
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Atsushi Matsuoka,
University of New Hampshire, United States

REVIEWED BY

Joji Ishizaka,
Nagoya University, Japan
Shengqiang Wang,
Nanjing University of Information Science
and Technology, China
Bror Jonsson,
Plymouth Marine Laboratory,
United Kingdom

*CORRESPONDENCE

Jianyu Chen

chenjianyu@sio.org.cn

RECEIVED 02 March 2023
ACCEPTED 11 July 2023

PUBLISHED 28 July 2023

CITATION

Cui H, Chen J, Jiang X, Fu Y and Qiao F
(2023) A novel quantitative analysis for
diurnal dynamics of Ulva prolifera patch in
the Yellow Sea from Geostationary Ocean
Color Imager observation.
Front. Mar. Sci. 10:1177997.
doi: 10.3389/fmars.2023.1177997

COPYRIGHT

© 2023 Cui, Chen, Jiang, Fu and Qiao. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 July 2023

DOI 10.3389/fmars.2023.1177997
A novel quantitative analysis
for diurnal dynamics of Ulva
prolifera patch in the Yellow
Sea from Geostationary Ocean
Color Imager observation

He Cui1,2, Jianyu Chen2,3*, Xiaoyi Jiang4, Yu Fu4 and Feng Qiao3

1Ocean College, Zhejiang University, Zhoushan, China, 2State Key Laboratory of Satellite Ocean
Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources,
Hangzhou, China, 3School of Oceanography, Shanghai Jiao Tong University, Shanghai, China,
4National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, China
Introduction: In the last decade, the outbreak of large-scale green tides caused by

Ulva prolifera has continuously occurred in the Yellow Sea. Satellite remote sensing

techniques have been widely used to monitor the distribution area and duration of

green tides due to their advantages of their large-area synchronous observation.

Ulva prolifera in the Yellow Sea ismainly distributed in bands or large patches during

its flourishing stage. Previous studies have rarely reported the quantitative analysis

of a single Ulva prolifera patch and its changes in the short term.

Methods: Considering the high temporal resolution of the Geostationary Ocean

Color Imager (GOCI) sensor and the patchy distribution of Ulva prolifera floating

on the sea surface, we developed a feasible method for monitoringUlva prolifera

by performing clustering analysis with density-based spatial clustering of

applications with noise (DBSCAN) to capture the diurnal variation characteristics

of a single Ulva prolifera patch.

Results: This new approach was used to extract informationfrom a single Ulva

prolifera patch in the Yellow Sea in 2012 and 2017. The results showed that during

the time of GOCI imaging, the tidal current was the main factor driving the drift of

Ulva prolifera, and the drifting direction of Ulva prolifera was consistent with the

direction of the local tidal current, with a coefficient of determination of 0.94.

Discussion: By changing the normalized difference vegetation index (NDVI)

threshold, further more accurate atmospheric correction (AC) of GOCI data

during the twilight periods was indirectly achieved. By comparing the areal

change in the single patch before and after AC, we speculated that the daily

change in signal intensity received by the GOCI sensor may be the main reason

for the diurnal variation in the Ulva proliferacoverage area. The results showed

the details of the diurnal variation in Ulvaprolifera patches in the dynamic marine

environment, and the main reason that may cause this variation was speculated.

KEYWORDS

Ulva prolifera, GOCI, remote sensing detection, NDVI, DBSCAN clustering analysis,
diurnal variation
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1 Introduction

“Green tides” is a phrase typically used to refer to an ecological

disaster caused by the excessive proliferation, growth, and

aggregation of large green algae in seawater under certain

environmental conditions (Valiela et al., 1997; Liu et al., 2013).

Green tides events began in the 1960s and 1970s, and frequently

broke out on a large scale in the coastal waters of many countries.

These events have become a worldwide problem for the marine

ecological environment (Ye et al., 2011; Smetacek and Zingone,

2013). Since 2007, green tides with Ulva prolifera as the main cause

have broken out periodically in the Yellow Sea from May to July

every year, which has seriously affected the ecological environment

of the region, causing serious social impacts and very high economic

losses (Ye et al., 2011; Zhou et al., 2015). The Yellow Sea green tides

of Ulva prolifera are considered the largest-scale green tides in the

world and have become the most serious ecological disaster in the

local area (Zhou et al., 2015; Yu and Liu, 2016). Therefore, timely,

accurate, and effective access to green tides information is essential

for monitoring, managing, and preventing this type of marine

disaster. Green tides disaster events have the characteristics of fast

drifting speed and wide distribution. Satellite remote sensing

techniques can provide continuous observation data on temporal

and spatial scales to accurately capture the time, extent, and area of

Ulva prolifera outbreaks in real time. These techniques have

irreplaceable advantages over traditional survey and measurement

methods; in particular, optical remote sensing satellites have been

frequently used to monitor green tides (Qi et al., 2017).

Based on the optical characteristics of Ulva prolifera, green tides

monitoring methods and case studies have been widely reported

with the development of remote sensing satellite techniques.

According to the “redshift” characteristic of Ulva prolifera at

around 700 nm (Hu and He, 2008), many remote sensing

monitoring algorithms have been proposed, such as the single-

band threshold method, the multiband ratio method, and the

supervised classification method. For example, Shi and Wang

(2009) proposed the normalized difference algae index (NDAI)

green tides detection algorithm for moderate resolution imaging

spectroradiometer (MODIS) data. Although the calculated NDAI

value is easily affected by atmospheric conditions, the algorithm can

discriminate green tides and seawater information after AC better

than traditional algorithms. Hu (2009) established a green tides

remote sensing monitoring method based on the floating algal

index (FAI). Compared with other traditional remote sensing

monitoring algorithms, the FAI method showed higher stability

and was more suitable for green tides detection under various

environmental conditions. In addition, Shanmugam et al. (2013)

proposed an ocean surface algal bloom index (OSABI) that can

more accurately quantify the algal bloom coverage area, and this

method can be used to more easily distinguish the algal bloom

outbreak stage. Xing and Hu (2016) developed the virtual baseline

index of floating algae height (VB-FAH) for the HJ-1 satellite and

analyzed the green tides outbreak in the Yellow Sea.

Compared with polar-orbiting satellites, the advent of

geostationary satellites has opened up a new research direction

for green tides detection. The Communication Ocean and
Frontiers in Marine Science 02
Meteorological Satellite (COMS), the world’s first geostationary

ocean color satellite equipped with GOCI, was launched by Korea

in June 2010 (Amin et al., 2015). The high-frequency ocean color

data of northeast Asia that it produces have been successfully

applied to the remote sensing monitoring of green tides in the

observed sea areas. The index of floating green algae for the GOCI

(IGAG) is measured by using an algal extraction algorithm based on

field measurements and GOCI data (Son et al., 2012) and has been

applied to Ulva prolifera disaster monitoring. The results of selected

cases showed that the accuracy of the IGAG algorithm was higher

than that of the NDVI and enhanced vegetation index (EVI). Using

GOCI data and Lagrangian particle tracking experiments, Son et al.

(2015) presented the movement path of floating green algae patches

and explained the physical forcing factors that affect algae drift and

distribution. The high temporal resolution of the GOCI sensor can

also realize the diurnal variation monitoring of floating algal

blooms. Lou and Hu (2014) established an improved red tide

index (RI) using GOCI data and proved that the index can

effectively describe the bloom of Prorocentrum donghaiense. They

also found that red tide blooms evolved during the day, their

physical location was driven by tides, and vertical migration of

Prorocentrum may be the main reason for the area change during

the day. Song et al. (2018) used high temporal resolution GOCI

remote sensing imagery to extract information on Ulva prolifera in

the South Yellow Sea in 2017 and analyzed the evolution

characteristics. The diurnal variation in the Ulva prolifera

coverage area tended to increase and then decrease. Based on the

band characteristics of the GOCI sensor, Chen et al. (2020) designed

a new green tides index algorithm based on the tasseled cap

transformation method. They proved that the new method has

high reliabilityand also explained that the monitored green tides

coverage area reached a maximum expansion at noon, which may

be affected by photosynthesis.

Related studies have shown that the accuracy of GOCI products

obtained at noon is higher than that in the morning and evening,

and the deviation of data in bands 5 to 8 is larger than that at noon

(Lamquin et al., 2012; Moon et al., 2012; Qiao et al., 2021). On the

one hand, the weak light during the twilight periods increases the

difficulty of AC and inhibits the collection of water color

information; on the other hand, the large solar zenith angle and

the observation zenith angle reduce the ability of the water color

satellite to detect chlorophyll (Concha et al., 2019; Li H et al., 2019;

Li et al., 2018). In addition, under the large solar zenith angle in the

twilight periods, due to the influence of the large solar zenith angle

and the curvature of the earth, there is also a certain error in the

Rayleigh-corrected reflectivity calculated by the standard AC

algorithm (Gordon et al., 1988; Wang, 2002; He et al., 2018).

Therefore, the vegetation index method based on band

combination is affected by the deviation of band reflectance

during twilight when extracting green tides information.

Furthermore, the change in the solar zenith angle during the day

causes a change in the vegetation index value. The green tides data

extracted by the vegetation index consist of pixel information with a

wide range distribution, while the Ulva prolifera in the Yellow Sea is

mainly distributed in stripes and large patches in the flourishing

period (Qiao et al., 2009). Due to its unique distribution
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characteristics, the clustering method has certain advantages for the

overall data extraction of single patches. Density based spatial

clustering of applications with noise (DBSCAN) is a density-

based clustering algorithm (Wishert, 1969; Hartigan and Wong,

1979; Ester et al., 1996). Because of its good performance and

robustness, it has been widely used in outlier detection (Hu et al.,

2014), image segmentation (Shi and Ma, 2018), data compression

(Manavalan and Thangavel, 2011), and other applications. Ji and

Zhao (2015) used the spatiotemporal trajectory adjoint pattern

mining method based on the DBSCAN algorithm to extract

useful information from massive spatiotemporal trajectory data

and provide decision support for smart cities. Çelik et al. (2011)

used the DBSCAN algorithm to process annual temperature data

and identified the temperature law and abnormal temperature.

Using the method of combining the DBSCAN algorithm with the

gray method (Ju-Long, 1982), Jiang and Zhang (2017) analyzed the

trajectory of hurricanes based on the structural distance, which

provided a reference for weather forecasting and other applications.

To identify the characteristics of mesoscale vortex detection in sea

level anomaly (SLA) data, Li J et al. (2019) proposed a new

mesoscale vortex automatic identification algorithm based on the

density clustering method. The algorithm not only has an improved

efficiency compared with the traditional algorithm but also

maintains high stability. It can identify each single vortex

structure while also identifying stable multivortex structures. The

above research proves that the DBSCAN method can be applied to

not only land fields but also the detection of marine environments.

Therefore, considering the high temporal resolution of the

GOCI sensor and the patchy distribution of floating Ulva prolifera

in the Yellow Sea, we proposed a method of Ulva prolifera

extraction based on DBSCAN clustering analysis. Based on the

extraction ofUlva prolifera information by the NDVI algorithm, the

DBSCAN method for clustering analysis was used to quantitatively

analyze the drifting path of a single Ulva prolifera patch and its

driving mechanism, as well as the diurnal variation characteristics

of the coverage area.
2 Materials and methods

2.1 Satellite data processing

The GOCI L1-B data can be downloaded from the Korea Ocean

Satellite Center (KOSC) website (http://kosc.kiost.ac.kr), covering 8

bands of visible light and infrared light from 412-865 nm. The

satellite can perform hourly observations from 8:30 to 15:30 (Beijing

time, all times in this paper are Beijing time). The advantages of

spatial resolution (500 m) and temporal resolution (1 h) can be used

to monitor the offshore marine dynamic environment. Through

data screening of pseudo-color RGB images, it was found that the

study area had minimal cloud instances cover on 26 May 2012 and

27 May 2017, and eight valid images were obtained. Both were in

the flourishing period of green tides development at the same time

and therefore were selected as research objects. GOCI provides

multilevel data products, and L2 data products for marine

environmental factor analysis can be further obtained by
Frontiers in Marine Science 03
processing L1-B data (Wang et al., 2017). In this study, GOCI-

L2C data corrected by Rayleigh scattering were selected for remote

sensing monitoring and extraction of Ulva prolifera in the Yellow

Sea. Using GOCI Data Processing Software (GDPS) with default

parameters and standard AC, Level-1B data was processed into

Level-2 data to obtain spectral Rayleigh-corrected reflectance (Rrc)

products after gas absorption correction, sea white hat correction,

and Rayleigh correction (Ryu and Ishizaka, 2012). The GOCI

standard AC algorithm is based on the Sea-viewing Wide Field-

of-view Sensor (SeaWiFS) standard AC algorithm (Wang and

Gordon, 1994), with enhancements made to account for multiple

scattering effects and improved in terms of turbid case-2 water

correction, optimized aerosol models, and solar angle correction per

slot. Among them, for turbid water correction, the regional

empirical relationship between the water reflectance of the red

(660 nm) and the near infrared bands (745 nm and 865 nm) was

used (Ahn et al., 2012). The specific procedure is as follows: The

atmospheric transparency of the preprocessed GOCI data is

estimated by calculating the ratio between different bands, with

the blue and green band (412 nm and 555 nm) typically serving as

reference. Subsequently, the built-in atmospheric scattering model

is employed to correct the data based on the estimated atmospheric

transparency. According to the Rayleigh scattering model and the

estimated atmospheric transparency, the corrected data are

corrected by Rayleigh scattering. After the atmospheric and Rayleigh

scattering correction, combined with the predefined atmospheric

model, considering the influence of water characteristics and

atmospheric scattering, the reflectivity of water can be calculated.

Finally, by utilizing the established ocean optical algorithm and

applying the corrected water reflectance, one can obtain the

corresponding ocean parameter products. Furthermore, the

corresponding high spatial resolution Landsat_8 Operational Land

Imager (Landsat_8/OLI) image data (30 m resolution) were

downloaded from the geospatial data cloud (https://www.gscloud.cn/

sources/accessdata/411?pid=263). Radiance calibration and Fast line –

of fight atmospheric analysis of spectral hypercubes (FLAASH) AC

(Matthew et al., 2003) were performed using ENVI, and the RGB

image was output by pseudo-color synthesis for validation with GOCI

recognition results.
2.2 Research area and tidal data

This paper takes the Yellow Sea as the study area (Figure 1).

Affected by semidiurnal tides, there are approximately two flood

tides and two ebb tides in the study area every day (Hsueh, 1988;

Teague et al., 1998). The tidal current is one of the important local

hydrodynamic processes. The hourly tidal height data of two tidal

stations, point A and point B, near the study area are collected from

the local tide tables released by the National Marine Data Center

(NMDC), National Science & Technology Resource Sharing Service

Platform of China(http://mds.nmdis.org.cn/) (Figure 1). Tidal

height and tidal current data can also be calculated by using

ocean models. TPXO-CSI2016 (China Seas & Indonesia 2016) is

a regional tidal model in the China seas established by Oregon State

University (OSU) (Egbert et al., 1994; Egbert and Erofeeva, 2002).
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The model is based on the Laplace tidal equation, uses the least

squares method, and assimilates large amounts of satellite altimeter

data and measured site data, with a spatial resolution of 1/30°

(http://www.tpxo.net). The Tidal Model Driver (TMD) (https://

www.esr.org/research/polar-tide-models/tmd-software) is used to

run the OSU tidal current model for tidal prediction and tidal

current calculation in designated areas (Padman and Erofeeva,

2005). Using the tidal current model, the tidal current data at the

same observation time as the GOCI (setting the output resolution to

0.1° × 0.1°) and the corresponding tidal height data are extracted.
2.3 Ulva prolifera extraction method based
on DBSCAN clustering analysis

Similar to the spectral reflectance characteristics of terrestrial

plants, Ulva prolifera has low reflectance in the visible band and

high reflectance in the near-infrared band, and the spectral

difference between Ulva prolifera and water is obvious (Hu et al.,

2010). Therefore, as a quantitative algorithm based on band

operation, the vegetation index has become the mainstream

algorithm for Ulva prolifera remote sensing detection. Previous

studies have shown that NDVI has a more prominent detection

ability than other vegetation index algorithms and can still be used

as the preferred algorithm for satellite green tides operational

monitoring (Cai et al., 2014; Song et al., 2018). For GOCI data,

the band selection of the 5th (660 nm) and 7th (745 nm) bands for

the vegetation index calculation has better stability (Song et al.,

2018). Therefore, the combination of the 5th and 7th bands in the

NDVI algorithm was used as the Ulva prolifera detection algorithm

in this study, as follows:
Frontiers in Marine Science 04
NDVI =
Rrc(745) − Rrc(660)

Rrc(745) + Rrc(660)
(1)

After the NDVI calculation of the GOCI data, it is necessary to

use image segmentation technology to separate the Ulva prolifera

information from other information, such as seawater information,

for the next step of clustering. As one of the traditional image

segmentation methods (Otsu, 1979), the basic principle of the

threshold method is to set different thresholds and divide the pixels

of the image into several categories. If the original image is F(x,y), the

eigenvalue T is found in F(x,y) according to certain criteria and

applied to image segmentation. The segmented image is:

G(x, y)=
a0     F(x, y)<T

a1     F(x, y)≥T

(
(2)

If a0 = 0 (black pixels) and a1 = 1 (white pixels), this is

the binarization of the image (Sezgin and Sankur, 2004). In this

study, we select the threshold segmentation method for

image binarization.

The DBSCAN algorithm can perform clustering analysis by the

closeness of the sample distribution and can effectively screen

outliers. The NDVI algorithm combined with DBSCAN clustering

analysis can perform the extraction of a single Ulva prolifera patch

(Figure 2). According to the set radius Eps and the number of

samples MinPts, the DBSCAN algorithm divides the data to be

clustered into three categories: core points, boundary points, and

noise points. Among them, the points that contain at least MinPts

samples in the circle with radius Eps are called core points. The

points that do not belong to the core point but are in the

neighborhood of a core point are called boundary points. Those

that are neither boundary points nor core points are called noise
FIGURE 1

Satellite image of the Yellow Sea. In (B), the red box is the study area, blue points A and B are the two nearby tide stations, and red points C and D
are the locations selected to obtain the tide height information in the study area.
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points. The cluster center to which each sample belongs is

determined by defining direct density reachability and density

connectivity. Direct density reachability means that for a given

radius Eps and sample number MinPts, it is necessary to directly

reach sample Q from sample P:

p ∈ NEps(q)

NEps(q) ≥ MinPts

(
(3)

where NEps(q) is the sample range of sample Q. Density

connected means that there are samples that satisfy P and Q are

density reachable for both Eps and MinPts. The specific DBSCAN

clustering algorithm is as follows: і) Set the dataset D, the radius Eps,

and the number of samples MinPts; ii) Determine if the input

sample points are core points; iii) If the input sample is a core point,

determine all direct density accessible points in its neighborhood;
Frontiers in Marine Science 05
iv) Repeat steps ii) and iii) until all samples are evaluated; v) Merge

some density accessible objects, and find the set of connected points

with maximum density according to the direct density accessible

points in the neighborhood of all core points; vi) Repeat step v) until

all core point neighborhoods have been traversed.

There are very tiny patches (the red crosses in Figure 3 represent

outliers or noise) around the large area of Ulva prolifera extracted

by the NDVI algorithm. Including them in the calculation causes

errors in the statistical area, so they are deleted. The DBSCAN

algorithm is used to process the image results after NDVI extraction

and binarization, which can not only cluster large-area algae but

also screen out sporadically distributed tiny patches and eliminate

the errors caused by area statistics. In this study, the DBSCAN

function developed in the MATLAB statistics and machine learning

toolbox was used to realize the clustering of Ulva prolifera. The

function contains two important parameter values: Eps andMinPts,
B CA

FIGURE 3

Diagram of algae clustering combined with visual interpretation. (A–C) represent the clustering results of three adjacent times of 8:30-10:30, and
the red crosses are the selected sporadic algae, representing the outliers. Patch A is the algal body with the largest distribution area on that day,
patch B and patch C are the algal bodies extracted at the corresponding time before and after, and patch D and patch E are the algal bodies that are
different from patch B and patch C, respectively.
FIGURE 2

Technique flow chart.
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which correspond to the radius and the number of samples in the

DBSCAN algorithm, respectively. Among them, too large Eps lead

to fewer classification types, and too large MinPts lead to more

outliers. Therefore, the selection of two parameter values follows the

following principles: combined with the method of visual

interpretation, according to the extraction results of the GOCI

pseudo-color image and NDVI extraction and binarization, the

number of classifications of Ulva prolifera after clustering was

roughly counted, and the initial values of two parameter values

were selected according to the number of classifications. As shown

in Figure 4K, according to the aggregation degree of Ulva prolifera

patches, the six main parts were selected and classified (red ellipse

marker) by visual interpretation. Then, according to the

classification of large patches after visual interpretation, the

number of outliers was minimized, and the two parameter values

were appropriately adjusted to obtain the best clustering results. As

shown in Figure 4O, the large patches marked by red ellipses have

achieved ideal clustering results. Table 1 shows the Eps and MinPts

values set by clustering analysis at each time of the study case. Ulva

prolifera algae in the floating process, affected by the surrounding

environment, produces edge algae separation phenomena.
Frontiers in Marine Science 06
To eliminate the area error caused by algae separation, according

to any banded or patchy algae after clustering, this study took the

algae with the largest distribution area of the day as a reference to

count the coverage area of algae at other times. Among them, the

distribution area is the total area within the envelope of the same

class of algae after clustering analysis; the coverage area is the actual

coverage area of floating Ulva prolifera, and the area statistics

involved in this study are the coverage area.
2.4 Case study

The selection of parameters and the algae separation phenomena

in the clustering analysis in Section 2.3 will be explained by a case.

Figure 3B shows the clustering analysis result ofUlva prolifera algae at

9:30 on 26May 2012. When Eps = 2 andMinPts = 3, the classification

result is the most obvious, and the outliers are the least, which is the

best clustering result. The explanation of algae separation is shown in

Figure 3. Patch A is the largest algae in the distribution area of the

day, and patch B and patch C are the corresponding algae extracted at

the time before and after, respectively. According to the clustering
FIGURE 4

Extraction results of Ulva prolifera at four time points on 26 May 2012 (8:30, 11:30, 12:30, and 15:30). (A–D) represent the pseudo-color images of
the four time points, and the detected Ulva prolifera is outlined in red. (E–H) represent the NDVI extraction results. (I–L) represent the binarization
results after threshold segmentation; (M–P) represent the DBSCAN clustering results, and single Ulva prolifera patches were selected for diurnal
variation analysis.
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results, patch D and patch E are different from patch B and patch C,

respectively. However, referring to the clustering results of patch A, it

can be identified as the edge algae separation phenomena. In the area

statistics of patch B and patch C, patch D and patch E still need to

be counted.
3 Results

3.1 Extraction results of Ulva prolifera

In this study, the NDVI green tides extraction algorithm

combined with visual interpretation and the DBSCAN clustering

method was used to extract Ulva prolifera from preprocessed

GOCI_Rrc data of the study area. The results for 8:30, 11:30, 12:30,

and 15:30 were selected for display (corresponding to two morning

and afternoon times and two noon times, respectively). Figure 4 shows

the result of clustering analysis after extraction of Ulva prolifera on 26

May 2012. The pseudo-color images were derived from the GOCI_Rrc

data, with the detected Ulva prolifera in the red box (Figures 4A–D).

The yellow highlighted area in the NDVI extraction results is the area

where Ulva prolifera is heavily aggregated with high NDVI values

(Figures 4E–H). The area extracted at noon is larger than that

extracted in the morning and afternoon. Further threshold

segmentation is performed, and the threshold setting is mainly

determined by observing the distribution of Ulva prolifera in

pseudo-color images and the extraction results of NDVI. The

threshold on 26 May 2012 is set to 0. The threshold segmentation

results show that Ulva prolifera has a banded or patchy distribution

(Figures 4I–L). Figures 4M–P shows the results of clustering by the

DBSCAN method. The algal bodies gathered in different patches or

bands were divided into different colors, and sporadic algal bodies

were screened out as noise, which well realized the extraction of a

single algal body. Figure 5 shows the extraction results on 27 May

2017. In addition, the threshold segmentation threshold is set to 0

(Figures 5I–L), and the remaining observation results and NDVI

extraction results are similar to those on 26 May 2012. To further

analyze the diurnal variation characteristics of a single Ulva prolifera

patch, three patches, patch A, patch B, and patch C, were evenly

selected from the two-day extraction results for further study.

Figure 6 shows the verification of the GOCI recognition results

for the higher resolution Landsat_8/OLI image. The Landsat_8/OLI

image of the study area at 10:30 on 27 May 2017 is selected for

preprocessing (Figure 6A), and the red box is the detected Ulva

prolifera (corresponding to Figure 6B). It is compared with the

NDVI extraction results of GOCI (Figure 6C) and DBSCAN
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clustering results (Figure 6D). Although the NDVI extraction

results of GOCI data are not sufficiently refined, they can still

reflect the morphological characteristics of Ulva prolifera patches,

which can realize the extraction and identification of a single patch

and meet the research needs of this paper.
3.2 Diurnal variation characteristics

3.2.1 Drifting path and driving mechanism
Field observations from the historically moored acoustic

Doppler current profiler (ADCP) and drifting buoy have verified

the OSU tidal current data in the Chinese seas. The average

magnitude error between the total surface currents (including

tidal currents and wind-driven currents) obtained by the ADCP

and the OSU outputs is approximately 0.5 cm/s, and the average

angle error is 10° (Jiang and Wang, 2016). The measured currents

obtained by the drifting buoy are highly consistent with the OSU

outputs in the direction of currents and rotation (Cui et al., 2022).

These findings indicate that tidal currents are dominant, and wind-

driven velocities play an extremely limited role in the total surface

currents in the Chinese seas (Lie et al., 2002; Hu et al., 2016).

Therefore, we compared the tidal current direction output by OSU

with the drifting direction of Ulva prolifera and analyzed the driving

mechanism of Ulva prolifera within one day. Figure 7 shows the

hourly drifting path of the three Ulva prolifera patches A, B, and C

within one day. The background blue vector is the tidal current

result output by OSU. The form is the superposition of the tidal

current results in all periods from 8:30 to 15:30. The drifting

direction of Ulva prolifera is basically consistent with the local

tidal current direction. Figure 7A shows the drifting path of Ulva

prolifera extracted on 26 May 2012, and its drifting direction and

tidal current direction are both eastward. Figure 7B shows the

drifting path of Ulva prolifera extracted on 27 May 2017. Ulva

prolifera first moved northeast, then turned to the north, and finally

slightly deviated to the northwest. However, the overall direction

within a day is northeast, consistent with the direction of the tidal

current. Figures 7C, D show the drifting direction of Ulva prolifera

in 2 or 3 adjacent periods in the case, which is basically consistent

with the corresponding tidal current directions.

Through the overall observation of the extraction results of

single Ulva prolifera algae patch in continuous images, we found

that the overall shape of Ulva prolifera patches does not change

much during movement in a short time. Therefore, we used the

discrimination of similar Ulva prolifera patches in the first and last

images (8:30 and 15:30, corresponding to Figures 7A, B) and
TABLE 1 Eps value and MinPts value set by DBSCAN clustering at each time.

Date Time 8:30 9:30 10:30 11:30 12:30 12:30 14:30 15:30

26 May 2012
Eps 3.5 2 3 2 2 2.5 3 4

MinPts 4 3 6 3 3 4 5 4

27 May 2017
Eps 2 2.5 2.5 2.5 2 2 2.5 2

MinPts 3 5 5 5 4 4 5 4
fr
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adjacent time images (corresponding to Figures 7C, D) to

measure and calculate the drifting direction of Ulva prolifera and

compared the results with the corresponding tidal current data to

quantitatively analyze the correlation between the two. Figures 8A,

B are sketch maps of the drifting direction of Ulva prolifera in the

selected two-day case. The solid and dashed lines of the same color

in the graph represent the beginning and end positions of similar

Ulva prolifera patches within a day. Figure 8C shows the

comparison between the drifting direction of Ulva prolifera and

the corresponding tidal current direction. The direction angles of

both are distributed between -180° and 180°, which can be

confirmed in the tidal current vector of the background field in

Figure 7. The coefficient of determination of both is 0.94, which

quantitatively proves that the drifting direction of Ulva prolifera is

basically consistent with the local tidal current direction within 7

hours of GOCI imaging, and the tidal current is the main factor

driving the drift of Ulva prolifera.

3.2.2 Diurnal variation characteristics of the
coverage area

The GOCI can be used to monitor and extract the diurnal

variation in the coverage area of Ulva prolifera in the Yellow Sea,
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which provides favorable data support for responding to green

tides disasters. Based on the two-day case data, the NDVI

algorithm based on DBSCAN clustering analysis extracted the

coverage area of Ulva prolifera for analysis, as shown in Figure 9;

the relative change rate of the other seven times was calculated

based on the maximum coverage area of the day, as shown in

Table 2. In the selected two-day case, the three patches A, B, and C

and the total coverage pixels and coverage area of Ulva prolifera all

showed a trend of increasing first and then decreasing. On 26 May

2012, the maximum coverage area appeared at 12:30 noon, and the

minimum coverage area was at 15:30. The time of the maximum

coverage area on 27 May 2017 was 13:30, and the minimum

coverage area was at 8:30. At the same time, the change rate of

both is the largest when the coverage area is the smallest, which is

0.50 and 0.48, respectively; that is, the area at the time of the

monitored maximum coverage area is almost twice that of the

minimum coverage area. Within 7 hours of GOCI imaging, the

growth and death of Ulva prolifera specimens are unlikely to

explain this phenomenon. Therefore, according to previous

research results, it is speculated that Ulva prolifera may have

undergone vertical migration during this period. The strongest

solar radiation at noon is conducive to the photosynthesis of the
FIGURE 5

Extraction results of Ulva prolifera at four time points on 27 May 2017 (8:30, 11:30, 12:30, and 15:30). (A–D) represent the pseudo-color images of
the four time points, and the detected Ulva prolifera is outlined in red. (E–H) represent the NDVI extraction results. (I–L) represent the binarization
results after threshold segmentation; (M–P) represent the DBSCAN clustering results, and single Ulva prolifera patches were selected for diurnal
variation analysis.
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algae, and the oxygen released forms bubbles to increase the

buoyancy of the algae and make it float on the sea surface

(Liang et al., 2008).
4 Discussion

4.1 Influence of tide on the diurnal
variation in area

The horizontal tidal current mentioned above is the main factor

driving the drift of Ulva prolifera in a day. We suppose that the tidal

height variation may also cause the vertical migration of Ulva

prolifera, which will lead to diurnal variation in the coverage area.

Lou and Hu (2014) mentioned that the short-term changes in the

area of harmful algal blooms along the Zhejiang coast may be the

result of horizontal dilution caused by tides, possibly due to stronger
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dilution or mixing of tides in offshore waters. The study area of this

paper is in the relatively open sea area northwest of the South

Yellow Sea (shown in the red box in Figure 1). The existing tidal

stations cannot obtain accurate information on variations in tidal

height in the study area, while the OSU tidal current model can

obtain tidal height information at any time and location. Therefore,

we use the OSU tidal current model to obtain the central tidal height

information of the corresponding cases in the study area.

Figures 10A, B show the tidal height information obtained by the

OSU tidal current model and the tidal height information measured

by the tidal station on the corresponding date, where A and B in

Figure 1 correspond to Qianliyan and Chengshanjiao, respectively.

The tidal height information obtained by the OSUmodel in one day

is basically consistent with the measured tidal height data in terms

of change trend and tidal height magnitude, so the OSU tidal height

data can also well reflect the variations in tidal height in the study

area. Figures 10C, D show the tidal height variation in the two-day
FIGURE 6

Verification of GOCI recognition results by Landsat_8/OLI. (A) Shows the Landsat_8/OLI remote sensing image of the pre-processed study area.
(B) Distribution of part of Ulva prolifera selected by the red box in (A). (C) Shows the NDVI extraction results corresponding to GOCI data. (D) Shows
the result of DBSCAN clustering analysis.
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FIGURE 7

Hourly drifting path of a single Ulva prolifera in a day. The background blue arrow is the corresponding OSU tidal current vector, and the red arrow is the
drifting direction of Ulva prolifera. (A) Shows the drifting path of Ulva prolifera extracted on 26 May 2012; (B) Shows the drifting path of Ulva prolifera
extracted on 27 May 2017; (C) Shows the drifting path from 8:30 to 9:30 on 26 May; (D) Shows the drifting path from 13:30 to 15:30 on 27 May.
B

CA

FIGURE 8

(A, B) Represent sketch maps for measuring the drifting direction of Ulva prolifera. The solid and dotted lines with the same color represent the
beginning and end positions of similar Ulva prolifera patches within a day. (C) Shows the comparison diagram between the drifting direction of Ulva
prolifera and the corresponding tidal current direction. The gray line is the 1:1 line, and the black line is a straight line of scatter fitting. To ensure the
continuity of the direction angle, its range is set to (-180°,180°).
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case data in the study area. During the GOCI imaging periods, 26

May 2012 was in the ebb tide period, and 27 May 2017 was in the

flood tide period. The diurnal variation in the Ulva prolifera

coverage area detected within two days tended to increase and

then decrease. Therefore, for the non-intertidal open sea, the tidal

height change is not the main reason for the diurnal variation in the

Ulva prolifera area.
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4.2 Influence of NDVI threshold on Ulva
prolifera extraction

In the process of extracting Ulva prolifera information, after

calculating the NDVI value of the image, it is still necessary to set a

threshold to distinguish Ulva prolifera from seawater. In this study,

the segmentation threshold is mainly determined by visual
TABLE 2 Statistics of coverage area characteristics of Ulva prolifera.

Date Time 8:30 9:30 10:30 11:30 12:30 12:30 14:30 15:30

26 May 2012

Number of pixels 981 1615 1780 1888 1941 1719 1292 969

Coverage area(km2) 245.25 403.75 445 472 485.25 429.75 323 242.25

diurnal variation rate 0.49 0.17 0.08 0.03 0.00 0.11 0.33 0.50

27 May 2017

Number of pixels 1562 1983 2425 2738 2890 2999 2553 1796

Coverage area(km2) 390.5 495.75 606.25 684.5 722.5 749.75 638.25 449

diurnal variation rate 0.48 0.34 0.19 0.09 0.04 0.00 0.15 0.40
fr
B

A

FIGURE 9

Variation in the coverage area of Ulva prolifera with time. (A) Shows the variation on 26 May 2012, and (B) shows the variation on 27 May 2017, for
which the area statistics unit is pixels and 1 pixel represents 0.25 km2.
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interpretation, but there are still mixed pixels of Ulva prolifera and

seawater that cannot be fully considered when setting the threshold,

resulting in errors in extraction. Therefore, we wanted to investigate

the effect of the threshold on the extraction area of Ulva prolifera. In

contrast to previous research reports, we used the high temporal

resolution characteristics of GOCI data, used the time of the day

when the extraction area was the largest as a reference, and changed

the NDVI threshold of other times to make the extraction area of 8

moments basically the same to observe the change in the NDVI

threshold. Figure 11 shows the change trend of the NDVI threshold

when the extraction areas of Ulva prolifera patches A, B and C were

consistent at each time of the day on 26 May 2012 and 27 May 2017.

The case results of two days show that the NDVI threshold first

increases and then decreases. The coverage area in Figure 9 in

Section 3.2.2 shows a trend of first increasing and then decreasing,

but the NDVI threshold at each time within a day remains

unchanged. It can be concluded that in the GOCI imaging time,

the extraction area of Ulva prolifera is negatively correlated with the

change in the NDVI threshold; that is, for the same image at the

same time, the smaller the NDVI threshold is, the larger the

extraction area of Ulva prolifera.
4.3 Causes of diurnal variation in the
coverage area

The high temporal resolution of GOCI provides data support

for the hourly monitoring of Ulva prolifera in the Yellow Sea.

Similar to previous studies, we also concluded that the daily

variation in the coverage area of Ulva prolifera tended to increase

and then decrease in one day. The reason may be that the buoyancy
Frontiers in Marine Science 12
of Ulva prolifera changed, resulting in vertical migration. In recent

years, researchers have explored the biological mechanism of Ulva

prolifera given the complex mechanism of green tides (Wang et al.,

2020). The results showed that the light compensation point of Ulva

prolifera was lower than that of other algae. Usually, the light

intensity during the day was much higher than the light

compensation point. The lower light compensation points

enabled Ulva prolifera to carry out strong photosynthesis and

accumulate nutrients when the light intensity was weak (Wang

et al., 2010). The mechanism of non-photochemical quenching

(NPQ) in Ulva prolifera under high-light conditions is unique,

which is significantly different from that in other photosynthetic

organisms and can help Ulva prolifera adapt to high-light stress

(Gao et al., 2020). In addition, floating Ulva prolifera algae have a

unique suspended branching structure, which divides the floating

algae into two parts: floating on the sea surface and underwater

suspension. If the algae on the sea surface die due to high light

stress, the underwater suspension algae can also avoid the high light

stress and continue to grow, which also provides a physiological

basis for the outbreak of Ulva prolifera and long-distance floating

(Wu et al., 2016). Therefore, we speculate that during the seven

hours of GOCI imaging, whether it is twilight periods or noon

periods, Ulva prolifera can continue photosynthesis, and the

continuous generation of bubbles in the algal air sac will not

cause significant changes in buoyancy. Vertical migration caused

by buoyancy change may not be the main reason for the diurnal

variation in the coverage area.

The accuracy of GOCI products is affected not only by the weak

light at twilight but also by the difference in satellite-earth imaging

paths at different times, which also affects the acquisition of remote

sensing information. Figure 12 shows the imaging diagram of the
FIGURE 10

(A, B) Show the tide height information obtained by the OSU tidal current mode and corresponding tidal station. (C, D) Show the tide heights in the
study area on 26 May 2012 and 27 May 2017. The dots denote the hourly imaging time of GOCI.
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detection area at different times. For the same detection area, the

zenith angle of the sun is higher at twilight (8:30 and 15:30) than at

noon (12:30), and the solar radiation is lower. In addition, the path

from the top of the atmosphere to the detection area at twilight is

longer than that at noon (L1 and L3 are both longer than L2), solar

radiation is more affected by the atmosphere, and the signal

received by the GOCI sensor is weaker. Using the mature

Hydrolight-Second Simulation of a Satellite Signal in the Solar

Spectrum (6SV) coupled radiation transfer model, Qiao et al. (2021)

simulated and calculated the apparent reflectance of the Yellow Sea

received by the satellite on 3 May 2019 and compared it with the

reflectance obtained by the GOCI sensor. The results showed that

the mean absolute percentage error (MAPE) of the bands at 660

nm, 680 nm, 745 nm and 865 nm at twilight was significantly

greater than that at noon, and the error first decreased and then

increased during the day. The above reasons cause the imaging
Frontiers in Marine Science 13
difference between the GOCI sensor at twilight and noon.

Therefore, considering that the number of combined bands used

in the NDVI algorithm in this study is 660 nm and 745 nm,

combined with the change in the zenith angle of the sun during the

GOCI imaging time, we speculated that the change in the intensity

of the signal received by the GOCI sensor is the main cause of the

diurnal variation in the Ulva prolifera area. That is, within 7 hours

of GOCI imaging, there may be no substantial change in the Ulva

prolifera coverage area. The signal enhancement received by the

GOCI sensor at noon makes the extracted area of Ulva prolifera

show a diurnal variation tendency to increase and then decrease.

It is still difficult to use traditional algorithms for the AC of

GOCI data at high solar zenith angles (> 70°, corresponding to

twilight periods). This reduces the amount of data retrieved (Li

et al., 2020). The GOCI Rayleigh corrected reflectance product after

standard AC processing is affected by the large solar zenith angle
B

A

FIGURE 11

The single Ulva prolifera patch extraction area, which remained consistent, and the daily variation trend of the NDVI threshold. (A) Shows the change
trend of three Ulva prolifera patches A, B, and C on 26 May 2012, and (B) shows the change trend of three Ulva prolifera patches A, B, and C on 27
May 2017. nt is the NDVI threshold.
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and the curvature of the earth during the twilight periods, and there

are still some errors (Gordon et al., 1988; Wang, 2002; He et al.,

2018). Deviations in data for bands 5 to 8 of the GOCI image are

more pronounced during twilight than at noon (Lamquin et al.,

2012; Moon et al., 2012; Qiao et al., 2021). The combination of

the 5th and 7th bands in the NDVI algorithm was used as the

Ulva prolifera detection algorithm in this study. Therefore, the

product error caused by the standard AC in the twilight periods

will further affect the extraction results of NDVI, and ultimately

affect the results of DBSCAN classification in the twilight periods.

In this study, a further more accurate AC was achieved by changing

the NDVI threshold, which filled the missing data at twilight

periods. Figures 13A, B show the distribution of Ulva prolifera

patch B 8 times in a day on 26 May 2012, where Figure 13A is

the same NDVI threshold at each time, corresponding to Figure 9A.

Figure 13B shows the maximum area time as a reference, changing

the threshold size so that the area at each time is consistent,

corresponding to Figure 11A. Figures 13C, D show the

distribution of Ulva prolifera patch A on 27 May 2017. From
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Figures 13A, C, it can be seen that from 8:30-15:30, the

morphology of the independent Ulva prolifera patches has

basically not changed, and the location changes are affected by

the local tidal current; in Figure 13C, from the beginning to the end

of patch A, Ulva prolifera presented a trend of stretching to the

north and south ends, which was also affected by the eastward tidal

current. The blue portions in Figures 13B, D, which are increments

relative to the maximum coverage area after changing the threshold,

are essentially distributed at the edges of the original algae and the

junction of the blocks. Combined with the extraction results of

NDVI in Figure 4, the high value of NDVI is concentrated in the

central part of the Ulva prolifera patch, and the blue part

corresponds to the easily confused mixed pixels of seawater and

Ulva prolifera, which is also the area where the GOCI sensor

receives weaker signals during the twilight periods. The

distribution of Ulva prolifera extracted at 8:30 and 15:30 in

Figure 13A does not easily maintain the current morphology, so

the corresponding blue part in Figure 13B should exist, which

further supports our speculation.
FIGURE 12

Schematic image of the detection area at different times. Among them, the red triangle represents the location of the detection area, the yellow
arrow represents the solar radiation, the green arrow represents the ground object reflection, and L1, L2, and L3 represent the path length of the
atmospheric top reaching the detection area at 8:30, 12:30 and 15:30, respectively.
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5 Conclusions

In this study, considering the high temporal resolution of the

GOCI sensor and the patchy distribution offloating Ulva prolifera on

the sea surface, we proposed a method of Ulva prolifera extraction

based on DBSCAN clustering analysis to quantitatively analyze the

diurnal variation characteristics of a single Ulva prolifera patch

during GOCI imaging time. This approach was used to extract
Frontiers in Marine Science 15
information from a single Ulva prolifera patch in the Yellow Sea in

the same period of 2012 and 2017. The analyzed results showed that

during the time of GOCI imaging, the tidal current was the main

factor driving the drift of Ulva prolifera, and its direction was

consistent with the drifting direction of Ulva prolifera, with a

coefficient of determination of 0.94. The detected coverage area of

Ulva prolifera tended to increase and then decrease, and the area

change rate at twilight compared with that at noon was 0.50.
B

C

D

A

FIGURE 13

Distribution of Ulva prolifera patch B and patch A on 26 May 2012 and 27 May 2017, respectively. (A, C) show the area distributions with the same
threshold at each time, (B, D) are based on the maximum area as a reference, changing the threshold to keep the area consistent at each time, and
the blue part is the increased part relative to (A, C), respectively. nt is the NDVI threshold.
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Using the OSU tidal current model, we can obtained accurate

information on tide height changes in the study area. The vertical

tide height change was not the main reason for the diurnal variation

in Ulva prolifera coverage in the open sea. By keeping the area of

Ulva prolifera patches consistent at each time point and observing

the change trend of the NDVI threshold, it was concluded that the

extraction area of Ulva prolifera has a good negative correlation

with the NDVI threshold magnitude.

The lower light compensation points and unique suspended

branch structure of Ulva prolifera allow it to float for a long

distance, and the water color detection ability of the GOCI sensor

also decreased significantly during the twilight periods. For the

single Ulva prolifera patch extracted by the proposed method,

considering further more accurate AC results, the NDVI

threshold was changed to make the coverage area consistent with

the maximum coverage area at each time point and compared with

the actual extraction results. The results showed that during the

twilight periods, compared with the maximum coverage area, the

newly added algae were distributed at the edge and block junction of

the original algae, which belonged to the confusion area of seawater

and Ulva prolifera and was also the area where the GOCI sensor

received a weaker signal during the twilight periods. Therefore, we

speculated that the change in the intensity of the signal received by

the GOCI sensor in one day may be the main reason for the

significant diurnal variation in the Ulva prolifera area, rather than

the short-term vertical migration of algae. The coverage area ofUlva

prolifera may not change substantially. The enhanced signal

received by the GOCI sensor at noon indicated that the extracted

area of Ulva prolifera had a diurnal variation tendency to increase

and then decrease. This also demonstrated the advantage of fine

analysis of a single Ulva prolifera patch. However, some field

measurements are still needed to verify satellite-based observations.
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