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An evaluation of survey designs
and model-based inferences
of fish aggregations using
active acoustics

Allison L. White1*, Patrick J. Sullivan2, Benjamin M. Binder1

and Kevin M. Boswell1

1Marine Ecology and Acoustics Laboratory, Department of Biology, Florida International University,
North Miami Beach, FL, United States, 2Department of Natural Resources, Cornell University, Ithaca,
NY, United States
“Star” survey designs have become an increasingly popular alternative to parallel

line designs in fisheries-independent sampling of areas with isolated fish

aggregations, such as artificial reefs, seamounts, fish aggregating devices, and

spawning aggregation sites. In this study, we simulated three scenarios of fish

aggregating around a feature of interest with variations in the size and complexity

of aggregations as well as their location relative to the habitat feature. Simulated

and empirical data representing goliath grouper (Epinephalus itajara) spawning

aggregations at artificial reefs were utilized as a case study, and scenarios were

generated in relation to both a single habitat feature and a reef complex with

multiple structures. Seven variations of survey design using both star and parallel

transects were examined and compared by geostatistical and generalized

additive models (GAMs) to identify the most robust approach to quantify fish

aggregations in each scenario. In most scenarios, precision in the mean and

variability of backscatter estimates is not significantly affected by the number of

transects passing over the habitat feature as long as at least one pass is made.

Estimation error is minimized using the GAM approach, and is further reduced

when sampling variance is high, which was better accomplished by parallel

designs overall. These results will help inform surveyors on the best overall

approach to improve precision in quantifying fish aggregations given basic

knowledge of their behavior around an established habitat feature and help

them to adapt their survey designs based on common difficulties in sampling

these populations simulated below.

KEYWORDS

fish aggregations, active acoustics, survey design, star surveys, model-based inference,
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1 Introduction

Many fish species aggregate to spawn and/or associate with

conspicuous habitat features such as seamounts and artificial reefs

(Doonan et al., 2003). These sites are of great interest among fisheries

scientists and managers, as fish which aggregate in highly localized

and predictable areas (especially when associated with established

bottom features) may be susceptible to higher catchability (Hieu et al.,

2014). Continuous mobile surveys, such as those performed by towed

active acoustics or camera systems, are often the optimal method to

provide fisheries-independent inferences about the size of such highly

localized fish aggregations. Although mobile surveys allow for

ensured sampling over the discrete aggregation of interest, this

inherently negates randomness in the survey design. Design-based

methods of population inference, which are based on the distribution

of all possible estimates within a survey design, are therefore not ideal,

and surveyors of such aggregations often rely on model-based

estimations of population size (Neyman, 1934; Jolly and Hampton,

1990; Gregoire, 1998; Rivoirard et al., 2000; Chang et al., 2017).

Two commonly used survey designs for mobile surveys of

highly localized fish aggregations are parallel line and star designs

(Figures 1A, B). Parallel line designs consist of either randomly- or

evenly-spaced parallel transects. This design allows for stratified

randomization by incorporating random-spacing between transects

and/or randomly selecting the starting point (Jolly and Hampton,

1990). In the case of highly localized aggregations, however, evenly-

spaced parallel transects are generally preferred in order to

maximize the number of passes over the aggregation and starting

points are selected in relation to the location of the aggregation or

habitat feature (e.g. Taylor et al., 2006; Boswell et al., 2010; Kang

et al., 2011).

Though parallel line surveys offer better coverage of the area

surrounding a fish aggregation and less spatial autocorrelation
Frontiers in Marine Science 02
between transect nodes, they often involve a greater number of

transects and present several practical difficulties in maneuvering

tight turns. Star surveys involve fewer transects which are arranged

in alternating directions and which all cross at the center of the

aggregation site. Star designs may be easier to maneuver and provide

a higher sampling of the targeted aggregation per survey effort, but they

have an inherently large spatial autocorrelation between transect nodes

(i.e., the point at which transects bisect one another). They also offer

poor coverage of the area surrounding the habitat feature of interest,

which results in a decreased ability to measure variability in population

estimates. Despite these downfalls, star designs have increased in

popularity in recent years due to the reduction in time required to

obtain multiple passes over the aggregation of interest. Many surveyors

believe that they can reduce the cost of vessel time and/or maximize the

number of surveys conducted by employing star designs over parallel

designs. Here, we weigh the advantage of cost/time reduction against

decreased precision in population estimates through comparison of

model-based inferences from both survey designs.

Model-based inferences do not require random sampling, and

are therefore less heavily influenced by the high spatial sampling

autocorrelation inherent in both parallel line and star surveys.

Unlike design-based approaches, however, model-based

approaches are strongly dependent on assumptions about the

underlying distribution and structure of a population (Gregoire,

1998). Geostatistical models, for example, assume that the spatial

distribution of the population is stationary and isotropic. In

stationary populations, the statistical properties of the population

do not change across time or space, and in isotropic populations the

correlation between any two observations depends solely on the

distance between them regardless of their relative orientation. Live

fish aggregations may not fulfill either of these assumptions,

resulting in biased estimations of population size. A further

complication with continuous data of fish aggregations is the high
A B

FIGURE 1

(A) Parallel line survey designs and (B) star survey designs plotted over the sunken barge (grey shaded area) at MG111. Dashed lines represent turns
made between transects (solid lines) which were excluded from analysis.
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proportion of zero observations. Most models, geostatistical or non-

geostatistical, do not perform well on highly skewed data without

extraneous methods.

In this study, we evaluate the relative biases associated with

different survey designs and commonly used inference approaches

to quantifying goliath grouper (Epinephalus itajara) spawning

aggregations over artificial reefs in Jupiter, FL. Three scenarios of

the spatial distribution of goliath grouper acoustic backscatter at

two artificial reefs are surveyed by multiple variations of parallel line

and star designs and estimated by a geostatistical and a non-

geostatistical modeling approach as well as a design-based

approach (Figure 2). Understanding the spatial distribution of the

underlying population is an important first step in constructing

sampling designs (Gunderson, 1993). Initial surveys should be

considered exploratory and aim to give context about the spatial

distribution of the targeted population. The purpose of this study is

to provide guidance on least-biased survey designs and inference

approaches given previous knowledge about the spatial trends of

fish aggregations. We also address common issues involved with

surveying populations that are assumed to be densely aggregated

over or around a discrete and predictable location.
2 Methodology

2.1 Acoustic data collection and processing

Goliath grouper spawning aggregations were surveyed at two

artificial reef complexes in Jupiter, FL. The northernmost reef
Frontiers in Marine Science 03
complex, colloquially known as MG111, consists of the remains

of a 59 m long barge resting at a depth of 18 m. A field of ~3 m tall

concrete columns standing upright on the seafloor stretches north

of the barge over roughly 100 x 50 m of sand. The second reef

complex, colloquially known as Wreck Trek (WRT), is located ~2

km south of MG111 and includes a collection of three shipwrecks

arranged north to south with a ~170 m distance between the

northernmost and southernmost wrecks. The 45 m long Esso

Bonaire oil tanker, 17 m long Miss Jenny barge, and the stern of

the 50 m long Zion Train cargo ship all lie in 27 m of water. Both

artificial reef complexes were selected for this study based on their

consistent use by goliath grouper as spawning aggregation sites

(Koenig et al., 2017).

Active acoustic surveys (n=10) were conducted over these reefs

during goliath grouper spawning months (August through

November) in 2017 and 2018. Surveys were conducted with a 38

kHz (10˚) split-beam Simrad EK80 echosounder towed at the

surface ~15 m behind a 7 m research vessel. The echosounder

was calibrated following the standard sphere method (38.1 mm

tungsten carbide sphere with 6% cobalt binder; Demer et al., 2015).

Two transect designs were conducted sequentially at each survey

event: 1) a parallel line survey which consisted of 15-20 east-west

parallel transects that were spaced ~20 m apart (Figure 1A); and 2) a

star survey consisting of four radial transects separated by ~45˚

(Figure 1B). Transects in both survey designs were 300 m in length

and centered over the main structure at each of the reef complexes.

Raw acoustic data were visualized and processed in Echoview

12.0 (Echoview Software Pty. Ltd.). Data were visually inspected to

remove turns between transects and dropout from rapid speed
FIGURE 2

Flow chart showing the steps used to simulate, sample, and make inferences about sA of goliath grouper aggregations at the MG111 and WRT
artificial reefs.
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changes. A best bottom candidate detection algorithm with an offset

of 0.5 m was applied to exclude the acoustic dead zone and seafloor

from analysis. Data within 5.5 m of the transducer face were

excluded to eliminate transducer ringdown and near-field effects.

Volume-backscattering strength (Sv; dB re 1m-1) data were

thresholded at -60 dB re 1 m-1 to eliminate sources of backscatter

that did not originate from swim-bladdered fish. Backscatter

representing large-bodied goliath grouper was isolated by

applying a -40 dB re 1 m2 threshold to the target strength (TS; dB

re 1 m2) data (Binder, 2022). The areas in the TS echogram

attributed to goliath grouper were then masked over the Sv
echogram of swim-bladdered fish, which was used to calculate the

nautical area scattering coefficient (sA; m2 nmi-2) from echo

integrals in 5 m along-track x 5 m depth intervals from the best

bottom candidate exclusion line (MacLennan et al., 2002). Resulting

echo integrals near the surface less than 2 m in maximum height

were excluded from further analysis.

The convex hull of the mean coordinates for all 5 m transect

distances throughout the water column was used to generate a
Frontiers in Marine Science 04
spatial field with a 300 m x 300 m grid of 1 m2 cells for simulation.

Three scenarios of the underlying distribution offish aggregations at

the two artificial reefs were simulated across these spatial fields: an

unconditional Gaussian scenario, an exponential decay scenario,

and a stochastic conditional scenario (Figure 3). Each scenario

included ten simulations of goliath grouper sA over each the spatial

fields of MG111 and WRT.
2.2 Unconditional Gaussian scenario

The first scenario was unconditional to the data and aimed to

reflect the assumptions inherent in most modelling approaches that

the underlying distribution of fish exhibits spatial independence. In

this scenario, fish are randomly distributed throughout the spatial

field with no correlation to any promontories. A Gaussian random

field with a Matérn covariance structure was generated over the

spatial fields in each simulation (Cressie, 1993). Variability in the

randomness of sA distributed across the spatial field and in the size
A

B

C

FIGURE 3

Construction of the three scenarios of the underlying distribution of goliath grouper aggregations. Black polygons indicate the structures at each
artificial reef. Unconditional Gaussian simulations (A) were generated over the spatial fields of each wreck (left) and transformed to simulate a highly
skewed population (right; MG111 shown). The exponential decay scenario (B) was built by modeling sA as a function of distance from the boundary
of each structure at the two reefs (left). Maximum sA observed from acoustic surveys of goliath grouper spawning aggregations and area of
influences (shown by the grey shaded region) were used to generate datasets (black filled points) fit by a non-linear regression of the exponential
decay function (red line). Predicted values at 1 m distance intervals were applied to concentric polygons around the structures at each artificial reef
(right; WRT shown). Stochastic conditional simulations (C) were built using sA predicted by GCS (right) of sA observed during 2017 and 2018 acoustic
surveys of goliath grouper spawning aggregations (left; MG111 shown).
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of fish aggregations were incorporated into these simulations

following the method described in Chang et al. (2017). To

simulate the highly skewed distribution of data present in most

water column sampling methods (including active acoustics), the sA
values generated by each unconditional Gaussian simulation (UGS)

were subtracted by their mode and a 100 m2 nmi-2 offset. All

adjusted sA values below 100 m2 nmi-2 were assigned zero values,

resulting in spatial fields with 44-55% sA=0 (Figure 3A).
2.3 Exponential decay scenario

The second scenario was simulated to reflect the assumption

that fish backscatter is highest directly over promontories and

exhibits an exponential decay in every direction away from the

boundaries of the structure. In this scenario, goliath grouper sA was

modelled at increasing distances away from the boundaries of the

main structures in each reef complex following the exponential

decay (ED) function:

sA =
1

sAO + Dr (Eq: 1)

where goliath grouper sA is a function of the reciprocal of the

goliath grouper backscatter directly over the structure sA0 as it

decays at rate r with increasing distance D (m) away from the

boundary of the structure. A dataset was generated for each

simulation with eight observations: 1) the maximum sA at D = 0

(randomly sampled from maximum goliath grouper sA observed

from all processed acoustic surveys); 2) the minimum distance

where sA = 0 to represent the area of influence around the artificial

structure (randomly sampled between 35 and 179 m as estimated by

White et al., 2022); and 3-8) six sequential distances at 10 m

intervals greater than the area of influence where sA = 0 to

represent the horizontal asymptote in goliath grouper backscatter.

Nonlinear least squares regression models were used to fit the

exponential decay function (Eq. 1) to these generated datasets

(Bates and Watts, 1988). The predicted sA at each 1 m distance

away from the structures were then attributed to concentric

polygons drawn at 1 m intervals away from the boundary of the

main structure across the spatial field of sA at MG111. For the three

wrecks at WRT, predicted sA was attributed to concentric polygons

which were drawn at 1 m intervals away from the boundaries of

each of the three structures (Figure 3B). Goliath grouper sA
simulated by this method had 50-78% of the observations

where sA=0.
2.4 Stochastic conditional scenario

The last scenario was built upon real world acoustic data of

goliath grouper spawning aggregations and was designed to

incorporate the stochasticity of live fish aggregations. This

stochastic conditional simulation (SCS) scenario was made to

reflect the behavior of fish around a habitat feature at any given

point in time, such as spawning behaviors or utilizing structures to

shelter from currents, predator avoidance, varying light levels
Frontiers in Marine Science 05
around a structure, etc. Geostatistical conditional simulations

(GCS) were used to generate realizations of goliath grouper

spawning events observed at MG111 and WRT (Figure 3C).

These simulations produced random fields which were

conditional to the sA observed during goliath grouper spawning

events and highly zero-inflated (40-94% sA=0). See section 2.6 below

for a more detailed description of how GCS were performed.
2.5 Survey designs

Goliath grouper sA was sampled from each simulation in the

above three scenarios via seven variations in survey designs of

parallel line and star transect methods (Figure 4). These

designs were:
1. Ideal transects: Evenly spaced 250 m long parallel line

transects (n=6 spaced 40 m apart for MG111 and n=12

spaced 20 m apart for WRT) centered so that four transects

crossed over the structure at MG111 and four transects

crossed over each of the Esso Bonaire and Zion Train

wrecks at WRT. The ideal star design was composed of four

250 m long transects separated by 45˚ which converged

over the center point of the barge at MG111 and over the

center point of the three shipwrecks at WRT. An additional

transect method with two stars of four 250 m long transects

each was constructed at WRT with one star centered over

the center point of the Esso Bonaire and one star centered

over the Zion Train wreck.

2. Single offset transect: As (1) but with one transect offset

over the reefs so that only three transects passed over each

structure instead of the four in the ideal transects.

3. Double offset transects: As (1) but with two transects offset

over the reefs so that only two transects passed over each

structure.

4. Triple offset transects: As (1) but with three transects offset

over the reefs so that only one transect passed over each

structure.

5. Structure avoidance transects: The same number and

length of transects as described in (1), but with no

transects passing over the structures at each reef. For the

parallel method, transects were arranged as in (1) but with

transects which would have passed over the structure

ending at the boundary of the structure. For the star and

two-star methods, transects were arranged around the

borders of the structure in order to maximize the

distance along each transect which passed close to the

structure (while avoiding other structures at WRT).

6. Shorter transects: Transects were arranged as in (1) but

were only 150 m in length.

7. Non-uniform transects: Selected from real transects driven

over MG111 and WRT. Like (1), the selected real-world

transects were centered over the structures at each reef so

that four transects passed over the barge at MG111 and the

Esso Bonaire and Zion Train wrecks at WRT in all designs.

Unlike (1), the spacing between transects varies along the
frontiersin.org
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Fron
transect and transect length is not exactly 250 m. Rather, all

transects were cutoff at 125 m distance away from the

center point of each design in every direction.
The ideal transects (1) were designed to represent a scenario

where the surveyor has perfect control over the placement of all

transects (including vessel behavior). As this is not always possible,

the remaining survey designs were compared to the ideal case in

order to examine potential biases resulting from various non-ideal

scenarios. Designs 2, 3, and 4 were compared to the ideal in order to

estimate how much a surveyor should prioritize driving over the

structure. Design 5 represents a scenario in which the surveyor is

unable to drive over the aggregation of interest due to the structure

extending out of the water (such as an oil rig) or high boat traffic

directly over the feature of interest (which was often the case at

MG111 and WRT during daylight hours). The shorter transects (6)

are designed to estimate the importance of transect length away from

the structure of interest. Lastly, the non-uniform transects (7) were

designed tomimic situations in which the surveyor is not able to drive

transects in straight lines. When towing equipment over a fish

aggregation many factors may influence the path of each transect,

such as strong currents, visibility, sea state, presence of other vessels,

etc. Each simulation of the UGS, ED, and SCS scenarios was sampled
tiers in Marine Science 06
by the seven survey designs for each of the three transect methods

and input to the following modeling- and design-based approaches to

estimate goliath grouper sA at the two reefs.
2.6 Inference approaches

We tested the performance of twomodel-basedmethods for spatial

interpolation of goliath grouper sA: geostatistical conditional

simulations (GCS) and generalized additive models (GAMs).

Conditional simulations of ordinary kriging (a common geostatistical

model) were selected for this study due to their ability to generate the

spatial variability of population estimates while honoring the data at

observed locations. While kriging allows for interpolation of data at

unsampled locations (such as between transects), it also minimizes

error variance (Isaaks and Srivastava, 1989). By generating multiple

realizations (or simulations) of the spatial structure of the population

(captured by characteristics such as the histogram and variogram),

uncertainty in the global estimate of population size can be obtained.

Uncertainty in global estimates was of particular concern for star

survey designs, where the areas not sampled between transects

increases towards the outer regions of the survey. Conditional

simulations are made on the Gaussian random function model,
FIGURE 4

The seven survey designs sampled from goliath grouper sA simulated within the spatial field (outer polygon) at MG111 (left) and WRT (right). Solid
black lines represent survey transects and grey shaded areas show the structure(s) at each artificial reef. Ideal transects (Design 1), single offset
transects (Design 2), double offset transects (Design 3), triple offset transects (Design 4), structure avoidance transects (Design 5), shorter transects
(Design 6), and non-uniform transects (Design 7) are shown for the parallel, star, and two-star methods.
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which is not applicable to highly skewed data such as in our case.

Therefore, a Gaussian anamorphosis of sA with a Gibbs sampler to

iteratively simulate the points where sA = 0 was performed for all GCS

following themethods described byWoillez et al. (2009; 2016). All GCS

and Gaussian anamorphoses were conducted using the R package

“RGeostats” (MINES ParisTech/ARMINES, 2022).

GAMs are a non-parametric regression approach capable of

predicting non-linear relationships (Hastie and TibshIrani, 1990).

In these models, splines are utilized to estimate smooth functions

between predictor and response variables. Spatial inferences can be

made by including a smooth functional relationship of the

exploratory variable as a response of the interaction between

latitudes and longitudes of observations. GAMs are more flexible

towards non-Gaussian data than geostatistical approaches. In this

study, we modelled goliath grouper sA as a function of the thin plate

regression spline interaction between latitude and longitude

assuming a Tweedie distribution (Wood, 2003). The Tweedie

dispersion model has a non-negative support and a discrete mass

at zero that makes it useful in modeling datasets with a mixture of

zero and positive observations (Dunn and Smyth, 2005). GAMs

were performed in R using the “mgcv” package (Wood, 2017).

In addition to the two model-based approaches described

above, one design-based approach was considered. Mean goliath

grouper s̄A was calculated in the surveyed space j using a cluster

sampling (CS) formula (Scheaffer et al., 2012):

sAj =
oK

k=1nksAk

oK
k=1nk

(Eq: 2)

where s̅Ak is the average sA in transect k with n observations

across all transects K. A global estimate of s̅A was interpolated by

dividing the sum of observations across all transects from s̅Aj
multiplied by the area of the convex hull of each survey design.

Calculation of the standard deviation was adapted from Scheaffer

et al. (2012) as:

sd(sA) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K(K − 1)o
K

k=1

(sAknk − sAjnk)
2

s
(Eq: 3)
2.7 Survey design and model comparison

The precisions of global estimates of the mean and coefficient of

variation (CV) of sA predicted by each combination of survey design

and inference approach under the three scenarios of underlying fish
Frontiers in Marine Science 07
distribution were compared using relative mean absolute error

(RMAE):

RMAE =
1
no

n

i=1

(bz − z)
z

���� ���� (Eq: 4)

where ẑ is the predicted global estimate of the mean or CV of sA
and z is the true sA value. Global estimates of ẑ were calculated from

sA interpolated over the convex hull of the survey design for each

inference approach, and z was calculated from the true sA generated

by each simulation within the same space. Five null hypotheses

(H01-5) were formally tested to compare RMAE resulting from the

seven survey designs using a two-way analysis of variance

(ANOVA) and Tukey’s honest significant difference (TukeyHSD)

for pairwise comparisons. One ANOVA was performed for each of

the three inference approaches at the two wrecks under each of the

three scenarios for RMAE of the mean and of the CV, resulting in

36 models of RMAE as a function of the interactions between

transect method (parallel, star, or two-star) and design (1:7). H01

was tested by comparing the difference in mean RMAE of each

transect method (Designs 1-7) at each of the two artificial reefs. H02

compared errors among survey designs with differing number of

transects passing over the feature of interest (Designs 1-4) for each

transect method. H03 addressed the scenario in which surveying

directly over the feature of interest is not possible via comparisons

between Design 5 in each transect method. Precision in longer

(Design 1) and shorter (Design 6) transects was compared in H04,

and in H05 the precision in uniform (Design 1) and non-uniform

(Design 7) transects was compared. All simulations, survey design

generations, and inference approaches were performed in R (R Core

Team, 2022).
3 Results

Among the three inference approaches, the design-based

approach (CS) had the poorest fit (Tables 1, 2). Error in the mean

and variability of sA estimated by the design approach was at least

50x larger than either of the modeling-based approaches, and is

therefore not reported in the results of post hoc analyses. Both

modeling approaches reproduced highly skewed distributions of sA
similar to the simulated values, including a large number of zeros

(Figure 5). Precision in mean sA was highest in the GAM approach,

although estimation of variability in sA was equivocal between the

GAM and GCS approaches (Table 1). A two-way ANOVA revealed

that the relative performances of GCS versus GAMs was somewhat
TABLE 1 Average RMAEs of the mean and CV sA estimated by the three inference approaches (geostatistical conditional simulations, generalized
additive models, and cluster sampling).

Scenario
RMAE (mean) RMAE (CV)

GCS GAM CS GCS GAM CS

UGS 0.30 0.09 55 0.55 0.55 36

ED 0.31 0.12 41 0.44 0.46 43

SCS 0.57 0.39 37 0.47 0.36 52
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dependent on transect method for the estimation of sA (Table 3).

Pairwise comparisons from TukeyHSD tests revealed that GAMs

significantly outperformed GCS models in the estimation of mean

sA at both wrecks and in the estimation of variability at MG111

regardless of transect method under the UGS scenario. In the ED

scenario, however, there was no significant variation in RMAE to

suggest improved performance of one model over the other when

employing the two-star design. Variability of sA at MG111was better

predicted by GCS than GAM, but only by the parallel transect

method. In the SCS scenario, the only significant evidence of GAMs

outperforming GCS models was provided when using the star

design at MG111.

Average residuals for each transect method (x̅ ) showed that

mean sA at both wrecks was overestimated by the GCS approach

and underestimated by the GAM approach for the UGS and SCS

scenarios (Figure 6A; Table 2). In the ED scenario, mean sA at

MG111 was overestimated by both GCS and GAM, while mean sA
Frontiers in Marine Science 08
at WRT was underestimated by both modeling approaches.

Variability in sA was underestimated by both modeling

approaches in all three scenarios, with one exception (Figure 6B;

Table 2). The CV of sA at WRT was overestimated by the GCS

approach in the ED scenario, which was driven by an

overestimation of CV in Design 5 (structure avoidance) in all

transect methods.

Within survey designs, the selection of transect method

(parallel, star, or two-star) was the only significant influence on

model-based precision of sA estimated under all three scenarios

(HA1, Table 4). In the UGS scenario, precision of variability in sA
predicted by GCS was highest for the star design in comparison to

both parallel and two-star designs at WRT. Parallel designs

produced the least-biased estimation of mean sA at the same

wreck using GAMs. Precision in the mean and CV of sA did not

differ significantly between transect methods at the single structure

reef using either modeling approach under this scenario. This was
TABLE 2 Mean and CV of the true sA compared to sA estimated by the geostatistical conditional simulations, generalized additive models, and cluster
sampling.

Scenario Statistic Approach
MG111 WRT

Parallel Star Parallel Star Two-Star

UGS

mean

True 2205 2189 4000 4108 4050

GCS 2741 2881 4970 4697 5024

GAM 2086 2171 3971 3746 3886

CS 86287 112156 141844 378420 260356

CV

True 145 145 143 143 141

GCS 62 61 63 72 63

GAM 69 68 61 62 63

CS 6302 5891 5542 3697 4749

ED

mean

True 37978 42543 12778 15776 12485

GCS 40267 52211 14676 17242 13538

GAM 39409 42863 12017 14354 11560

CS 877228 1668315 225132 856404 868508

CV

True 145 137 173 151 172

GCS 108 113 181 176 172

GAM 78 63 106 81 99

CS 11981 4090 7451 7948 2944

SCS

mean

True 1692 1927 2333 2622 2411

GCS 1987 2503 3135 2737 3393

GAM 1172 1618 2062 2164 2358

CS 29301 10134 77195 129120 94423

CV

True 526 509 458 427 453

GCS 256 279 225 182 223

GAM 354 374 275 294 328

CS 36419 2246 16114 14174 24545
Values shown represent averages across simulations for each transect method at the MG111 and WRT wrecks.
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A

B

C

FIGURE 5

Example distributions of sA observed at MG111 predicted by geostatistical conditional simulations and generalized additive models in the
unconditional Gaussian simulation (A), exponential decay (B), and stochastic conditional simulation (C) scenarios.
TABLE 3 Average RMAEs of the mean and CV sA estimated for each transect method by the geostatistical conditional simulations and generalized
additive models.

Scenario Transect Wreck
RMAE (mean) RMAE (CV)

p-value GCS GAM p-value GCS GAM

UGS

Parallel MG111 <0.01 0.30 0.08 <0.01 0.57 0.52

Star MG111 <0.01 0.34 0.09 <0.01 0.58 0.53

Parallel WRT <0.01 0.29 0.03 0.94 0.55 0.57

Star WRT 0.01 0.25 0.10 0.06 0.50 0.56

Two-Star WRT <0.01 0.31 0.13 0.99 0.55 0.54

ED

Parallel MG111 <0.01 0.27 0.08 <0.01 0.26 0.47

Star MG111 <0.01 0.43 0.11 0.12 0.48 0.56

Parallel WRT <0.01 0.25 0.07 0.92 0.29 0.41

Star WRT <0.01 0.33 0.07 0.24 0.73 0.48

Two-Star WRT 0.87 0.28 0.25 0.97 0.45 0.37

SCS

Parallel MG111 0.35 0.56 0.40 <0.01 0.50 0.33

Star MG111 <0.01 0.76 0.39 <0.01 0.43 0.29

Parallel WRT 0.86 0.40 0.21 0.91 0.44 0.40

Star WRT 0.99 0.43 0.41 0.07 0.55 0.45

Two-Star WRT 0.98 0.69 0.57 0.17 0.43 0.34
F
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P-values indicate results of TukeyHSD pairwise comparisons made in the two-way ANOVA at the MG111 and WRT wrecks.
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TABLE 4 Significant results of the two-way ANOVAs in the unconditional Gaussian, exponential decay, and stochastic conditional scenarios
addressing H01: no difference in average RMAE of the mean or CV estimated by geostatistical conditional simulations and generalized additive models
among parallel, star, and two-star transect methods.

Scenario Approach Wreck Statistic Transects p-value Parallel Star Two-Star

UGS

GCS WRT CV P:S <0.01 0.55 0.50

GCS WRT CV P3:S3 0.02 0.56 0.42

GCS WRT CV P4:S4 0.04 0.58 0.44

GCS WRT CV S:SS <0.01 0.50 0.55

GCS WRT CV S3:SS3 0.04 0.42 0.55

GAM WRT mean P:S <0.01 0.03 0.10

GAM WRT mean P:SS <0.01 0.03 0.13

GAM WRT mean P6:SS6 <0.01 0.05 0.28

ED*
GCS MG111 mean P:S <0.01 0.27 0.43

GCS MG111 CV P:S <0.01 0.26 0.48

(Continued)
F
rontiers in Marine
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FIGURE 6

Average residuals of the mean (A) and CV (B) estimated by geostatistical conditional simulations and generalized additive models in each of the three
scenarios sampled by the seven survey designs and the mean of each transect method (x̄).
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also true at MG111 in the SCS scenario, with the exception of the

non-uniform design (7), in which the parallel method provided a

better fit than the star method in the GCS estimation of mean sA.

Under the SCS scenario, precision of variability in sA predicted by

both GAM and GCS was lowest for the star design in comparison to

both parallel and two-star designs at WRT. Mean sA from the

parallel transect method was less biased than from the two-star

method at WRT when using GAMs.

Alterations of survey design were most influential to the model-

based estimation of sA within the ED scenario, as all null hypotheses

tested by the two-way ANOVA (H01:5) were rejected under this

scenario (Tables 4–7). In this scenario, parallel transects were

significantly less biased than star transects at MG111 for mean and

variability estimated by both modeling designs (Table 4). Star transects

also generated the largest error in mean and CV estimated at WRT by

the GCS approach. When using the GAM approach, only precision in

the variability of sA was lowest for star transects at WRT. Precision in

mean sA was lowest for two-star transects under this approach.

The null hypothesis of no difference in estimation error of mean

sA among the number of transects that pass over the feature of

interest (H02) was rejected at the single structure reef under both GCS

and GAM (Table 5). Reducing the number of transects which pass

over the structure resulted in an increase in precision for both the

parallel and star transects at MG111 using the GCS approach. This

trend was also significant in the GAM approach, but only for the star

transect method. The number of transects passing over structures was

less influential in the presence of a field of structures, where the only

significant differences in precision were found between one pass and
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four or three passes for the parallel transects in the GCS approach and

two-star transects in the GAM approach, respectively. We found no

evidence that variability in sA is significantly affected by the number

of transects passing over the habitat feature of interest, regardless of

the number of features present.

In the case where passing over the feature of interest is not possible,

the null hypothesis that the transect method does not influence mean

or variability of sA (H03) predicted by GCS was rejected (Table 6).

Parallel transects outperformed both star and two-star designs,

irrespective of the number of structures present at the reef. At WRT,

the two-star design generated less bias than the single star method in

prediction of the mean. When using the GAM approach, error in the

means predicted from the parallel and star designs were equal, and

both were significantly less than the error predicted from the two-star

design. However, error in the variability predicted from the star design

was larger than the two-star design in this case.

Transect length (H04) had significant impacts on the mean and

variability of sA predicted by both modeling approaches (Table 7).

Under the GCS approach, precision in mean sA decreased with

transect length for all transect methods at both wrecks. Under the

GAM approach, precision in the CV of sA was affected more than

the mean, although the mean sA at WRT had significantly larger

bias from shorter transects in two-star surveys. Variability was

better estimated by longer transects in all survey methods at the two

wrecks when using GAM, except for the parallel method at WRT

(p-value=0.09). Transect uniformity (H05) was the least impactful

survey design alteration on precision of sA, and was only significant

in the prediction of mean sA by GCS (Table 7). The results of this
TABLE 4 Continued

Scenario Approach Wreck Statistic Transects p-value Parallel Star Two-Star

GCS WRT mean P:S <0.01 0.25 0.33

GCS WRT CV P:S <0.01 0.29 0.73

GCS WRT mean S:SS 0.04 0.33 0.28

GCS WRT CV S:SS 0.04 0.73 0.45

GAM MG111 mean P:S <0.01 0.08 0.11

GAM MG111 CV P:S <0.01 0.47 0.56

GAM WRT CV P:S <0.01 0.41 0.48

GAM WRT mean P:SS <0.01 0.07 0.25

GAM WRT mean S:SS <0.01 0.07 0.25

GAM WRT CV S:SS <0.01 0.48 0.37

SCS

GCS MG111 mean P7:S7 0.02 0.37 1.67

GCS WRT CV P:S <0.01 0.44 0.55

GCS WRT CV S:SS <0.01 0.55 0.43

GCS WRT mean S6:SS6 0.03 0.27 2.38

GAM WRT mean P:SS <0.01 0.21 0.57

GAM WRT mean P6:SS6 0.01 0.14 1.33

GAM WRT CV S:SS 0.03 0.45 0.34
Pairwise comparisons from the TukeyHSD are made between averages of all designs and between individual survey designs (1-7) under each transect method at the MG111 and WRT wrecks.
*Significant comparisons between individual survey designs under each transect method are not shown for the exponential decay scenario.
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comparison suggest that when one structure is present, non-

uniform transects produce less bias than uniform transects. When

multiple structures are present, however, GCS results suggest that

uniform transects produce less bias.
4 Discussion

4.1 Unconditional Gaussian scenario

In the UGS scenario, fish aggregations are small and randomly

dispersed around the fixed point of interest (the shipwrecks in this
Frontiers in Marine Science 12
study). This scenario may be representative of fish aggregations at

expansive and structurally complex habitat features, such as natural

reefs or fields of closely-placed artificial structures. These fish

aggregations are weakly stationary, and were constructed in this

case with an isotropic covariance structure (Figure 7). Of the three

scenarios, the geostatistical modeling approach performed best in

estimating the mean of fish aggregations simulated with these

patchy and randomly dispersed distributions, as this scenario met

the assumptions of stationarity and isotropy best (Table 1).

The relative arrangement of transects when surveying such

populations is arbitrary, unless large-scale trends are present in the

distribution of fish. Three simulations at WRT exhibited a latitudinal
TABLE 5 Significant results of the two-way ANOVA in the exponential decay scenario addressing H02: average RMAE of the mean or CV estimated by
geostatistical conditional simulations and generalized additive models is not influenced by the number of transects (1-4) which pass over the feature
of interest.

Wreck Statistic Designs p-value 4 Passes 3 Passes 2 Passes 1 Pass

GCS

MG111 mean P1:P3 <0.01 0.22 0.05

MG111 mean P2:P3 <0.01 0.15 0.05

MG111 mean P3:P4 <0.01 0.05 0.20

MG111 mean S1:S3 <0.01 0.53 0.16

MG111 mean S1:S4 <0.01 0.53 0.16

MG111 mean S2:S3 <0.01 0.26 0.16

MG111 mean S2:S4 <0.01 0.26 0.16

WRT mean P1:P4 0.02 0.09 0.27

GAM

MG111 mean S2:S3 <0.01 0.14 0.02

MG111 mean S2:S4 <0.01 0.14 0.02

WRT mean SS2:SS4 0.02 0.25 0.38
fron
Pairwise comparisons from the TukeyHSD are made between averages of individual survey designs (1-4) under each transect method at the MG111 and WRT wrecks.
TABLE 6 Significant results of the two-way ANOVA in the exponential decay scenario addressing H03: no difference in average RMAE of the mean or
CV estimated by geostatistical conditional simulations and generalized additive models among transect methods when no transects pass over the
feature of interest.

Wreck Statistic Transects p-value Parallel Star Two-Star

GCS

MG111 mean P5:S5 <0.01 0.63 0.93

MG111 CV P5:S5 <0.01 0.41 0.92

WRT mean P5:S5 <0.01 0.58 0.95

WRT CV P5:S5 <0.01 1.15 3.00

WRT mean P5:SS5 <0.01 0.58 0.88

GAM

WRT mean P5:SS5 0.02 0.08 0.21

WRT mean S5:SS5 0.02 0.08 0.21

WRT CV S5:SS5 <0.01 0.47 0.26
Pairwise comparisons from the TukeyHSD are made between averages of individual Design 5 under each transect method at the MG111 and WRT wrecks.
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gradient in the concentration of fish towards the edge of the survey area

(offset from the three shipwrecks around which designs were centered).

The distribution of fish at these simulations was non-stationary and

anisotropic, and both properties were intensified for the sampled

distribution in the application of star and two-star transects in

comparison to parallel transects. The parallel transect method
Frontiers in Marine Science 13
produced the most precise estimates of mean aggregation size even

when using the GAM approach. Similar simulations of scallop

populations have previously illustrated that geostatistical models

produce more bias in comparison to non-geostatistical approaches

(including GAMs) in the presence of large-scale spatial trends when

sampling with parallel transects (Chang et al., 2017). Our results
FIGURE 7

Simulated (left) sA interpolated by geostatistical conditional simulations and generalized additive models (right) in the unconditional Gaussian
simulation scenario at WRT. Bubble plots (red circles with radii proportional to sA) show observations sampled by the ideal survey design (Design 1).
Black polygons indicate the locations of the Esso Bonaire, Miss Jenny, and Zion Train shipwrecks.
TABLE 7 Significant results of the two-way ANOVA in the exponential decay scenario addressing H04: transect length has no influence on the average
RMAE of the mean or CV estimated by geostatistical conditional simulations and generalized additive models.

Approach Wreck Statistic Designs p-value RMAE

H04 Longer Shorter

GCS MG111 mean P1:P6 <0.01 0.22 0.42

GCS MG111 mean S1:S6 <0.01 0.53 0.63

GCS WRT mean P1:P6 <0.01 0.09 0.32

GCS WRT mean S1:S6 <0.01 0.05 0.55

GCS WRT mean SS1:SS6 0.04 0.18 0.35

GAM MG111 CV P1:P6 <0.01 0.47 0.66

GAM MG111 CV S1:S6 <0.01 0.54 0.97

GAM WRT CV S1:S6 <0.01 0.44 0.64

GAM WRT mean SS1:SS6 <0.01 0.28 0.06

GAM WRT CV SS1:SS6 <0.01 0.35 0.68

H05 Uniform Non-Uniform

GCS MG111 mean S1:S7 <0.01 0.53 0.36

GCS WRT mean S1:S7 <0.01 0.05 0.27
H05 is also shown: no significant difference in precision of uniform versus non-uniform transects at the MG111 and WRT wrecks. Pairwise comparisons from the TukeyHSD are made between
averages of longer (Design 1) and shorter (Design 6) transect methods for H04 and between averages of uniform (Design 1) and non-uniform (Design 7) transect methods for H05.
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indicate that GAMs are also at least partially influenced by non-

stationarity and anisotropy, and that the associated error is minimized

in parallel transect designs compared to star transects.

4.2 Exponential decay scenario

The influence of disparities in stationarity and isotropy on

precision of estimated fish quantities surveyed by different transect

methods was best exemplified in the ED scenario (Figure 8). This

scenario represents aggregations centered above an established

location, such as a seamount or fish aggregating device (FAD).

Density is highest in the center of the aggregation and decays

exponentially with increasing distance in every direction. Samples of

such aggregations only exhibit isotropy if the transects do not extend

beyond the densest part of the aggregations (represented by survey

Design 6 in the current study). For all transect methods in this case,

variance in the sampled data distribution was low and the geostatistical

model was more precise in measuring variability than GAMs, although

error in both models was higher than when transects extended beyond

the aggregation (Table 7).
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Unlike the UGS and SCS scenarios, selection of transect starting

points has a significant effect on bias in this scenario for aggregations

fixed to a single point (Table 5). As long as at least one transect passes

over the point of interest, increased sampling of the surrounding area

where transects cross the edges of the aggregation can reduce bias in

parallel and star designs when using GCS, and in star designs when

using GAMs. Residual sampling autocorrelation is reduced in this case,

which likely also contributes to improved precision. Doonan et al.

(2003) simulated a similar scenario of orange roughy aggregations over

seamounts and found that star surveys with transects offset from the

fixed point of the seamount, but which still mostly pass over the

aggregation, produced less-biased geostatistical estimates of biomass

than stars with all transects intersecting at the center. Doray et al.

(2008) utilized the star method to sample tuna aggregations around

moored FADs and found that abundance estimation variance from

universal kriging was reduced with increased number of transects over

the FAD. Their results were purely based on the number of transects

present in a traditional star survey design, and did not consider

transects which do not cross the center of the aggregation, but rather

provide higher sampling variance by increasing the number of samples
FIGURE 8

Simulated (left) sA interpolated by geostatistical conditional simulations and generalized additive models (right) in the exponential decay scenario at
MG111 (top two rows) and WRT (bottom three rows). Bubble plots show sA observations sampled by the ideal survey design in each transect method
(Design 1). Black polygons indicate the locations of each shipwreck.
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around the edges of the aggregation. We propose that a more robust

transect method for dense fish populations aggregated around a fixed

location could include a random selection of transect starting points

with amore even ratio of centered and offset transects driven in various

directions. Further investigation is required to determine if such a

“dropped sticks” survey design (similar to star Designs 3 or 4 atMG111

in this study) could minimize bias in the quantification of fish

aggregations through reduced sampling autocorrelation and

increased measure of variance when compared to parallel and

star designs.

When considered as one population, fish aggregations fixed to

multiple points (such as at WRT) are highly anisotropic under this

scenario (Figure 8). There is no clear transect method which

significantly increases precision in this case, although parallel

designs produced less error in mean estimates (Table 4). In the

situation where sampling over fish aggregations fixed to either

single or multiple locations is not possible (Design 5 in this

study), estimations will have large errors regardless of survey

design. A prominent example of this situation in the nGOM are

surveys of fishes at oil and gas platforms, where information is

reliant on transects within close proximity to the structure but not

within the structure frame which supports a large fish community.

Our findings suggest that geostatistical estimations of mean and

variability will be highly biased in this design, and are therefore not

recommended (Table 6). GAM-based errors in the mean were

much lower, but equal between parallel and star designs. Only

bias from the two-star design at WRT was significantly greater in

this case, indicating that there is no benefit from conducting

separate surveys around each structure in a complex of multiple

habitat features spaced within 100 m of each other.
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4.3 Stochastic conditional scenario

The SCS scenario was simulated from acoustic data of live goliath

grouper spawning aggregations at artificial reefs. This scenario is

most representative of fish aggregations associated with established

locations, but which exhibit fine-scale stochasticity around habitat

features. Unlike the majority of UGS simulations considered here,

these fish aggregations display significant spatial association to a

structure without necessarily occurring directly over it. This scenario

is most applicable to fish aggregations at artificial reefs and some

seamounts. Unlike the ED scenario, the number, complexity, and

exact location of aggregations is highly variable. For this reason, the

occurrence of transects passing over fish aggregations is much less

predictable than in either the UGS or ED scenarios (Figure 9).

Star surveys of aggregations fixed to a single point reflect isotropy

only if they intersect above the center of the aggregation (as observed

by the star method at MG111 in the ED scenario, Figure 8), although

this isotropy is highly reliant on the shape of the horizontal footprint

of the aggregation. In their simulation of orange roughy aggregations

around seamounts, Doonan et al. (2003) found that precision in

kriging-based estimates of biomass was lower for star surveys which

were not centered over the aggregations, and decreased further with

increasing number and complexity of schools. Parallel transects were

also considered in this study, although only for simulations where the

centers of the aggregation and seamount overlapped (similar to the ED

scenario in this study). The authors concluded that star designs

outperform parallel designs for such aggregations only when the

number of transects is low (<3), and that even when designs are

centered over fixed-point aggregations there is no significant

difference in the performance of either transect method in the
FIGURE 9

Simulated (left) sA interpolated by geostatistical conditional simulations and generalized additive models (right) in the stochastic conditional
simulation scenario at WRT. Bubble plots show sA observations sampled by the ideal survey design in each transect method (Design 1). Black
polygons indicate the locations of the three shipwrecks.
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presence of six or more transects. Our parallel transects outnumbered

star transects at both the single structure reef (parallel=6, star=4) and

the multi-structure reef complex (parallel=12, star=4, two-star=8).

Mean estimates from parallel transects were only more precise than

mean estimates from two-star transects at WRT and mean estimates

from star designs in the non-uniform design (7) at MG111 (Table 4).

However, parallel transects were more precise in estimation of

variability, and are therefore recommended over star designs when

the feature of interest and center of the fish aggregations are not

necessarily coincident. The “dropped sticks” transect method

described above could provide a compromise between sampling

effort and estimation bias in this scenario, as we observed no

significant influence on precision in designs where some transects in

the star design did not cross the feature of interest (Designs 1-4). It

should be noted that the parallel design is ultimately still preferable in

this scenario, as stars and dropped sticks are both prone to over-

sampling some locations and under-sampling others.

In all scenarios, there was little evidence to suggest that transect

uniformity has a significant impact on precision. Transects

performed by smaller vessels in non-ideal conditions (such as

rough sea states, low boat visibility, impeding boat traffic, etc.) are

equally as capable of providing robust quantitative estimates of fish

aggregations as perfectly driven transects as long as trends in the

underlying fish distribution are not impacted by the complicating

conditions (as may be the case with current or moon phase for

surveys conducted at night). Surveyors should not be deterred by

the inability to drive perfect transects due to equipment limitations

or poor weather conditions unless the quality of data collected is

impacted (e.g. excessive dropout in split-beam echosounder data

due to rough sea state). Variability in estimates was higher in

parallel designs than in star designs under all scenarios except for

the UGS scenario, where precision of variability in fish aggregations

with large-scale trends offset from the point of interest was greater

in the star design (but only using the GCS approach).
4.4 Conclusions

The evidence provided in this study supports the use of parallel

survey designs over stars in most cases. In the few cases where error was

equivalent between parallel and star designs, variability was still better

estimated by the parallel design. In cross-habitat studies where fish

aggregationsmay be represented by combinations of the three scenarios

examined in this study, the star design generates more error in

observations of fish aggregations similar to the UGS and ED

scenarios, and is not recommended. In studies of fish aggregations at

artificial reefs which mimic the patterns shown here by the SCS

scenario, where there was no significant difference in error from

either design, the lack of significant error reduction by performing

one, two, three, or four passes over the habitat feature negates the

preconceived benefit of maximizing passes over the feature. In instances

where surveys are limited by time or cost of vessel operations, we

recommend focusing effort on obtaining better measurements of

variability as long as at least one pass is made over the habitat

feature. As the residual spatial autocorrelation after modeling

approaches have been implemented is still higher in star designs than
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in parallel designs and variability is better measured in the parallel

design, we still recommend parallel designs over stars in this case.

We support the conclusion drawn from previous research of

aggregated populations that GAMs are more robust than

geostatistical approaches in the presence of both fine- and large-

scale spatial trends which often result in non-stationary and

anisotropic data (e.g. Yu et al., 2013; Chang et al., 2017). We add

that these properties still have a strong influence on the precision of

GAMs, but that precision can be improved with transect designs

given some basic knowledge of how fish are aggregated around a

point of interest. The survey designs and model approaches

presented here will inform fisheries-independent sampling of the

least-biased transect methods for quantifying fish aggregations

when their underlying distribution is well-documented or

understood, and that they will maximize the efficiency of adaptive

sampling based on initial data when they are not.
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