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Introduction: The Indonesian Throughflow (ITF) connects the Pacific Ocean and

the Indian Ocean. It plays an important role in the global ocean circulation

system. The interannual variability of ITF transport is largely modulated by climate

modes, such as Central-Pacific (CP) and Eastern-Pacific (EP) El Niño and Indian

Ocean Dipole (IOD). However, the relative importance of these climate modes

importing on the ITF is not well clarified.

Methods: Dominant roles of the climate modes on ITF in specific periods are

quantified by combining a machine learning algorithm of the random forest (RF)

model with a variety of reanalysis datasets.

Results: The results reveal that during the period from 1993 to 2019, the average

ITF transport derived from high-resolution reanalysis datasets is -14.97 Sv with an

intensification trend of -0.06 Sv year-1, which mainly occurred in the upper layer.

Four periods, which are 1993–2000, 2002–2008, 2009–2012 and 2013–2019,

are identified as Niño 3.4, Dipole Mode Index (DMI), no significant dominant

index, and DMI dominated, respectively.

Discussion: The corresponding sea surface height differences between the

Northwest Tropical Pacific Ocean (NWP) and Southeast Indian Ocean (SEI) in

these three periods when exist dominant index are -0.50 cm, 0.99 cm and

-3.22 cm, respectively, which are responsible for the dominance of the climate

modes. The study provides a new insight to quantify the response of ITF transport

to climate drivers.

KEYWORDS

Indonesian throughflow (ITF), upper layer, lower layer, El Niño-Southern Oscillation

(ENSO), Indian Ocean Dipole (IOD), random forest (RF) model
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1 Introduction

The Indonesian Throughflow (ITF) originates from the western

Pacific Ocean, and then passes through the Indonesian Sea to enter

the Indian Ocean. The ITF carries a large amount of warmer and

fresher waters with an annual average volume transport of

approximately 15 Sv (1 Sv=106 m3 s-1) (Wijffels et al., 2008;

Sprintall et al., 2009; Gordon et al., 2010; Susanto et al., 2012; Liu

et al., 2015; Sprintall et al., 2019), and heat transport of 0.24–1.15

PW (1 PW = 1015 W) from the Pacific to the Indian Ocean (Hirst

and Godfrey, 1993; Vranes et al., 2002; Tillinger and Gordon, 2009;

Xie et al., 2019; Zhang et al., 2019). It has a significant impact on the

thermohaline structure and velocity profiles flowing through the

oceans (Lee et al., 2019; Pang et al., 2022). This provides an

important low-latitude ocean channel for the transmission of

climate signals and anomalies in the global thermohaline

circulation. The ITF regulates the local atmosphere system by

influencing air-sea exchange and precipitation at different time

scales, which in turn has a far-reaching effect on the global climate

(Gordon, 1986; Godfrey, 1996; Gordon, 2005; Sprintall et al., 2014;

Hu et al., 2019; Yuan et al., 2022). Thus, the variability of ITF

transport has to be understood to interpret climate change.

The ITF transport is not well determined observationally due to

several inflow and outflow channels, such as the Makassar Strait,

Maluku Strait, Halmahera Strait, Lombok Strait, Ombai Strait, and

Timor Strait. Among them, the Makassar Strait accounts for

approximately 77% of the ITF transport and is thus considered

the main inflow channel of the ITF (Du and Qu, 2010; Gordon et al.,

2010; Gordon et al., 2019). Therefore, several international

observation programs have been conducted there to detect the

changes in ITF transport, such as the Arlindo Mixing program, the

International Nusantara Stratification and Transport program

(INSTANT), and the Monitoring the ITF program (MITF). The

long-term mooring data of the Makassar Strait reveals that the

average thermocline (0–300 m) southward transport (9.1 Sv)

contributed about 73% of the total transport (12.5 Sv) (Gordon

et al., 2019). In addition to the mooring observation data,

temperature data measured by repeated expendable

bathythermograph (XBT) and Argo buoy data of IX1 section

were also used to deduce the geostrophic current transport of the

ITF (Wijffels et al., 2008; Liu et al., 2015). Based on 30 years of XBT

data – from 1984 to 2013 ITF geostrophic transport experienced a

strengthening trend of ~0.1 Sv year-1 (Liu et al., 2015). In addition,

numerous numerical models and reanalysis data demonstrate a

relatively consistent interannual variability with the observed data

(Masumoto et al., 2004; Feng et al., 2013; Yuan et al., 2013).

The ITF variability is mainly driven by large scale sea level

gradients between the Pacific and Indian Ocean basins (Wyrtki,

1987). Specifically, the sea surface height (SSH) difference between

the northwest tropical Pacific (NWP) and the southeast Indian

Ocean (SEI) is a favorable indicator of ITF transport, which is

largely dominated by the El Niño-Southern Oscillation (ENSO) and

the Indian Ocean Dipole (IOD), respectively. The ITF is generally

strong (weak) during La Niña (El Niño) events (Meyers, 1996). This
Frontiers in Marine Science 02
is because the Pacific trade winds and the Walker circulation

strengthening (weakening), which leads to an increase (decrease)

of sea level in the western Pacific (Meyers, 1996; Gordon et al., 1999;

Sprintall and Révelard, 2014; Hu and Sprintall, 2016). During

negative (positive) IOD events, when the eastern and western

surface water of the tropical Indian Ocean appear abnormally

warm (cold) and cold (warm), downwelling (upwelling) occurs in

the eastern sea surface of the tropical eastern Indian Ocean. This

favors a positive (negative) sea level anomaly in that region and thus

suppresses (strengths) the ITF (Cai et al., 2011; Yuan et al., 2011).

Increasing number of studies show that IOD events have a more

significant impact on the ITF (Sprintall et al., 2009; Sprintall and

Révelard, 2014; Liu et al., 2015; Pujiana et al., 2019). However,

ENSO and IOD events often occur concurrently (Murtugudde et al.,

1998; Saji et al., 1999; Feng et al., 2001), and hence, it is hard to tease

out the individual effects of each climate mode on ITF variability.

Quantitative analysis of the influences of ENSO and IOD on ITF

changes are not yet well clarified.

In this study, four high-resolution reanalysis datasets are used

to detect the spatial-temporal variability of the ITF inflow and

outflow. A machine learning method is adopted to express whether

the ENSO or the IOD is the dominant climate driver for the ITF

variability during different periods. The study is explained as

follows. The four reanalysis datasets and the methods are

depicted in section 2. The temporal and spatial changes of ITF

transport are explained in section 3. The dominant climate indices

affecting the ITF in different periods are studied in section 4. The

possible mechanisms are discussed in section 5, and the conclusions

are given in section 6.
2 Data and methods

2.1 Mooring data

Mooring data are obtained from three straits: the Makassar

Strait, Ombai Strait, and Timor Strait. Among them, the Makassar

mooring data is procured from the INSTANT and MITF

observation projects, whereas the Ombai and Timor are from the

Integrated Marine Observing System (IMOS, 2022).

2.1.1 INSTANT
In January 2004, two moorings were deployed in the Labani

channel in the Makassar Strait as part of an international program

to monitor the major ITF inflow routes: 2°51.9′S, 118°27.3′E, and 2°
51.5′S, 118°37.7′E (Gordon et al., 2008; Gordon et al., 2010). In July

2005 and November 27, 2006, the moorings were repeatedly

recovered and redeployed. The moorings measured the three-

dimensional velocity components at 30 min intervals.

2.1.2 MITF
Only one mooring was deployed at 2°51.9′S, 118°27.3′E as part

of the MITF program on 22 November 2006, after the INSTANT

project. MITF was designed to receive data and was redeployed
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every two years. Due to equipment transportation problems, there

are no data from August 2011 to August 2013. At the mooring

location, upward-looking and downward-looking acoustic Doppler

current profilers (ADCPs) were placed at 463 m and 487 m to

record flow data for the entire channel at a depth of 680 m. The

positions varied slightly throughout the observation period but

remained roughly the same. In August 2015, two ADCPs were

placed at the same buoy station at 498 m, and two c‐pods (small

autonomous instruments), which can measure the temperature

gradient spectrum using a fast thermistor, were placed at the

same position to measure the temperature microstructure

(Gordon et al., 2019). The MITF data up to August 2017 is used

in this study, though the project is still ongoing.

2.1.3 IMOS
The IMOS has moorings across both its National Mooring

Network and Deep Water Moorings facilities. This system provides

parameters such as temperature, salinity, dissolved oxygen,

chlorophyll estimates, turbidity, down-welling photosynthetic

photon flux (PAR), and current velocity, accompanied by depth

and pressure when available. The observations were made using a

range of temperature loggers, conductivity-temperature-depth

(CTD) instruments, water-quality monitors (WQM), ADCPs, and

single-point current meters. In this study, we use the single-point

mooring data (OMB) for the Ombai Strait at 125.08°E, 8.52°S,

which ranges from June 19, 2011, to October 21, 2015. For the

Timor Strait, we mainly use three mooring data: Timor North

(TNorth), Timor North Slope (TNSlope), and Timor South

(TSouth), which cover from June 14, 2011 to April 15, 2014.

These are the hourly mooring data, and the vertical depth

reaches 520.95m.
2.2 Reanalysis data

Four reanalysis datasets are used: Copernicus Marine

Environment Monitoring Service (CMEMS), OGCM For Earth

Simulator (OFES), Hybrid Coordinate Ocean Model (HYCOM),

and simple Ocean Data Assimilation Ocean/Sea Ice Reanalysis

(SODA), respectively.

2.2.1 CMEMS
For the CMEMS, the version GLOBAL_MULTIYEAR_

PHY_001_030 global reanalysis data with a monthly average from

1993 to 2019 is used. The data have a spatial resolution of 1/12° × 1/

12° (about 8 km × 8 km at the equator) and a total of 50 standard

layers in the vertical direction. The reanalysis data assimilate many

available observations. The time range is from 1993 to 2020, which

covers the most recent period of altimeter data (beginning with the

launch of TOPEX/Poseidon and ERS-1 satellites in the early 1990s).

2.2.2 OFES
OFES data is a global 0.1° × 0.1° × 54 layers model data forced

by NCEP winds. The output is an integration of more than 50 years.

The OFES data used is the monthly average from 1993 to 2017.
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2.2.3 HYCOM
The HYCOM versions of GLBu0.08/expt_19.0, GLBu0.08/

expt_90.9, and GLBv0.08/expt_93.0 cover the time range 1993–

2012, 2013–2017 and 2018–2019, respectively. The global 0.08° ×

0.08° horizontal resolution and 40 vertical resolution of depth levels

are daily reanalysis data from 1993 to 2019.

2.2.4 SODA
SODA is a reanalysis data set that covers the global ocean

(except some polar sea areas) jointly developed by the University of

Maryland and Texas A&M University. The latest version, SODA

3.4.2, which adopts the Modular Ocean Model (MOM5) of 0.5° ×

0.5° × 50 layers (horizontal spacing at the equator 28 km, polar

location less than 10 km) is used in this study. The time range of the

monthly reanalysis data is from 1993 to 2019.
2.3 Methods

2.3.1 Transport calculation
Many methods are used to calculate the flow in channels,

including the volume flux (Anderson et al., 1986) and the P-

vector methods (Chu, 1995). The volume flux method is used to

take full advantage of the high-resolution datasets:

Fv = o
nz

k=1
o
ns

i=1
vik
�! · dxi · dzk : (1)

Among them, vi,k
�! is perpendicular to the i th horizontal grid

and the k th vertical grid on the cross-section flow velocity, i is the

location of the cross-section grid point number, ns  is the number of

grid points, xi  is the distance between two adjacent grid points, k is

the number of vertical layers, nz is the number of vertical layers, and

dzk   is the distance between two adjacent vertical layers.

2.3.2 Removal of potential dependency between
climate drivers

ENSO and the IOD events often occur synchronously; hence,

they can interact with each other. Therefore, linear regression is

used to eliminate the possible influence of Niño 3.4 on IOD (Saji

and Yamagata, 2003), as follows:

dDMI = a� Nino   3:4 + b, (2)

DMInew = DMI − dDMI : (3)

where dDMI represents the linear fitting term of Nino 3:4, a and

b represent the trend and offset, respectively, and DMInew indicates

the new DMI, excluding the Nino 3:4 trend item.
2.3.3 Random Forest model
A machine learning decision method, named Random Forest

(RF) is employed to determine the contribution of climate drivers to

the interannual variation of the ITF. RF is a kind of ensemble

learning algorithm. The general idea of RF is to train multiple weak

models to pack together to form a strong model. The performance
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of the strong model is much better than that of a single weak model.

Hence, the results of the multi-models have higher accuracy and

generalization performance.

Unlike the simple linear correlation and regression methods, RF

methods can be used to study complex relationships between

variables and can reveal nonlinear and hierarchical relationships

between responses and predictors (Feng et al., 2022). RF builds the

model by combining predictors and evaluates the relative

importance of each predictor. In this study, an out-of-bag (OOB)

generated accuracy-based materiality measure is used. When

building the model, approximately one-third of the relevant data

was randomly selected for model verification. When variables in the

OOB samples are randomly disturbed, the average prediction

accuracy is defined as the important value of the corresponding

variable (Heung et al., 2014), which is expressed as the mean square

error:

MSEOOB =
1
N o

N

K=1
(Oi − PKOOB)

2 : (4)

where N is the number of observations, Oi represents actual

data and PKOOB indicates the average of all OOB predictions across

all trees.
3 Variability of ITF

Mooring observation in the Makassar Strait reveals different

water masses in the upper (0–300 m) and lower (300–760 m) layers,

respectively. The ITF is separated into the upper and lower parts,

with a depth boundary of 300 m, to reveal the impacts of climate

modes on the vertical structures. To facilitate later research, the 0–

300 m layer is defined as the upper layer and the 300–760 m layer as

the lower layer. Due to the depth limitation of the Ombai and Timor

Straits, the lower layer is 300–520 m. In accordance with Li et al.

(2020), the inflow is defined as that the sections of Sulawesi Sea

(125°E, 1°N–6°N), Maluku Sea (125°E–127.5°E, 0.5°N), and

Halmahera Sea (128°E–131°E, 0.5°S), respectively, and the

outflow is defined as that across the eastern tropical Indian Ocean

section (114°E, 8°S–22°S) (Figure 1).
3.1 Validation of model data

Performances of the four reanalysis datasets are validated by

using the mooring observation located at the Makassar Strait,

namely the INSTANT and MITF programs. In accordance with

the two periods of INSTANT andMITF, the comparative results are

divided into two stages, which are January 2004 to late November

2006 and November 2006 to August 2017, respectively. An

approximate position at the same latitude as the mooring position

is selected to conducted verification when calculating the Makassar

Strait flow, which is 117°E–119°E, 2.5°S (Figure 1).

The comparative results are illustrated in Figures 2A, B. In the

upper layer, the mean mooring transport is -7.94 Sv (negative

means southward transport). It shows a prominent interannual
Frontiers in Marine Science 04
variability. The transport intensified from 2004 to late 2008, with an

intensification of -1.53 Sv, whereas from 2009 to mid–2011, it

slightly weakened by 0.32 Sv. The transport quickly weakened from

mid–2013 to mid–2016, whereas the ITF quickly intensified. The

relativity between the upper and lower layers was negative and

insignificant (correlation coefficient of -0.30). In the lower layer, the

mean transport is -3.10 Sv. The trends of mean transport during

2004–2011 and 2013–2017 were the opposite: there is an intensified

(weakened) trend in the former period and a weakened (intensified)

trend in the latter period in the upper (lower) layer. In addition, in

terms of interdecadal variability, the correlation between the upper

layer Makassar flow and PDO and NPO were significantly opposite

(Figures not shown). During 2004–2011 and 2013–2017, the

correlation coefficients between PDO and flow in the upper layer

were 0.78 and 0.75, respectively; whereas the correlation coefficients

between NPO and flow changes in the upper layer were -0.44 and

-0.35, respectively. All the correlation coefficients pass the 95%

significance test. However, the contributions of PDO in the ITF

transport are limited in the upper layer inflow and in the decadal

timescales, which will not be further considered in this study.

In the upper layer, the correlation coefficients of SODA and

CMEMS in the first and second periods are R1 = 0.8 and R2 = 0.96,

respectively, and the RMSE is 1.12 Sv, in comparison with the

observed data. Similarly, the OFES data in this layer exhibit low

correlation coefficients with the observed data in the first half and

the second half, where R1 = 0.25 and R2 = 0.7, respectively, and the
FIGURE 1

The topographic map of the Indonesian sea and the main flow system
of the ITF. The pathways of ITF are shown by orange lines with
arrows. The red �   indicates the mooring station in the Makassar
Strait. The four red dots that appear in the enlarged view in the small
window of the lower right corner denote the mooring positions of the
Ombai and Timor Straits, and from north to south are Ombai Strait
(OMB), Timor North (TNorth), Timor North Slope (TNSlope), and Timor
South (TSouth), the first of which is the mooring position of the
Ombai Strait and the remaining three are the mooring positions of the
Timor Strait. The purple lines are the interception position of the
corresponding strait data validation. The dotted arrows in orange
represent the Pacific Ocean flow. The red and green solid lines
indicate the inflow and outflow cross-sections, respectively.
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RMSE is 0.82 Sv. It can be found that between July 2005 and

November 2006, the reanalysis data declined more than the

mooring observation data, which may be explained by that single

point data of Makassar mooring could not accurately reflect the

whole change in the entire channel. In the lower layer, the

correlation coefficients of OFES and CMEMS with the observed

data in the first and second half are R1 = 0.73 and R2 = 0.98,

respectively, and the RMSE is 0.89 Sv. The HYCOM data in this

layer has relatively low correlation coefficients of R1 = 0.49 and

R2 = 0.77, respectively, and the RMSE is 1.35 Sv, in comparison

with the observed data. All the correlation coefficients pass the 95%

significance test. It can be found that in the upper and lower layers,

the correlation between the reanalysis and mooring observation

data in the second period is better than in the first period, which

may be attributed to the reanalysis datasets dependency and the

limitation of mooring observations.

The mooring data of the Ombai and Timor Straits are

comprehensively collected to verify the applicability of reanalysis data

in the outflow area. Two sections along 125.08°E, 8.33°S–8.83°S and

127.35°E, 8.71°S–10.02°S in the Ombai and Timor Straits, respectively,

are selected to conduct the calculation. The low resolution of SODA

(only 0.1°) leads to a lack of lower layer data in the Ombai Strait, and

hence, only the upper layer of SODA is given below.

Figures 3A, B illustrate the comparison results in the Ombai

Strait. For SODA, the correlation with the observed data is low due

to the low resolution in the upper layer (R = 0.31, which passes the

95% significance test; RMSE = 0.61 Sv). Apart that, the correlations
Frontiers in Marine Science 05
of the other three reanalysis data are all high. Among them,

correlation coefficient of OFES is maximum which reaches 0.90

and RMSE is 0.45 Sv. In the lower layer, HYCOM has the maximum

correlation coefficient of 0.80 and lowest RMSE of 0.28 Sv, whereas

OFES has a relatively low correlation coefficient of 0.69 and RMSE

of 0.43 Sv. The validation results of the Timor Strait data are shown

in Figures 3C, D. It is found that CMEMS has the maximum

correlation coefficient of 0.71 and lowest RMSE of 0.14 Sv in the

upper layer, whereas HYCOM has a relatively low correlation

coefficient of 0.38 (passing the 95% significance test) and RMSE of

0.26 Sv. In the lower layer, CMEMS also exhibits a good correlation,

witha correlationcoefficient of 0.63 andRMSEof0.11Sv.However, the

correlation coefficients of the other three data are low.Note that, all the

correlation coefficients pass the 95% significance test, which

demonstrate that all the four reanalysis datasets show consistency

with the observations, which gives the confidences to use the reanalysis

datasets to show the variability and mechanisms.
3.2 Spatial and temporal variability
of the ITF

Good performance of the eddy-resolving reanalysis datasets

reveals, the detailed spatial structures of the ITF in the inflow

and outflow.

Among the three inflow cross-sections (Figures 4A–C), the

Sulawesi Sea has the widest entrance, which spans 3.58°N–5.5°N,
A

B

FIGURE 2

Transport anomaly of the four reanalysis datasets and the mooring observation at Makassar. (A) Transport in the upper layer. The red line is the
mooring observation of INSTANT and MITF after a 13-month moving average. The black, blue, green, and pink lines are CMEMS, OFES, SODA, and
HYCOM, respectively. Due to the discontinuity of mooring data between 2004 and 2017, the correlation coefficients of the first and second halves
of the mooring after the 13-month moving average are calculated, respectively. (B) Same as (A) but for the lower layer. Negative values mean
southward transport anomaly.
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125°E. There are two opposite flows, which are westward in the

northern channel and eastward in the southern channel,

respectively. As the depth deepens, the eastward flow gradually

expands to the north, while the westward flow decreases in scope.

The eastward flow mainly exists in the range of 125°E, 1.83°N–3.5°

N (the maximum depth is 350 m south of 3.25°N, while it can be

extended to 760 m north of 3.25°N), with an average speed of

0.07 m s-1 and a maximum speed of 0.23 m s-1 at a depth of 20m

near 2.25°N. The westward flow in the 3.58°N–4.66°N region

mainly exists above the 115 m layer with an average speed of

-0.14 m s-1. The large value zone of westward flow mainly exists in

4.5°N–5.33°N (the depth can be extended to 760 m) and a

maximum speed is -0.59 m s-1 at a depth of 85 m near 5°N.

There is a weak eastward flow near Mindanao Island. The standard
Frontiers in Marine Science 06
deviation of the flow gradually decreases with the increase of depth

overall. There has a larger standard deviation in the westward flow,

which can reach 0.13 m s-1, mainly concentrated in the upper 90 m

layer of 4.58°N–5.08°N. In the eastward flow range, the standard

deviation of the flow can reach a maximum of 0.09 m s-1, mainly

concentrated in the surface layer of 1.91°N–2.83°N.

The opposite flow structure is the same as the Maluku Sea

meridional sections (Figure 4B). In the western Maluku Sea (125°

E–126°E, 0.5°N): above 60 m layer, it flows northward with an

average speed of 0.05 m s-1, and the maximum is 0.16 m s-1 at a

depth of 10 m near 125°E; within a depth of 60 m–300 m, it flows

southward with an average speed of -0.02 m s-1, and the flow

gradually decreases as the depth increases; within a depth of 300

m–450 m, there is a weak northerly flow; under 450 m, there is a
A

B

D

C

FIGURE 3

Transport anomaly of the four reanalysis datasets and the mooring observation in the Ombai and Timor Straits. (A) Transport in the upper layer of
Ombai Strait. The red line is the mooring observation of Ombai Strait after a 13-month moving average. The black, blue, green and pink lines are
CMEMS, OFES, SODA and HYCOM, respectively. (B) Same as (A) but for the lower layer of Ombai Strait. (C, D) Same as (A, B) but for Timor Strait.
Negative values mean southward transport anomaly.
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southward flow, which corresponds well to the observational finding

of the Maluku Sea intermediate western boundary current (Yuan

et al., 2022). In the easternMaluku Sea (126°E–127.5°E, 0.5°N): above

60 m layer, there is a weak southward flow with an average speed of

-0.03 m s-1 and the maximum southward flow velocity is -0.07 m s-1;

under 60 m, except for the presence of weak southward flow in depth

of 350 m–720 m and range of 126°E–126.41°E, it flows northward in

the western side (126°E–126.83°E, 0.5°N) and southward on the

eastern side (126.83°E–127.5°E, 0.5°N). The large standard deviation

of the flow velocity is mainly concentrated in the western upper layer

of Maluku Sea (125°E–126°E, 0.5°N), which can reach a maximum of

0.07 m s-1. With the increase of depth, the standard deviation

gradually decreases. However, below 450 m in the western of

Maluku Sea, there is still a relatively large variation zone with a

standard deviation of 0.02 m s-1.

In the Halmahera Sea section (0.5°S) (Figure 4C), the flow

structures are complicated. In the range of 128.5°E–129.75°E and

129.91°E–130.08°E, there are southward flows, which can reach a

depth of 200 m. The maximum velocity (-0.36 m s-1) appears at

128.83°E and 50 m depth. The flow is northward at both sides of the

Halmahera Sea section and in the lower layer. However, the

northward flow is relatively weak, with a maximum of 0.08 m s-1.

The large standard deviation of flow velocity is concentrated in the
Frontiers in Marine Science 07
large value region of southward flow, which can reach a maximum

of 0.14 m s-1 in the upper layer of 128.83°E. With the increase of

depth, the standard deviation gradually decreases. At the maximum

southward flow (at 128.83°E and 50 m depth), the standard

deviation reaches 0.12 m s-1.

In the exit of the eastern equatorial Indian Ocean (Figure 4D),

the outflow is a significant eastward flow in the 0–110 m range of

114°E, 8.75°S–9.33°S, and the maximum velocity is 0.22 m s-1 at a

depth of 60 m at 8.83°S. The eastward flow corresponds to the upper

ocean South Java Coastal Current (SJCC) (Atmadipoera et al., 2009;

Sprintall et al., 2009; Liang and Xue, 2020). In the middle section of

114°E, 9.5°S–13.41°S, most of the flow is westward with a maximum

of -0.28 m s-1, which exists at a depth of 10 m at 10.5°S. The

eastward flow south of 14°S is closely related with the Eastern Gyral

Current (EGC) and the Northwest Shelf Inflow (NWS-inflow)

(Liang and Xue, 2020). The large standard deviation values of

flow velocity are concentrated in the range of westward flow,

which can reach 0.06 m s-1 in the upper layer.

The comparison results reveal a narrower and stronger inflow

and a wider and weaker outflow. This opposite flow among the

cross-sections implies complicated flow structures in the high-

resolution reanalysis datasets. Detailed flow structures along with

additional field experiments should be verified.
A B

D

C

FIGURE 4

The four reanalysis datasets average velocity in the inflow (upper panel) and outflow (lower panel) cross-sections from 1993 to 2019. The profile
color fill is the East-West (North-South) velocity of the flow perpendicular to the longitude (latitude). (A, D) are the zonal flow in the Sulawesi Sea
and the eastern equatorial Indian Ocean cross-sections, respectively. (B, C) are zonal flows in the Maluku Sea and the Halmahera Sea cross-sections,
respectively. The magenta contour is represented as the standard deviation of the flow velocity of each section on the interannual scale. The black
contour line in the figures indicate that the velocity is 0. A negative value represents southward or westward flow.
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To understand the interannual variations of the ITF transport,

the upper, lower and full depth layers of the inflow and outflow

transport anomaly are illustrated in Figure 5. The results are

averaged from the four reanalysis datasets. In the upper layer

(Figure 5A), the linear trends of inflow and outflow are -0.08 Sv

year-1 and -0.04 Sv year-1, respectively (negative linear trend

indicates an increase in southwesterly flow). During the strong

El Niño event (1997/1998), there was a significant decrease in the

upper layer inflow, with a value of -3.38 ± 4.15 Sv. It applies to

2015/2016 as well, when the upper layer inflow is -4.90 ± 1.98 Sv.

During positive IOD events (2004–2008), the upper layer inflow

increased significantly, from -5.31 ± 2.76 Sv in 2004 to -14.31 ±

4.14 Sv in 2008. However, the upper layer outflow intensified only

during 2005–2006, which was significantly weaker than the inflow.
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In the upper layer outflow, the interannual variation is similar to

those of the inflow, the average correlation coefficient between the

upper layer inflow and outflow of the four models is 0.63, which

passes the 99% significance test. The average flow is more

intensified than the upper layer inflow, and the difference is 3.23

Sv. In the upper layer, it can be found that the inflow is smaller

than the outflow, which is mainly due to the reason that the South

China Sea (SCS) branch of the ITF is not taken into account. Note

that, the depth of the Karimata Strait that connects the SCS and

Indonesian Sea is less than 50 m, so its inflow mainly contributes

to the upper layer.

Unlike the upper layer, the lower layer flow shows no significant

trend in the interannual scale (Figure 5B). For the lower layer

inflow, the flow decreased in 2015 and increased in 2016, but with a
A

B

C

FIGURE 5

Interannual variability of the ITF transport in different layers. (A) The four reanalysis datasets average the upper layer inflow and outflow from 1993 to
2019. The red and blue lines represent inflow and outflow, respectively. The shaded areas indicate the standard deviation. (B, C) Same as (A) but for
the lower layer and full depth (0 to the maximum modeling depth), respectively. Negative values mean southward or westward transport anomalies
(enhanced ITF).
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much smaller amplitude than that of the upper layer. The lower

layer outflow in the same period was also similar. In 1997, the lower

layer outflow showed a similar change as the upper layer. In the

lower layer, it can be found that the outflow is greater than the

inflow, which is closely related to the large inflow of HYCOM.

The total ITF transport is obtained in Figure 5C. The results

show that the average ITF transport is -13.33 Sv and -16.62 Sv of the

inflow and outflow, with linear strengthening trends of -0.06 Sv

year-1 and -0.05 Sv year-1, respectively. On average, the outflow

value is larger than the inflow. The outflow volume transport

estimated in this study is -16.62 Sv, which is close to that by

SODA (-16.9 Sv) and the multi-model ensemble means of phase 5

of the Coupled Model Intercomparison Project (CMIP5) (-15.3 Sv)

(Santoso et al., 2022). In the Makassar Strait, the mooring average

flow of the upper (-9.10 Sv) and lower layers (-3.40 Sv) from 2004 to

2017 (Gordon et al., 2019) are consistent with the reanalysis

datasets, which is -9.36 Sv in the upper layer and -1.88 Sv in the

lower layer. The difference in the outflow and inflow (3.29 Sv) is

larger than in the Makassar Strait (1.26 Sv). Two possible reasons

contribute to the mismatch between the inflow and the outflow.

First, the SCS branch of the ITF and the inflow along the northern

Australia coast are not taken into account in the inflow and outflow

calculation, which results in small and large estimates of the inflow

and outflow, respectively. Results of the previous particle tracking

experiments present the interannual average of the ITF branch in

the South China Sea to be approximately 1.6–1.98 Sv (He et al.,

2015; Xu et al., 2021). Most of the reanalysis data show that the

inflow after adding Karimata Strait flow is comparable to the

outflow. And for the high spatial resolution data (CMEMS,

HYCOM), the inflow adding Karimata Strait flow is comparable

to the outflow after subtracting the inflow along the northern

Australia coast. Second, different reanalysis data show large

dispersions in the ITF estimation. The full-depth ITF obtained by

four kinds of reanalysis data (CMEMS, SODA, OFES, HYCOM) at

the inflow position is -14.22 Sv, -15.01 Sv, -6.44 Sv, and -16.94 Sv,

respectively. At the outflow position, they are -17.28 Sv, -15.20 Sv,

-8.95 Sv, and -24.29 Sv, respectively. The differences are 3.06 Sv,

0.19 Sv, 2.51 Sv, and 7.35 Sv, respectively. The largest deviation

between the outflow and the inflow is derived from the HYCOM

dataset. In addition, the selection of the outflow section also affects

the amount of transport. Overall, it is reasonable to use reanalysis

data in this study to reflect the interannual changes of ITF.
4 Contribution of ENSO and IOD to
the ITF transport

4.1 Relationships between climate modes
and ITF transport

Figure 6 illustrates the variabilities of ITF transport in different

layers that further explain the correlations between the climate

modes and the detailed flow structure. For the upper layer inflow,

the correlation coefficients between flow data and Niño 3.4, DMI,

and CP indices are 0.73, -0.28, and 0.56, respectively. Among the

above results, Niño 3.4 and CP pass the 99% significance test,
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whereas DMI does not pass the 95% significance test. In the lower

layer inflow, the correlation coefficient between flow anomaly and

Niño 3.4, DMI and CP indices are 0.23, 0.01 and 0.12, respectively,

none of them pass the 95% significance test. This concludes that the

influence of the climate index in the upper layer is greater than that

in the lower layer.

In the upper layer outflow, the correlation coefficients between

flow data and Niño 3.4, DMI, and CP indices are 0.52, -0.55, and

0.32, respectively. Among the above results, Niño 3.4 and DMI pass

the 99% significance test, whereas CP does not pass the 90%

significance test. In the lower layer outflow, the correlation

coefficients of flow anomaly with Niño 3.4 and CP indices are

0.65 and 0.41, respectively, and they pass the 99% significance test,

whereas the correlation coefficient with the DMI shows a low

correlation (0.12). The correlation between Niño 3.4 and CP

indices, and the lower layer is greater than the correlation of the

upper layer inflow. Whereas, the correlation between the DMI

index and the lower layer with that of the upper layer inflow is

the opposite.

Niño 3.4 and DMI have opposite correlations for ITF in

comparison with the upper layer inflow and outflow. The linear

correlation coefficients between Niño 3.4 and ITF anomalies

remained high at 0.73 and 0.52 for the inflow and outflow,

respectively. However, the DMI is -0.28 and -0.55 in the inflow

and outflow, respectively, and the correlation changes are relatively

large. The conclusion is consistent with Li et al. (2020). In the upper

layer, the CP index maintains a positive correlation with both inflow

and outflow, which is similar to the impact of the Niño 3.4 index.

The difference with Li et al. (2020) is that the Niño 3.4 and CP

indices have a strong positive correlation with the lower layer

outflow, which may be related to the period selected.
4.2 Relative importance of climate modes
in the ITF variability

To quantitively expose the climate drivers of ITF transport, the

RF method is adopted in this subsection. Before that, the dominant

periods of the ITF transport should be clarified. The average multi-

models flow data in different levels (Figure 7) help to obtain the

power spectra of the upper layer and the lower layer inflow and

outflow during 1993–2019. Power spectral analysis reveals that the

upper layer and the lower layer inflow exhibit peak periods of 4–9

and 5–7 years, respectively. The upper layer and the lower layer

outflow exhibit peak periods of 5–7 and 2–6 years, respectively.

Overall, the results characterize a common peak period flow of 5–7

years at four different locations. Comparatively, Niño 3.4, as well as

DMI and CP indices have peak periods of 2–7, 2–4, and within 10

years (Sullivan et al., 2016; Santoso et al., 2022), respectively.

The calculation of the power spectrum of the four levels of flow

data and climate indices concludes that the main change cycle is

concentrated in 5–7 years; hence, it is taken as the cycle for RF

model training. In addition, to make full use of the data and the

experimental results more reliable, the data is recycled (consider the

6-year cycle as an example: 1993–1998, 1994–1999…). Niño and

IOD events often occur simultaneously during RF model training.
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A B

FIGURE 7

The power spectrum of inflow and outflow at different levels. The flow data is the multi-models average monthly data after a 13-month sliding
average from 1993 to 2019. (A) The black and blue solid lines represent the result of the upper layer (0–300 m) and the lower layer (300–760m)
inflow, respectively. The black and blue dotted lines represent their 95% confidence level. (B) same as (A) but for outflow.
A

B

D

C

FIGURE 6

Interannual variations of the ITF transport anomaly and the climate indices. (A) The four datasets average the upper layer inflow transport anomaly (purple
shadow), superimposed with the three indices (Niño 3.4-blue, DMI-orange, CP-green) after a 13‐month running mean. The DMI is the DMInew after
removing the linear influence of Niño 3.4. (B) Same as (A) but for the lower layer inflow. (C, D) The upper layer and the lower layer outflow transport.
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Therefore, the DMInew, which removes the influence of the linear

trend of Niño 3.4, is adopted and the corresponding RF models by

using four model data training are obtained. The relative

importance of the RF training results in the period of 5, 6, and 7

years, respectively, are considered. Significant differences are not

revealed in the results (figures not given). Therefore, the 6–year

period is considered to reveal the relative importance of different

climate indices at different levels, beginning with different starting

years (Figure 8). Due to the OFES data is up to 2017, the results for

the starting year 2013–2014 are obtained from CMEMS, HYCOM,

and SODA data. In this study, the dominant index is defined as the

importance higher than 33% and which exceeds the other two

indices without overlapping.

The RF results show that in the upper layer inflow, starting from

1993–1995 (end of 2008 and 2000), the importance of the Niño 3.4

was significantly higher than that of the other two indices which was

greater than 40%. In the 1996–2001 period (end of 2001 and 2006),

Niño 3.4 showed more important but insignificant results (shadow

regions cover each other) under the average training results of

multi-model data. In the starting year of 2002–2003 (end of 2007

and 2008), the DMI became the important index (without overlap

of the other two indices). In the periods of 2004–2012 (end of 2009

and 2017), the relative importance of the three indices were

comparative and the overlapping shadow covered each other. In

the periods of 2013–2014 (end of 2018 and 2019), the importance of

the DMI increased, whereas the importance of the Niño

3.4 decreased.

Different from the upper layer, in the lower layer inflow, in the

starting year of 1993 (end of 1998), the DMI was relatively

important. However, in the starting year of 1994 (end of 1999),

the importance of DMI decreased and CP was relatively important.

In the starting years of 1995–1999 (end of 2000 and 2004), the

shadows of the three indices overlapped each other. On average, the

CP was relatively important but insignificant. In the initial years of

2000–2007 (end of 2005 and 2012), the importance of DMI

gradually increased, and during 2002–2003 (end of 2007 and

2008), DMI had significant importance. In the later period,

starting from 2008–2014 (end of 2013 and 2019), the error bars

of the three indices overlapped, and again, there was no

dominant index.

In the upper layer outflow, the Niño 3.4 was always at a high

level during the 1993–1999 period (end of 1998 and 2004), which

implies the dominance of Niño 3.4. During 2000–2001 (end of 2005

and 2006), the influence of the DMI on the upper layer outflow

increased, but the importance of the Niño 3.4 decreased. In the

starting years of 2002–2004 (end of 2007 and 2009), the DMI

became the dominant factor, with an average relative importance of

more than 50% between 2002 and 2007. In the initial years of 2005–

2007 (end of 2010 and 2012), the average relative importance of the

CP increased, but the shadow region coincided with the shadow

region of the DMI. In the starting years 2008–2012 (end of 2013 and

2017), the importance of all three indices was relatively close. This

indicates the complexity of the influencing factors of ITF during this

period, and a significant index was not identified. In the following

starting years 2013–2014 (end of 2018 and 2019), the DMI became
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the dominant factor again, with an average relative importance of

more than 40%.

In the lower layer outflow, starting from 1993–1995 (end of

1998 and 2000), the error bars of the three indices coincided, and

the significant index was not dominated. In the starting years of

1996–1998 (end of 2001 and 2003) and 2013–2014 (end of 2018 and

2019), the CP was the important index, with an average proportion

of 40%. In the starting years of 1999–2000 (end of 2004 and 2005)

and 2009–2012 (end of 2014 and 2017), there was no dominating

index. In the initial years of 2001–2005 (end of 2006 and 2010), the

DMI was the important influence index, with an average proportion

of 50%. In the starting years of 2006–2008 (end of 2011 and 2013),

the Niño 3.4 was the dominant influence index, with an average

proportion of 50% in 2007.

Figure 9 illustrates the relative importance of the different

climatic factor indices and their partial dependence in different

periods. In the partial dependence plots, the steeper the curve

change, the greater the influence of the corresponding index. The

results reveal that the curve of Niño 3.4 to be the steepest and the

influence on the upper layer inflow to be the greatest during 1993–

1998. In 2002–2007, the DMI curve was the steepest and became the

dominant index. Similarly, in 2008–2013, the CP and Niño 3.4 were

relatively important. During 2014–2019, the importance of DMI

increased. The results are consistent with those in Figure 8. The

partial dependences of the climate indices on the lower layer inflow,

as well as the upper layer and lower layer outflows are similar to the

upper layer inflow (figures not given).
5 Discussion

The RF model shows the domination of different climate modes

in different periods. To explore the underlying mechanisms, four

periods of 1993–2000, 2002–2008, 2009–2012, and 2013–2019 are

composited, which corresponds to the dominant factors of Niño

3.4, DMI, no significant dominant index, and DMI, respectively.

Among them, the dominant DMI from 2013 to 2019 mainly exists

in the upper layer outflow. Previous studies reveal that the sea

surface height anomaly (SSHA) between two oceans (NWP and

SEI) is regarded as a good indicator of ITF transport (Wyrtki, 1987;

Shilimkar et al., 2022). This viewpoint is adopted to demonstrate the

underlying mechanism.

Figure 10 presents the average of SSHA for different periods,

with the spatial location of NWP and SEI marked. During the

ENSO domination period (1993–2000), the mean SSH in the NWP

and SEI are -0.68 cm and -0.18 cm, respectively, and the SSH

difference is -0.50 cm. During the first IOD domination period

(2002–2008), the NWP and SEI are 0.49 cm and -0.50 cm,

respectively, and the SSH difference is 0.99 cm. During the period

with no dominant climate indices (2009–2012), the NWP and SEI

are 5.58 cm and 1.24 cm, respectively, and the SSH difference is

4.34 cm. During the second IOD domination period (2013–2019),

the NWP and SEI are -3.59 cm and -0.37 cm, respectively, and the

SSH difference is -3.22 cm. The SSH field variation in the two

regions is related to the ENSO and IOD events, especially the El
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Niño and negative IOD events, respectively. The SSH differences

between the different periods are consistent with the mechanism,

that during El Niño (negative IOD) events, it reduces the Pac-

Indian Ocean pressure gradient and makes a weak ITF. On the

contrary, La Niña and positive IOD events help to enhance the ITF.

To further explore the mechanisms, the ENSO and IOD events

in the years 1993–2019 are summarized in Table 1. During 1993–
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2000 when ENSO dominates, a strong El Niño event occurred in

1997/1998 accompanied by a positive IOD event (Figure 8A). This

strong El Niño event led to reduced precipitation in the western

Pacific and Indonesia, which directly led to a lower SSH at the ITF

inflow position (Chandra et al., 1998; Gordon et al., 1999).

Moreover, the occurrence of the positive IOD event reduced the

SSH at the ITF outflow location (Cai et al., 2011). Thus, both the
A

B

D

C

FIGURE 8

The importance of climate indices on the ITF transport. (A) The importance of climate indices (Niño3.4 blue, DMI red, CP green) in the upper layer
inflow with a 6–year cycle. The triangles represent the major ENSO and IOD events that occur in the corresponding starting year, where the upper
and lower edges represent ENSO and IOD events, respectively, and the solid and hollow indicate positive and negative anomalies, respectively. (B–
D) same as (A) but for the lower layer inflow, the upper layer outflow, and the lower layer outflow, respectively. The shaded areas indicate the
standard deviation. The dominant driver defined in this study is the one with the largest proportion and does not overlap with the other two indices.
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upper layer inflow and outflow of the ITF showed a strong

reduction of 4.21 Sv and 1.21 Sv, respectively (Figure 5A). After

experiencing a significantly weakened ITF in 1997/1998, the ITF

returned to its previous level in late 1998 under the combined effect

of La Niña and negative IOD events. Overall, it is inferred that the

occurrence of the El Niño event in 1997/1998 played a dominant

role in the 1993–2000 period.

During 2002–2008 when IOD dominates, two successive

positive IOD events occurred in 2006 and 2007, corresponding to

the El Niño and La Niña events, respectively (Figure 8A). The

positive IOD events are strongly associated with the Indian Ocean

surface temperature anomalies (unusually cold in the east and warm

in the west), further leading to a low SSH in the eastern Indian

Ocean (Behera et al., 2008). During 2004–2008, both the upper layer

inflow and outflow were enhanced 2.08–2.79 Sv (Figure 5A). During

2002–2008, the SSH differences between NWP and SEI was 0.99 cm,

which partly explains the dominant effect of the IOD events. This

concluded that the IOD events dominated the variability of the ITF

transport during 2002–2008.

During 2009–2012 when no climate indices dominate, the

successive La Niña events in 2010 and 2011 and the successive

positive IOD events in 2011 and 2012 (Figure 8A), which partly

explained that there were no single climate mode playing the

dominant role during this period.
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During 2013–2019 when IOD dominates in the upper layer

outflow, it also corresponded to the sharp decrease in the upper

layer outflow during 2015–2016 (Figure 5A) and the SSH difference

between NWP and SEI was -3.22cm. During this period, relatively

strong negative IOD event occurred in 2015/2016 (Figure 8A).

Pujiana et al. (2019) also revealed that the sharp decrease in the

upper layer inflow and outflow in 2015/2016 was attributed to the

strong negative IOD events. In addition, successive positive IOD

events occurred from 2017 to 2019, which further illustrated the

dominant effect of IOD events.
6 Conclusions

In this study, the spatial and temporal variabilities of ITF are

obtained in the four high-resolution reanalysis datasets (three are

eddy-resolving and one is eddy-permitting models). The ITF is

further divided into the upper layer and the lower layer flow,

respectively. The results of spatial structure analysis reveal that

among the three inflow passages, the Sulawesi Sea is the main inflow

area in terms of inflow and the maximum westward flow velocity

reaches -0.59 m s-1. In terms of outflow, the range of 9.5°S–13.41°S

and 114°E in the eastern equatorial Indian Ocean cross-section is

the main outflow area, and the maximum westward flow velocity
A B

DC

FIGURE 9

The partial dependence of the upper layer inflow in different sub-period from the RF model on each climatic factor index. (A) 1993–1998, (B) 2002–
2007, (C) 2008–2013 and (D) 2014–2019. The blue, orange, and green lines are Niño 3.4, DMI and CP indices, respectively. The trend of the curve
describes the correlation between the corresponding factor and the predictor. The shaded part represents a 95% confidence interval.
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reaches -0.28 m s-1. The temporal analysis results reveal that the

southwest flow of the upper layer inflow and outflow have

interannual enhanced trends, which are -0.08 Sv year-1 and -0.04

Sv year-1, respectively, whereas the lower layer inflow and outflow

do not have obvious linear trends on the interannual scale. The

interannual average of ITF full-depth flow is -14.97 Sv, whereas the

linear enhanced trend is -0.06 Sv year-1.

During 1993–2019, the linear correlation coefficients of Niño

3.4 index and flow change are greater than those of DMI index and

CP index at the upper layer and the lower layer inflow and the lower

layer outflow, while the upper layer outflow shows a strong

correlation with DMI index. To quantify the relative importance

of the three climate factors to ITF changes over time, RF models are
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conducted at different levels. Through the analysis of the model

results, the dominant climate factors of the upper layer inflow and

outflow are clear in the three periods of 1993–2000, 2002–2008, and

2009–2012, which are dominated by Niño 3.4 (relative importance

reaching 40%), DMI (relative importance exceeding 50%), and no

significant dominant index. During 1993–2000, the El Niño event in

1997/1998 and the -0.5 cm SSH difference between NWP and SEI

dominated the Niño 3.4 index. During 2002–2008, the dominant

DMI was reinforced by successive positive IOD events in 2006–

2007 and the 0.99 cm SSH difference between NWP and SEI. In the

upper layer outflow, the dominant climate factor is clear in 2013-

2019 period, which are dominated by DMI (relative importance

reaching 40%). In the upper layer outflow, during 2013–2019,
TABLE 1 Classification of years when El Niño or La Niña is contacted with positive IOD or negative IOD events from 1993 to 2019.

Negative IOD No IOD event Positive IOD

El Niño 2002,2004,2009
1994,1997,2006,2015,

2019

No ENSO event 1996
1993,2001,2003,2008,

2013,2014
2012,2017

La Niña 1998,2010,2016 1995,1999,2000,2005 2007,2011,2018
A

B

D

C

FIGURE 10

SSHA in different periods. (A) 1993–2000, (B) 2002–2008, (C) 2009–2012, (D) 2013–2019. The ranges in the red and green boxes in (A) are NWP (6°
N–16°N, 125°E–155°E) and SEI (6°S–16°S, 85°E–115°E), respectively. The solid gray line is the contour line with SSHA of zero.
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relatively strong negative IOD event in 2015/2016, the -3.22cm SSH

difference between NWP and SEI, and successive positive IOD

events occurred from 2017 to 2019 dominated the DMI index.

The climate drivers can markedly regulate the ITF transport.

However, due to the complexity of the climate modes and the

interaction between them, it is difficult to clarify the relative

importance of each period (Wang et al., 2022). This study provides a

new insight to quantify the response of ITF transport to climate drivers.

However, the effect of climate factors on ITF in specific years could not

be analyzed in detail. The influence of these factors on ITF changes in a

specific climatic event can be studied with this method using identified

significantly important climate factors.
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