional

features of targets and makes them be easily separated. In the

previous segmentation tasks, it is challenged to distinguish the

targets, interference noise, and chaotic background. For example, as

for gelatinous plankton, their narrow edges of and dense noises

possess the same spatial frequency, and the gray scale of interest

pixel region and background are visually fused. Therefore, ROIs,

noises, and background are mixed in regional features and cannot

be separated by single methods such as filtering. To solve these

problems, we combined the distinguishing abilities of the filter

kernel functions (Bilateral–Sobel operator) in the spatial, value, and

gradient domains, to reduce the correlation of the mixed region

features. In addition, the subsequent separation can be easily

realized to obtain the complete ROIs. The verified experiments of

the complete extraction reached the accuracy and recall rate of

98.73% and 94.73%, respectively.

For the classification steps, the discrimination of classification

features of extracted ROIs is weak. However, neural networks can be

used to map them to high-dimensional expressions, which can be

easily distinguished. According to the experimental results, the best

way for us to demonstrate the extraction of classification features is

to fine-tune the calculation model of the pre-trained Swin-B on the

taxonomic dataset, with the best accuracy of 94.34%. Moreover, the

multi-head attention mechanism of the Transformer variants

implements global and long-distance perception, which is

different from the layer-by-layer expansion of CNN. The
TABLE 4 Effect of PPD method with different loss functions.

Student networks
Accuracy(%)

CE PPD-CE PPD-KL PPD-MSE

ShuffleNet V2 92.35
91.94
(−0.41)

92.30
(−0.05)

93.13
(+0.78)

Swin-T 93.82
93.73
(−0.09)

93.59
(−0.23)

94.21
(+0.39)
TABLE 5 Performance of different models on test dataset.

Networks
Size
(megabytes)

Time
(ms/image)

All classes Medusae

Precision (%) Recall (%) Precision (%) Recall (%)

ShuffleNet V2
(93.13%)

1.3 273 89.23 87.91 100.00 89.72

ResNet50
(93.03%)

26 596 88.78 86.73 100.00 89.23

Swin-T
(94.21%)

28 617 92.38 91.73 100.00 92.76

Swin-B
(94.34%)

87 1343 93.37 92.85 100.00 93.87
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Transformer variants require sufficient training data, and the

performance of the Transformers was inferior to that of CNNs

without transfer learning. However, the perception mechanisms of

neural network to ordinary images and in-situ images are naturally

similar; thus, the application of the pre-training network is

equivalent to increasing the size of the dataset. Consequently, the

Transformer variants can fully explore their potentials. To illustrate

this inference, we used principal components analysis (PCA) to

compress the output features from Swin-B before and after fine-

tuning to two-dimensional representations, as shown in Figure 5.

The network pre-trained by large ordinary image datasets exhibits a

certain ability to distinguish the plankton targets. After transfer

learning, it can further realize the feature clustering in small datasets

and make each class region preserve sufficient feature distance.

Therefore, the method we adopted has the potential to be applied in

various specific scenarios.

Knowledge distillation is to transplant the extraction ability of

classification features. Here, we discuss the characteristics of the

proposed PPDmethod, classical knowledge distillation method, and

traditional supervised learning. For the classification tasks,

traditional supervised learning utilizes the cross-entropy loss to

push the outputs close to the extreme values of 1 and 0. Whereas,

the classical knowledge distillation methods attempt to learn the

information of probability distribution output by the teacher

networks and promote the student networks’ perception of inter-

class similarity. The proposed PPD method demonstrates the

similarity calculation of classification features via interactions

between an independent sample and a complete class. Our

distillation mode combined intermediate feature learning with the

generation of classification probabilities by using inter-class

similarity. So, the gradient descent can simultaneously perform

feature learning and supervised classification. The feature prototype

extracted from the teacher network Swin-B and the sample features

output from the teacher network were compressed into two-

dimensional representation through PCA, and the results are

shown in Figure 6. It can be seen that the feature prototypes are

located in the centers of each cluster, which fully have the enough

ability to express the features of each class. More importantly, some

individual outlier features do not have obvious influences on the
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feature prototypes. Therefore, it can be seen that the average

features as the characteristic prototypes are in line with the

mathematical expectation. The interference from an outlier value

is avoided and the damage of noise data to the classification

performance is reduced. The proposed knowledge distillation

method was tested through sufficient comparative experiments

and obtained satisfactory results, and our novel method can be

considered in wide range of applications.
4.2 Prospects for the development of
in-situ monitoring

According to extensive experiments conducted above, our

proposed methods have updated the algorithm pipeline and

achieved satisfactory results on the test dataset. The lightweight

neural networks can reach high accuracy and be appropriate to be

deployed. The excellent effects and the practicability of Transformer

variants and the proposed PPD method are verified in the plankton

in-situ images.

The image processing for the current algorithm pipeline can

be developed continuously. We are considering designing end-to-

end deep learning object detection frameworks in our systems as

many works have done in CV field. In addition, as the qualities of

in-situ images are generally not ideal, it is necessary to build a

large-scale plankton object detection dataset in the next period.

Furthermore, unsupervised learning for plankton classification

may be discussed and unlabeled data may be used to improve the

representation ability of the models. In addition, the use of

computer programs to assist in labeling and cleaning in-situ

data are also expected to rapidly expand the database. For

recognition tasks, compared with CNN in most recognition

tasks, Transformer has not been saturated with the growth of

network parameters and dataset size (Vaswani et al., 2017).

Therefore, we still believe that with the continuous surge of

underwater data, the Transformer will have a broader prospect

in plankton monitoring applications. In terms of model

compression, in addition to knowledge distillation, pruning is

another kind of effective method. In recent years, researchers have
A B

FIGURE 5

Visual evaluation of the ability to distinguish features before (A) and after (B) fine-tuning of the pre-training model.
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explored how to effectively combine the two methods, and related

works have been carried out (Park and No, 2022; Liang et al.,

2023), revealing the excellent effect that the combination schemes

can bring.

In addition, the quality of dataset at the sensor side should be

also focused on, especially the development of high-quality

underwater optical imaging system. The adaptability of the

imaging systems to the coastal, estuarine, and other complex

water areas especially with high turbidity and water velocity need

to be improved. A sincere suggestion is to introduce new hardware

aids from the perspective of optical design, and the high quality of

the source information will greatly reduce the difficulty of

subsequent image processing.
4.3 Conclusions

This study proposed and demonstrated a novel knowledge

distillation method and synchronously equipped new algorithm

system for target detection and recognition regarding in-situ images

of plankton. The experiments were based on the datasets captured

by the experienced underwater imaging system PlanktonScope.

Furthermore, the method expanded the analytical ability to

gelatinous plankton, which has been a challenge till now, and

achieved high recognition recall rate and short processing time.

Especially, a new inter-class similarity distillation algorithm based

on feature prototypes was proposed. For the first time, we used the

similarity assessment of features among independent samples and

complete classes as a regression task to realize knowledge

distillation. Consequently, better performance was shown on the

taxonomic dataset of plankton. Moreover, through experiments and

comparisons with classical methods, we formed the final update of

algorithm pipeline and discussed the work results and inner

principle. The improvement of optical imaging and the

exploration in image processing in the field of deep learning will

be the two main focus points of future work.
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FIGURE 6
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