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Introduction: In recent years, the adverse effects of escalating maritime trade

and international shipping– particularly in regard to increased greenhouse gas

emissions and their impact on human health– have come to the fore. These

issues have thus instigated a surge in pressure to enhance the regulation of

shipborne carbon emissions.

Methods: The study utilized the automatic identification system (AIS) data,

Lloyd’s register data, and pollutant emission parameters to calculate the

carbon emissions from the main engine, auxiliary engine, and boiler of vessels

under varying sailing conditions, utilizing the dynamic method of ships. In

relation to geographic information and ship trajectory, a comprehensive

inventory of ship carbon emissions was developed, revealing pronounced

spatiotemporal characteristics. To assure the accuracy of the substantial AIS

dataset, procedures including data cleaning, trajectory integration, data fusion,

and completion were executed. Such processes are indispensable, given the

potential for transmission and storage errors associated with AIS data. To

forecast CO2 emissions over diverse time intervals, a temporal fusion

transformer model equipped with attention mechanisms was employed.

Result: The paper furnishes a case study on Tianjin Port, wherein a high-

resolution carbon emissions inventory was devised based on AIS data acquired

from vessels. This inventory was subsequently employed to generate multi-

feature predictions of future carbon emissions. Given the optimal parameter

configuration, the proposed method attained P50 and P90 values of 0.244 and

0.118 respectively, thereby demonstrating its efficacy.
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Discussion: Recognizing the sources of ship carbon emissions in this region and

forecasting such emissions in the future substantiates that this method

accurately portrays the laws of ship carbon emissions. Our study provides a

scientific basis for decision-making in port and pollution management, enabling

the creation of targeted emission reduction policies for ships.
KEYWORDS

ship pollutant, carbon emissions inventory, Tianjin Port, AIS, transformer, forecast
CO2 emissions
1 Introduction

The shipping industry is becoming increasingly important in

international trade as the global economy rapidly develops. Sea

transport is the most economical and environmentally friendly way

of transporting goods compared to road, rail, and air transport (Shu

et al., 2022). The shipping industry is responsible for about 90% of

global trade transportation by volume. The industry is fundamental

to national economic development and a pillar of national security

and national economy (Zhou and Leng, 2021). The number of ships

in the industry has grown recently, and their greenhouse gas

emissions have increased significantly. If greenhouse gas

emissions persist at or surpass the current rate, it will precipitate

additional global warming and instigate numerous alterations in the

global climate system. Climate change might lead to irreversible

effects. For instance, an augmented concentration of CO2 in the

atmosphere may further acidify the environment, thereby

nega t i v e l y a ff e c t ing mar ine l i f e . Accord ing to the

Intergovernmental Panel on Climate Change (IPCC, 2007), if the

elevation in the global average warming surpasses 1.5–2.5°C

(relative to the period of 1980–1999), an estimated 20–30% of

assessed species could face an augmented risk of extinction. The

global water-carbon cycle is influenced by climatic conditions (Yin

et al., 2023). Climate change hampers the absorption of CO2 by

terrestrial and oceanic entities, resulting in an increase in

anthropogenic emissions that remain in the atmosphere. Both the

transportation of polluted air from land to sea during monsoon

seasons and human activities in the marine environment contribute

to air pollution. This leads to atmospheric subsidence and

subsequent pollution of the marine environment (Pan et al.,

2022).Additionally, atmospheric conditions significantly affect

extreme weather events, which subsequently escalate the risk of

certain human diseases (Yin et al., 2022). Pressure to prevent and

control air pollution has also increased due to its negative impact on

the marine environment and its deleterious effects on human health

(Zhou and Leng, 2021).

According to the Third IMO Greenhouse Gas Study 2014

released by the International Maritime Organization, carbon

emissions from international shipping activities in 2012 were 796

million tonnes in 2012, accounting for 2.2% of total global carbon

emissions. However, if no effective measures are taken to reduce

emissions, the projected future development of the global economy
02
and energy use based on current development patterns indicates

that total CO2 emissions from the shipping industry will increase by

50%–250% by 2050 (Ouyang et al., 2015). China is the second

largest shipowner country in the world (International Ship

Network, 2021) and therefore is very influential in decarbonizing

the shipping industry. Carbon peak and carbon neutrality were

written into The Government Work Report for the first time in early

2021 (The Central People’s Government of the People’s Republic of

China, 2021). China is currently in the key stage of the 14th Five-

Year Plan, which is also a key window period for realizing the

double carbon goal. Effectively managing carbon emissions

represents a formidable challenge confronting numerous

industries–including the shipping industry–in their pursuit of

sustainable development. Indeed, it has evolved into a pivotal and

interdisciplinary research subject, eliciting interest from various

academic disciplines.

Research in China has shown that pollutants emitted within 12

nautical miles of the coastline account for about 40% of all ship

emissions off the coast of China. When the range is increased to 100

nautical miles, the emission of ship pollutants doubles. Ports are

intersections of water and road transport networks and are nodes of

the maritime network (Chen et al., 2022). Emissions from ships in a

port account for about a quarter of total emissions within 200

nautical miles of a port, and nearly 80% of emissions are

concentrated at the top 10 busiest ports in China (Li et al., 2018).

Prosperous international trade has led to the gradual expansion of

large-scale shipping, which has inevitably increased the negative

environmental effects of ship emissions. Ship emissions easily

diffuse from sea to land under the influence of sea breezes,

resulting in urban environmental pollution (Liu et al., 2017). Port

areas with heavy vessel traffic decrease air quality in port areas (Ng

et al., 2013; Li et al., 2016; Weng and Li, 2019). Emissions from

marine transportation pose significant adverse effects on human

health, with research indicating the detrimental health effects of

ship-emitted pollutants on residents near ports (Corbett et al.,

2007). These emissions also affect the climate carbon cycle,

prompting numerous alterations within the global climate system.

Such climate changes may lead to irreversible impacts (IPCC, 2007).

Consequently, in the interest of human health and the mitigation of

climate change, the necessity to rectify this situation is paramount.

The most effective strategies to decrease urban environmental

pollution encompass reducing pollutant emissions, enhancing
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pollutant treatment, and curtailing energy consumption (Chen

et al., 2022). In recent years, there have been numerous studies

on ship carbon reduction, with emission reduction measures–such

as ship speed optimization, coastal electricity, and clean fuel

substitution–being the most researched. A range of green energy

alternatives to traditional fuels have been explored and

summarized, including bioenergy, liquefied natural gas, tidal

energy, wind energy, and shore power (SP) (Wan et al., 2018).

Moreover, researchers have begun to examine the carbon reduction

dynamics of ships from various perspectives, such as policy,

economy, and environment (Chen et al., 2021b; Xu et al., 2021;

Zhao et al., 2021; Zhong et al., 2021; Meng et al., 2022; Wang et al.,

2022). Rehmatulla and Smith (2015) proposed that reducing

greenhouse gas emissions from the shipping industry by

approximately 30–80% of current levels is feasible, contemplating

potential hindrances that may obstruct the shipping industry from

implementing such levels of decarbonization. Jiao andWang (2021)

focused on the pollution issue of docked ships, incorporating

carbon price analysis with two emission reduction policies: SP

and low sulfur fuel oil (LSFO). Various ship emission reduction

strategies, such as speed reduction and waste heat recovery, have

been investigated and analyzed (Wang et al., 2010).Nevertheless,

many factors influence pollutant emissions, including shipper

preference, social responsibility, and governmental regulation. No

single technology can provide complete mitigation potential across

any department, and understanding how to reduce the emission

intensity of the shipping industry remains limited. While various

studies have addressed ship carbon reduction from different

perspectives, the overarching carbon reduction pathway of the

shipping industry remains unclear and lacks scientific

guidance.Controlling ship GHG emissions in practice presents

numerous challenges, with the development of scientifically

grounded, targeted emission reduction measures constituting a

key issue. Given the significant impact of government on

pollutant reduction within shipping enterprises, it is essential to

formulate more rational policies to advocate environmental

protection (Zhao et al., 2019). Understanding total emissions and

investigating their sources–such as the distribution of carbon

emission hotspots and the types of ships contributing to these

emissions–is crucial in providing guidance for stakeholders and

decision-makers in policy formulation and implementation (Zhou

et al., 2023).Thus, from the perspective of comprehensively

examining the laws of ship carbon emissions, this article first

compiles a detailed inventory of ship carbon emissions for high-

traffic aquatic regions. Subsequently, a time series model is

employed to predict future carbon emissions of ships in this area

based on the existing carbon emissions inventory. This approach

assists relevant departments in formulating effective pollution

reduction and management strategies, substantially reducing ship

carbon emissions.

Two prevalent methods for estimating pollutant emissions from

ships are the top-down calculation method, based on ship fuel

consumption, and the bottom-up dynamic method, utilizing data

from ship automatic identification system (AIS) (He et al., 2021).

The comprehensiveness and accuracy of the data provided by the

calculation method based on fuel consumption have yet to be
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verified. While this method relies on a single emission factor for

all ships, the emission characteristics of inland waterway ships vary

widely depending on their working conditions. Additionally,

investigation and estimation are usually necessary for determining

fuel consumption which is a critical parameter in the calculation.

Thus, the accuracy of an emission inventory will be affected by data

omissions and estimation errors in the investigation (He et al.,

2021). The dynamic method uses a detailed classification of the state

of ships on a voyage, and so in determining emission factors, the

estimation of exhaust emissions is more accurate than using the fuel

consumption method. However, the dynamic method requires a

large quantity of ship data from different sources, which are difficult

to obtain directly (Healy et al., 2009; Moldanová et al., 2009; Coello

et al., 2015). More accurate regional emission inventories must be

predicted from detailed ship activity data.

The widespread use of AIS in the shipping industry has resulted in

the availability of vast amounts of global shipping data, which can be

accessed online with ease (Mou et al., 2019). A large amount of

individual ship information describing the ship’s state when sailing

can be extracted and used in many aspects of marine navigation, such

as collision avoidance, vessel tracking, trajectory clustering, ship traffic

prediction, and maritime affairs (Wu et al., 2017). AIS requires ship

identification in the form of a uniquemaritimemobile service identifier

(MMSI) code in the AIS for each ship. AIS sends signals with a

frequency varying from every 3 seconds to a few minutes that include

detailed information on ship speed and position. High-precision AIS

data ensure the accuracy of ship emission calculations. The

transmission frequency of AIS data allows a ship to obtain multiple

AIS data records of other ships in a short period, so that AIS data can

be used to accurately calculate ship emissions (Weng et al., 2019).

The dynamic method based on AIS data has been used for

emission calculation by most researchers. However, most current

studies are only useful for the compilation of an air pollution

inventory of coastal and ocean-going ships, and there are limited

data for inland waterway ships. Due to the incomplete coverage by

AIS base stations on inland rivers, blockage of ship uplink signals,

atmospheric radio interference of the AIS system and other factors,

there are problems such as missing data, data errors, and

duplication of AIS data that limit the use of dynamic method for

emission calculation on inland waterways (He et al., 2021).

However, a ship atmospheric emission inventory is an important

basis for the prevention and control of all ship pollution emissions.

The uncertainty of the emission inventory is large, so it is necessary

to investigate the localization of emissions to ensure predictions

match actual ship emissions (Lyu et al., 2019).

The proposed ship carbon emissions inventory contains rich

temporally dynamic information that may be used to predict the

dynamic development of pollution (Shen et al., 2020). The primary

objective of a time series model is to construct a suitable model that

captures the intrinsic structure of time series by learning from

historical data, which can then be utilized to predict future features.

Scientists have been working over the past few decades to develop

models that identify underlying patterns in time series in order to

extrapolate into the future.

The initially developed time series prediction models include an

autoregressive model (Geurts et al., 1977), an autoregressive moving
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average model (ARMA) (Winters, 1960; Gardner, 1985), and the

support vector machine (Kim, 2003; Thissen et al., 2003). These

models created linear functions based on recent observations for

predictions but did not consider theoretical requirements for

stationarity and ergodicity or perform necessary preprocessing

(Shen et al., 2020). The applicability of these models was limited

to cases in which there was sufficient historical data and an

interpretable structure. However, when the availability of data

sequence was insufficient, the underlying features and patterns

could not be extracted effectively (Shen et al., 2020).

A neural network model has great advantages over other methods

in solving nonlinear problems, which adaptively builds appropriate

models based on the given data (Adhikari and Agrawal, 2013). Much

research has been dedicated to applying neural networks for time

series modeling and prediction. Among the most commonly used

and popular neural networks are multi-layer perceptrons (MLPs),

which are characterized by feed forward networks (FNNs) that

typically have a single hidden layer (Zhang et al., 1998; Zhang,

2003). There are other artificial neural network models, such as the

seasonal artificial neural network (SANN) model for seasonal time

series forecasting. Some studies created models that combined a

neural network component with different neural network structures,

and the models always outperformed a single neural network in terms

of prediction accuracy by avoiding overfitting problems (Zhang and

Berardi, 2001). However, for linear problems, the performance of a

neural network depends on sample size and the degree of noise (Shen

et al., 2020).

Deep learning is a novel approach that, unlike classical

statistics-based models that only model linear relationships in

data, shows great potential for mapping complex nonlinear

feature interactions (Lara-Benıt́ez et al., 2021). Deep learning has

the ability and flexibility to derive nonlinear relationships from data

with a given deep structure. It will automatically extract temporal

patterns without the need for any theoretical assumptions about

data distribution and will do so with little need for data

preprocessing. The generalizability of deep learning models allows

for the use of cross-series data, which enables the creation of a single

global model learned from multiple temporally correlated time

series, thus greatly increasing prediction accuracy (Lara-Benıt́ez

et al., 2021). For example, a recursive neural network (RNN) can use

historical information about a time series to predict future

outcomes (Connor et al., 1994). An example is an improved RNN

for a time series prediction model called long short-term memory

(LSTM) (Gers et al., 2002).

Developing an attention mechanism also improved long-term

dependent learning (Bahdanau et al., 2014; Cho et al., 2014).

Transformer architecture produced the most advanced

performance in various natural language processing applications

(Vaswani et al., 2017; Devlin et al., 2018; Dai et al., 2019). Recent

research has also demonstrated the benefits of using attention

mechanisms in time series prediction, indicating that they can

outperform comparable cyclic networks (Fan et al., 2019; Li et al.,

2019). Time series forecasting has also been widely used in air

pollution monitoring. Studies have investigated the effects of

various time series forecasting techniques on short-term high

granularity time series forecasting of PM2.5. The models include
Frontiers in Marine Science 04
ARIMA, SARIMA, SES, DES, TES, ANN, DT, KNN, LSTM, and

MCFO (Das et al., 2022).

To address the preceding issues and change the prevailing status

quo, we utilized the bottom-up dynamic method to estimate CO2

emissions from ships. We established a high-resolution emission

inventory and applying a time series prediction model to forecast

future carbon emissions of ships based on the carbon emissions data

in the inventory. The raw data consisted of AIS data, Lloyd’s data,

pollutant emission parameters, and geographic information data.

The CO2 emissions from main engines, auxiliary engines, and

boilers of twenty-six different types of ship and five different

sailing conditions (cruising, sailing at slow speed, maneuvering in

port, at anchor, and berthed) were analyzed. In so doing, a high-

resolution CO2 emissions inventory of ships was created. We

conducted a detailed investigation into the traceability of ships’

carbon emissions. This entailed refining the granularity of the ship’s

carbon emission inventory to individual ships, port equipment, and

carbon responsible parties, enabling a comprehensive

understanding of the carbon emission. We adapted the temporal

fusion transformer (Lim et al., 2021), a temporal prediction model

based on attention mechanisms, that used LSTM, a gated residual

network (GRN), multi-head attention mechanisms and other

controls to analyze the static data and time-varying data in

modeling multi-horizon carbon emission characteristics of

ships. Thus, the future laws of ship carbon emissions were

predicted. Ships in Tianjin Port and the surrounding sea lanes

were used to illustrate the developed technique to produce the

carbon emissions inventory of ships in the study area and to predict

future ship CO2 emissions.

The thoroughness of data cleaning, data fusion, and missing

data extrapolation ensured the accuracy of quantifying the carbon

emissions and predicting carbon emission characteristics. The

analysis of emissions by ship type and ship operation mode

ensured that exploring carbon emission laws and predicting

emission characteristics considered the dynamic ship behavior in

real time. Factors affecting carbon emissions were analyzed in terms

of the place of ship registration, ship type and other ship attributes,

as well as time. These attributes add value to the study as a source of

data to support the development of carbon emission reduction and

carbon trading policies. Figure 1 shows a schematic of the entire

research process.
2 Materials and methods

2.1 Overview of the research area and
data sources

The research area was the sea around Tianjin Port in China

(38.64°N–39.24°N, 117.35°E–118.35°E. The layout of Tianjin Port is

shown in Figure 2. Tianjin has unique geographical properties, and

it is an important sea link connecting north and south, east and

west, and China and abroad. Tianjin Port, located in the Binhai New

Area of Tianjin, is the largest comprehensive hub port in northern

China. In 2021, container throughput exceeded 20 million twenty-

foot equivalent units (TEUs), ranking it eighth in the world (Wang,
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2022). It is also the main port for foreign trade exports and an

important entry point for foreign materials and equipment

(Niu, 2022)

We used the AIS data to estimate ship carbon emissions at

Tianjin Port with high spatiotemporal resolution. The CO2

emissions were analyzed in multiple dimensions to provide

decision-making support for relevant management bodies. AIS
Frontiers in Marine Science 05
sends signals at frequencies of every 3 seconds to a few minutes

that include detailed information on ship speed and location.

High-precision AIS data ensure the accuracy of ship emission

predictions (Weng et al., 2019). AIS signals can be interpreted

into static information, dynamic information, voyage

information, and security information for analysis (Chen et al.,

2021a). Static information includes ship’s MMSI, ship name, ship
FIGURE 2

Layout of research area – Tianjin Port.
FIGURE 1

Research flow diagram.
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type, ship length, ship width, ship tonnage, and the place of ship

registration. Dynamic information includes ship position

(latitudinal and longitudinal coordinates), course, speed, and

time (UTC seconds, indicating the time of report generation)

(Weng et al., 2019). Voyage information includes the draft of the

ship, the type of dangerous goods carried by the ship, the port of

destination and the passage plan. Safety information mainly

refers to navigation rights information related to ship

navigation (Chen et al., 2021a).

The research data consisted of 2018 AIS data for ships,

including 7 channels, 8 anchorages, and 205 berths in Tianjin

Port that were combined with Lloyd’s data and pollutant

emission parameters. The channels were respectively Dagang Port

channel, Beitang Port channel, Xingang channel outer section,

Xingang channel inner section, Dagusha channel, Gaoxaling Port

channel and Beitang Port branch channel. There were 26 ship types,

including dry bulk carriers, container ships, oil product ships,

rescue ships, roll on–roll off (ro-ro) ships, passenger ships, ore

carriers, tugboats, liquid chemical carriers, and fishing boats. The

pollutant of interest was greenhouse gas emissions of CO2.
2.2 AIS data processing of ships

We used the dynamic method to calculate CO2 emissions from

ships. The quality of AIS data affects the accuracy of the research

results. Information loss, error, data duplication, and abnormality

can occur in AIS data transmission and collection due to sensor

characteristics, signal interference, transmission channel congestion

and other reasons (Wu et al., 2017). These forms of data

interference can corrupt subsequent data mining and analysis and

affect the analysis results. We therefore first undertook data

cleaning, trajectory integration, data transformation, data fusion,

data extrapolation and other operations on the AIS data and

preprocessed ship data to avoid adversely affecting the results by
Frontiers in Marine Science 06
poor data quality. Data processing procedures are shown

in Figure 3:

2.2.1 Data cleaning
Given the problems previously identified, such as faults, errors,

and discontinuity, that may exist in the storage and management of

massive AIS data, as well as the problems such as data loss,

abnormality, truncation, and rate instability that may exist in

multi-channel incremental AIS data access, direct use of

original data in research and analysis will certainly affect the

accuracy of the results. To ensure satisfactory analysis results and

meet the requirements of ship carbon emissions traceability, data

cleaning is necessary to remove data not conforming to common

sense based on reasonable ranges in various fields (Wang and

Li, 2021).

Anomalies in ship speed were determined by comparing ship’s

real-time speed and ship’s maximum speed. If the real-time speed

was greater than the maximum speed, the ship trajectory point was

deleted as a speed anomaly. The course of a ship is 0°–360°. If the

course was outside this range, the data point was deleted. If the

tracked position of the ship was outside the coordinates of Tianjin

Port, the data point was deleted. If the MMSI did not have 9 digits, it

was deleted. If the latitude or longitude was empty, the latitude was

>90° or<−90°, or if the longitude was >180° or<−180°, the data

point was deleted. In addition, data points for locations outside the

research scope, data points for times outside the research scope, and

duplicate data points were also deleted (Feng et al., 2022). The

cleaned data were imported into the database for subsequent

processing and analysis.

2.2.2 AIS data track integration
AIS sends signals with a frequency of 3 seconds to a few minutes,

so the dynamic data recorded by AIS forms a massive point dataset

with coordinates, and the quantity of data for Tianjin Port in 2018

was therefore extremely large. This was rather inconvenient for

subsequent processing, and did not immediately represent ship
FIGURE 3

Diagram of data processing.
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trajectories. It was therefore necessary, for all ships, to extract the

critical trajectory points describing the original trajectory of the ship

from the dense data points and to create the shipping route by

ordering the data points in a time sequence (Wang and Li, 2021) to

facilitate the calculation of massive AIS data.

In this paper, route extraction was performed first. All track

points for the same MMSI in the same port facility (channel,

anchorage, berth) at Tianjin Port were extracted, and the port entry

and exit points of the ship were determined. The track points from

the entry position to the departure position were sorted according to

the data sampling time to create the route of the ship, and the time

difference between entry and departure was calculated. The average of

the speeds at each track point was taken to be the average speed for

the route. AIS data after incorporating the trajectory included ship

MMSI, ship type, place of registration, ship captain, ship width, entry

time, departure time, ID and name of the port facility used, sailing

time, average sailing speed and other information. Ship activity in a

port facility was represented by a piece of data. After track integration

of the Tianjin Port data in 2018, a total of 20 361 anchorage data

points, 70 572 channel data points, and 47 145 berth data points were

used in the calculation of the ship carbon emissions inventory.
2.2.3 Data fusion and completion
The Lloyd’s data contained basic information about the ship, such

as the MMSI, the year of construction, the ship type, the place of

registration, the maximum rated continuous power of main engines, the

speed of the main engine (>1000 rpm for high-speed engines, 300–1000

rpm for medium speed engines, and<300 rpm for low speed engines),

the main engine manufacturer, the maximum rated power of auxiliary

engines, number of engines, designed maximum speed, and fuel type.

Using the MMSI code as a key, we obtained static vessel

information from the Lloyd’s registry such as the maximum rated

continuous power of the main engine, the maximum rated power of

the auxiliary engine(s), ship manufacturer, the tonnage class, the

speed of the main engine, the designed maximum speed, and the age

of the vessel and then matched and incorporated these data with the

AIS data after integrating the vessel trajectory.

In cleaning these data, based on a statistical analysis of ships in

Tianjin Port, we eliminated records when the AIS data showed a

Tianjin Port channel navigation time >2 h, anchorage time >20 d, or

at berth time >4 d.

Statistical averages or curve fitting were used to extrapolate data

that were not included in the Lloyd’s database to establish a

complete database of ship carbon emissions. Ship construction

date and ship manufacturer were completed using the statistical

method of corresponding data mode in Lloyd’s database. Ship

tonnage and ship main engine speed were obtained by calculating

the mean value of corresponding data in the Lloyd’s database. The

maximum rated power of the main engine and maximum rated

power of the auxiliary engine were obtained by various methods,

depending on the context of the missing information.

Main engine power was extracted from the Lloyd’s database for

most ships. Engine power data for ships that were not found in the

database were extrapolated in order to provide accurate pollution

estimates. It was assumed that the power of the main engine was
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related to the type of ship and its gross tonnage. Engine power of

ships for which no such data had been recorded was then completed

by Lloyd’s data referring to the actual situation (Trozzi, 2010; Ng

et al., 2013; Chen et al., 2017). For example, the average main engine

power of ships with similar gross tonnage was used as the main

engine power of ships, for which there was no main engine power

data but available gross tonnage data. The average main engine

power of ships with similar width and height was used as the main

engine power of ships, for which there were neither main engine

power data nor gross tonnage data. For ships with only MMSI

number and ship type data available, the average main engine

power of all ships of the same type in Tianjin Port was used as the

main engine power. For ships with only MMSI number available,

the average main engine power of all ships in Tianjin Port was used

as the main engine power (Weng et al., 2019).

Missing auxiliary engine (AE) power can be predicted using the

ratio of AE power to main engine (ME) power of a particular ship

type (Trozzi, 2010; Chen et al., 2017). AE power data were created

using ME–AE power ratios of different types of ships obtained from

the China Knowledge Centre for Engineering Sciences and

Technology, 2016 (China Knowledge Centre for Engineering

Sciences and Technology, 2016). See the Supplementary Materials

for detailed information.
2.3 Creation of a high-resolution CO2
emissions inventory from ship data

For the estimation of greenhouse gas CO2 emissions from ships,

the top-down dynamic method was adopted in this study. The total

energy output of each ship (kW·h) wasmultiplied by an emission factor

that was specified in g/kW•h. The estimated value was then modified

using the corresponding emission factor correction coefficient to

produce the carbon emissions from the main engine, auxiliary

engine, and boiler of a single ship respectively. We calculated CO2

emissions for individual ships in each channel, anchorage, and berth

using geographical information for Tianjin Port and then combined

the CO2 emissions of all ships at different times for the entire port area

to produce real-time emissions for the different port facilities. Then, a

high-resolution CO2 emissions inventory of ships was created.

CO2 emissions were calculated for each of 26 different ship

types, including dry bulk carriers, container ships, refined oil

carriers, rescue ships, ro-ro ships, and fishing boats. Emissions

were classified by engine type (main engine, auxiliary engine, and

boiler) and vessel operating mode (cruising, slow sailing,

maneuvering, at anchor, and berthed) (Liu et al., 2016).

Air pollutants are emitted from ships in port mainly from

marine engines, primarily the main engine, auxiliary engine(s) and

boiler, which have different functions. The main engine provides

propulsion power for the ship, the auxiliary engine powers lighting,

air conditioning, refrigeration and other electrical equipment for

the ship, and the boiler provides hot water or steam for driving

equipment on the ship. Engines are generally divided into five

categories by speed and type: low speed diesel engine (SSD),

medium speed diesel engine (MSD), high speed diesel engine

(HSD), gas turbine (GT) and steam turbine (ST). Large vessels
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usually have an SSD with a maximum speed<350 rpm as the main

engine. An MSD with a maximum speed 350–1000 rpm is usually

the main or auxiliary engine of large ships. HSDs with a speed

>1000 rpm are used as main engines in small ships or auxiliary

engines in large ships (China Knowledge Centre for Engineering

Sciences and Technology, 2016). The carbon emission calculations

for main and auxiliary engines and boilers in a single ship are as

follows (Liu et al., 2016).
2.3.1 Emissions of ship main engine
The following equation calculates pollutant emissions of the

main engine:

Ei = MCR� LF � Act � EFi� FCF � CF � 10−6 (1)

where Ei is the estimated CO2 emission of the main engine (t);

MCR is the maximum continuous rated power of the main engine

(kW); LF is the load coefficient of the main engine (dimensionless)

and is calculated by:

LF = (
Speed _Actual
Speed _Max

)3 (2)

where Act is the sailing time of the ship (h); EFi is the emission

factor of CO2 (g/kW·h), detailed in the Supplementary Material;

FCF is the fuel correction coefficient (dimensionless) for fuel types

RO (2.7% S), HFO (1.5% S), MGO (0.5% S), MDO (1.5% S), MGO

(0.1% S); FCF for CO2 is 1; and CF is the low load adjustment factor

for the main engine (dimensionless) , detai led in the

Supplementary Material.
2.3.2 Emissions of auxiliary engine
The equation to calculate pollutant emissions of an auxiliary

engine is:

Eai = A _MCR� LF _ a� Act � EFai� FCF _ a� 10−6 (3)

where Eai is the estimated CO2 emission of auxiliary engine

powered machinery (t); A_MCR is the maximum continuous rated

power of the auxiliary engine (KW), which is obtained from the

Lloyd’s database or, if not available, calculated by the ratio of the

power of the auxiliary engine to the maximum continuous rated

power of the main engine, by:

A _MCR = AMR�MCR (4)

where AMR is the ratio of the power of auxiliary engine to the

maximum continuous rated power of the main engine, detailed in

the Supplementary Materials; MCR is the maximum continuous

rated power of the main engine (KW); LF_a (dimensionless) is the

load factor of the auxiliary engine, determined according to the type

of ship and its sailing state (see Supplementary Materials); Act is the

operating time of the auxiliary machinery of the ship (h); EFai is the

emission factor of CO2 (g/kW·h) (see Supplementary Materials for

details); and FCF_a (dimensionless) is a fuel correction coefficient

for RO (2.7% S), HFO (1.5% S), MGO (0.5% S), MDO (1.5% S),

MGO (0.1% S); FCF_a for CO2 is 1.
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2.3.3 Boiler emissions
The equation to calculate pollutant emissions from a ship boiler

is:

Ebi = BEnergy � Act � EFbi� 10−6 (5)

where Ebi is the CO2 emission from the boiler (t); BEnergy is the

load power of the boiler (KW); the boiler is usually started only

when the main engine load is ≤20% and the boiler is inactive when

the ship is sailing normally at sea; the boiler load power data are

detailed in the Supplementary Materials; Act is the startup and

operating time of the boiler (h); and EFbi is the CO2 emission factor

of the boiler, 970 g/kW·h.

After estimating the carbon emissions generated by the main

engine, auxiliary engine, and boiler of a single ship along a single

course track, the carbon emissions of the activity of a ship in each

Tianjin Port facility can be obtained by summing them, and the

real-time emissions of each type of equipment in Tianjin Port in

different time periods can be obtained.
2.4 Ship emissions prediction model based
on the attention mechanism

A recently developed attention-based deep neural network (DNN)

architecture, the time fusion transformer (TFT) (Lim et al., 2021), was

used in this study to predict carbon emission characteristics of ships in

Tianjin Port for several periods. This model has significantly improved

the performance of various applications over existing models, such as

ARIMA, ETS, TRMF, DeepAR, DSSM, ConvTrans, Seq2Seq, and

MQRNN. The major constituents of TFT are gating mechanisms,

variable selection networks, static covariate encoders, temporal

processing, and prediction intervals.

Based on the established high-resolution carbon emissions

inventory, static and time-varying variables related to the

prediction target were extracted for learning and training. While

multiple variables may be available, their relevance and weight are

usually unknown. TFT selects the relevant input variable at each

time step through variable selection networks. All static, historical,

and future inputs use independent variable selection networks.

Apart from providing insight into the most important variables of

the prediction problem, variable selection removes any unnecessary

noise inputs that can degrade performance.

The TFT model integrates information from static metadata,

modulates temporal dynamic variables by encoding context vectors,

and thus integrates static features into the network. Independent GRN

encoders were adopted to generate context vectors that were wired to

different locations of the temporal fusion decoder. Static covariates

often significantly affect temporal dynamics, so a static richness layer

was introduced to enhance temporal characteristics with static

metadata. All statically rich time characteristics applied multi-head

attention in each prediction (N = tmax + k +1) to extract long-term

dependent information. Decoder masking (Vaswani et al., 2017; Li

et al., 2019) was employed to ensure that each temporal dimension

only focuses on its previous features. We used GRN to the output of

the self-attention layer, which is similar to the static enrichment layer.
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To capture both long-term and short-term time relationships from

time-varying inputs and weight information at different moments, TFT

uses the sequence-to-sequence layer for local processing, and uses

multi-head attention to capture long-term dependence.

TFT uses linear transformations of the output of the temporal

fusion decoder to generate forecast intervals by simultaneously

predicting different percentiles at each time step.

ŷ (q, t, t) = Wq ~y (t, t) + bq (6)

where Wq ∈ R1×d and bq ∈ R are the linear coefficients of

quantile q. The predictions are generated only for future periods {1,

... ,tmax}.

The model’s overall architecture is shown in Figure 4 (Lim

et al., 2021).

The remainder of this section is drawn from Lim et al. (2021)

under the terms of the Creative Commons CC-BY 4.0 license.

2.4.1 Gated residual network
The exact relationships between model inputs and the target

predicted values are often unknown in advance, making it

challenging to determine the degree of nonlinear processing required.

To give the model the flexibility to apply nonlinear processing only

where needed, gated residual network (GRN) was used. The GRN takes

the primary input a and an optional context vector c to produce:

GRNw (a, c) = LayerNorm(a + GLUw (h1)) (7)

h1 = W1,wh2 + b1,w (8)
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h2 = ELU(W2,wa +W3,wc + b2,w ) (9)

where ELU is the exponential linear unit activation

function (Clevert et al., 2016), h1 ∈ Rdmodel, h2 ∈ Rdmodel

are the intermediate layers, LayerNorm is the standard

normalization (Lei Ba et al., 2016), and w is the weight sharing

index. When W2,wa + W3,wc + b2,w >> 0, ELU activation will act

as an identity function. When W2,wa + W3,wc + b2,w<< 0, ELU

activation will produce a constant output, producing linear

layer behavior.
2.4.2 Multi-head attention
TFT uses a self-attention mechanism to learn the long-term

relationship across different time steps. The mechanism is modified

in the transformer-based architecture. The range value of attention

mechanism V ∈ RN×dV based on the relationship between keys K ∈
RN×dattn and queries Q ∈ RN×dattn is:

Attention(Q,K ,V) = A(Q,K)V (10)

where A is a normalization function. A common choice is scaled

dot product attention (Vaswani et al., 2017):

A(Q,K) = Softmax(QKT=
ffiffiffiffiffiffiffiffiffi
dattn

p
) (11)

To improve the learning ability of the standard attention

mechanism, multi-head attention was proposed, and different

heads were used for different representation subspaces:

MultiHead(Q,K ,V) = ½H1,…,HmH �WH (12)
FIGURE 4

TFT architecture.
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Hh = Attention(QW(h)
     Q,KW

(h)
     K ,VW

(h)
     V ) (13)

where WK
(h) ∈ Rdmodel×dattn, WQ

(h) ∈ Rdmodel×dattn, WV
(h) ∈

Rdmodel×dV are the header weights of keys, queries, values, and WH

∈ R(Mh·dV)×dmodel is the output from the linear combination of all

headers Hh.

Assuming different values are used for each header, individual

attention weights do not indicate the importance of a particular

feature. We therefore modified the multi-head attention to share the

values in each head and sum all heads:

InterpretableMultiHead(Q,K ,V) = ~HWH (14)

~H = ~A(Q,K)VWV = 1
HomH

h=1
A(QW(h)

     Q ,KW
(h)
     K )

� �
VWV

= 1=Ho
mH

h=1

Attention(QW(h)
     Q,KW

(h)
     K ,VWV )

( ) (15)

whereWV ∈Rdmodel×dV is the weight of a value shared across all

headers, and WH ∈ Rdattn×dattn is used for the final linear mapping.

Each head can learn different time patterns and focus on the

characteristics of a set of common input features simultaneously.

It can be interpreted as Eq. (14) with attention weighting to form

the simple combination matrix Ã(Q, K).

3 Results

3.1 Spatial and temporal distribution

3.1.1 Time distribution rule
The carbon emissions of the main engine, auxiliary engine and

boiler under different working conditions were estimated for ships

in channels, berthed, and at anchorage in the area defined in the

study as Tianjin Port in 2018. Ship CO2 emissions for each month

are shown in Figure 5. Detailed emission data are shown in the

Supplementary Materials.
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Figure 5 shows that CO2 emissions were high in July, August,

September, and October, and peaked in July. In January, preceding

the Chinese New Year, the dry bulk trade volume is high, resulting

in increased carbon emissions even during the winter season.

February is traditionally the off-season of the Chinese New Year;

supply and demand are weak, trade volume decreases, and ship

emissions decrease accordingly (Zhang and Yan, 2019). Emissions

were low in June when the Bohai Bay area was closed to fishing and

shipping was strictly controlled. In addition, the trade war between

China and the United States in 2018 reduced the volume of trade

routed through Tianjin Port. In March, 2018, the former U.S.

President Trump signed a memorandum imposing heavy tariffs

on imported steel and aluminum, initiating the trade dispute

between China and the United States, which affected commodity

prices and reduced market confidence. In response, the Chinese

government continually released reform signals, which greatly

alleviated market concerns (Zhang and Yan, 2019), and trade

volume rebounded. However, changes in the international

political and economic environment are complex, and the effects

on trade were inevitably longer term. For example, in September–

December 2018, Tianjin Port imported no soybeans from the

United States (Tianjin Customs District P. R. China, 2019).

Inmost years, ice starts to form in the port in early December and

lasts until February of the following year. The most severe period of

ice is generally from early January to the end of February (Xia, 2006).

Tianjin Port experienced severe ice formation in late January and

early and mid-February of 2018. The coastal ice of Tianjin Port

melted in late February, 2018 (Tianjin Municipal Bureau of Planning

and Natural Resources, 2018). Thus, in January and February,

November, and December, port traffic was reduced due to sea ice

conditions, and ship pollutant emissions decreased. The government,

along with other relevant departments, needs to promptly adjust their

allocation of human resources and regulation efforts to manage high

emissions between July and October, and prepares for the fishing ban

and the winter sea ice period.

3.1.2 Spatial distribution
The geographical coordinates in ship AIS data enabled us to

combine real-time emissions and shipping trajectories to analyze

the characteristics of carbon emissions. We therefore summed the

emissions of all shipping trajectories for each grid box and mapped

the spatial distribution of ship carbon emissions in Tianjin Port in

2018 using GIS (Figure 6). The figure clearly identifies areas with

high emissions, with much of the greatest traffic density occurring

within a small part of the total area, such as the Main Shipping

Channel of Tianjin Xingang Fairway and Dagusha Channel.

The Master Plan of Tianjin Port (2021–2023) shows that the port

will focus on building a layout of “one port and nine districts” in the

future. The nine districts are Northern Xinjiang port area, East

Xinjiang port area, South Xinjiang port area, Dagu port area,

Gaoxaling port area, Dagang port area, Haihe port area, Beitang

port area, and Hangu port area. The plan goal is to speed up the

construction of the northern international shipping center. Northern

Xinjiang will focus on the development of modern logistics, bonded

warehousing, finance and trade, and shipping services. Dongjiang will
FIGURE 5

CO2 emissions from ships in Tianjin Port in 2018.
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mainly process container transportation. Southern Xinjiang is for

coal, iron ore, oil and oil products and other bulk cargo in transit.

Dagu will mainly be used for shipbuilding and ship repair, equipment

manufacturing, grain and oil processing, and other transportation

industries. Gaoshaling will serve the equipment manufacturing

industry in the near future, and in the more distant future will take

in the harbor industry and materials transportation into the

hinterland. Dagang serves the petrochemical industry of Nangang

Industrial Zone in the near future and bulk cargo transportation in

the longer term. Haihe serves the development of waterfront industry,

transportation of construction materials, and tourist ships and

transport. Beitang will mainly serve passenger transport and coastal

tourism. Hangu will serve the aquatic products industry in this

region, focusing mainly on the transportation of groceries and cold

chain materials (Cui, 2010).

Pollutant emissions near all land port areas and the channels of

Tianjin Port are generally very high. Xingang channel outer section is

a high emission area, contributing about 64.9% of all channels’

emission. The carbon emissions in the Beitang Port channel and

Xingang channel inner section are each clearly higher than in other

channels. This necessitates port regulatory authorities to plan

reasonably, taking into consideration the emission characteristics of

the port cargo structure and port characteristics. This ensures optimal

utilization of all areas without overloading, thereby avoiding
Frontiers in Marine Science 11
unnecessary emissions arising from traffic congestion or protracted

waiting times for goods loading and unloading in certain areas.
A B

C

FIGURE 6

Spatial distribution of carbon emissions from ships in Tianjin Port in 2018. (A) channel; (B) anchorage; (C) berth.
FIGURE 7

Changes in emissions from different types of ships in 2018.
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3.2 Characteristic ship attributes

3.2.1 Ship type
The count and throughput of each type of ship are different, so

the quantities of CO2 emitted are also different. Figure 7 shows the

pollutant emissions from different types of ships in 2018.

Figure 7 shows that dry bulk carriers produced the greatest

quantities of carbon emissions, followed by container ships and oil

product carriers. Each of these ship types accounted for more

carbon emissions than the other ship types combined; other types

of ships, such as fishing boats and ro-ro ships produced relatively

low carbon emissions. The Chinese Spring Festival and the trade

dispute between China and the United States together reduced the

supply and demand of dry bulk cargo, which decreased in February

and March. These events not only affected trading volume, but also

decreased ship carbon emissions. Since Bohai Bay is closed to

fishing most of the year, the carbon emissions of fishing boats

were concentrated into September and October, whereas the

monthly emissions of other types of ships were relatively constant.

Figure 8 shows the monthly percentage contribution of

pollutant emissions for each type of ship in Tianjin Port in 2018.

Figure 8 shows that the pollutant emissions of dry bulk carriers,

container ships, and oil product carriers were relatively large. The

three types of ship, as the main types of vessels primarily used in

international shipping, together contributed 36.76% of total carbon

emissions. Of these three types of ship, dry bulk carriers made the

greatest contribution, with a maximum of 21.74%, and the

contribution of container ships, which was second to dry bulk

carriers, was 8.13%. Oil product ships contributed 6.89% and

tugboats 4.16%.
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Tianjin Port is the largest port in northern China, and it is the

gateway to Beijing’s shipping trade. It is a comprehensive

international port with complete cargo facilities. It has formed a

cargo specialty structure with containers, crude oil and oil products,

ore, and coal as its “four pillars” and steel and grain as “a group of

key points”, making it one of the largest and most comprehensive

ports in the Bohai Rim region. Tianjin is also China’s largest coke

export port in terms of tonnage, the second largest iron ore import

port, and the largest container trunk port in northern China. Thus,

many container ships visit the port. Container ships travel at high

speed, carry heavy loads, and have more powerful engines than

other types of ship; the carbon emissions of a single container ship is

much greater than that of any other type of ship. There was no

significant difference in carbon emissions between dry bulk carriers

and other types of ship. However, there were more dry bulk carriers

than any other type of ship and they accounted for about 31% of the

total number of ships, with a maximum of 2765 ships in July and a

minimum of 1797 ships in February. Therefore, the total carbon

emissions of dry bulk carriers were greater than those of container

ships. The number of tugboats was the second highest, reaching a

maximum of 1579 in August. Ship arrivals in each month are

provided in the Supplementary Materials.

In accordance with the Energy Efficiency Operational Indicator

(EEOI) as defined by the International Maritime Organization and

past research, ships with a deadweight tonnage of less than 50,000

typically manifest greater carbon intensity compared to other ships

(Walsh and Bows, 2012).Enhancing the transportation capacity of

containers will diminish the amount of fuel needed for their transit,

ultimately curtailing greenhouse gas emissions from shipping (Li et

al., 2023). To reduce ship exhaust emissions, a significant number of
frontiersin.or
FIGURE 8

Pollutant emission share of different types of ships in each month of 2018.
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shipping companies are contemplating the utilization of larger or

medium-sized ships (Ammar and Seddiek, 2020).This necessitates

relevant regulatory authorities, shipping companies, and shippers to

enter into agreements to specify the types of ships to transport each

type of cargo, to employ large ships for cargo transport as much as

possible, and to strictly monitor the CO2 emissions from different

types of ships. Local governments should reach agreements with

local ports and terminals, plan port structures and cargo loading

and unloading mechanisms sensibly, and minimize unnecessary

CO2 emissions. Concerning ship age, since newer ships are typically

equipped with superior carbon efficiency and emit lower emissions,

relevant departments could enhance standards for in-service ships

by mandating the scrapping of ships that have exceeded their

service life.

3.2.2 Place of ship registration
Ships are a major source of pollution in inland waterway

navigation, but they also may be important protectors of the

inland waterway environment, because they can reduce pollutant

emissions through the adoption of clean energy technologies.

However, the extra cost of clean energy technology can inhibit

the participation of shipping enterprises in environmental

management of inland rivers. Thus, government will be required

to strengthen environmental oversight. The decision of shipping

enterprises to use clean energy is therefore closely related to

government management and control (Xiao et al., 2022).

The place of ship ownership is an important aspect of

understanding the source of carbon emission, which is related to

taxation through carbon emission trading. An analysis of CO2

emissions can be a proxy for the analysis of other pollutants. In

combining AIS data with ship data, we obtained the nationality and

registration of ships in Tianjin Port in 2018. Ships registered in

China, Hong Kong, and Liberia were responsible for the greatest

carbon emissions in the port, followed by ships registered in the

Marshall Islands and Singapore. Figure 9 shows the percentage

emissions by ships registration; detailed emission data and emission
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ranking of ships from different countries and regions are shown in

the Supplementary Materials. CO2 emissions from ships registered

in countries other than China were about 33.5% of the total, which

indicates that there is a need to reduce and control emissions from

both Chinese-registered ships and also foreign-registered ships.

Rehmatulla (2014) revealed that, on average, more than 50% of

the charter market in the dry bulk sector operates on a time charter

basis, where fuel costs are borne by the charterer. In contrast,

shipping companies that employ clean energy may receive

construction subsidies and carbon emissions trading subsidies

during the early stages of a ship’s service life. This assistance can

help offset the costs associated with energy procurement and

material transformation.Local governments are encouraged to

capitalize on investments in funds, technology, and human

resources. They ought to adopt strategies that attract more

investors to endorse clean energy-related projects and collaborate

with local ports and terminals to prioritize actions such as loading

and unloading clean-energy ships (Xu et al., 2021). Incorporating

the use of cleaner ships into credit limit considerations could

accelerate the market-driven strategy for cleaner ships (Liu et al.,

2019). In addition, authorities need to conscientiously address ships

that illicitly discharge pollutants.
3.3 Navigational status characteristics

Ship activity can be divided into five modes according to the

speed of the vessel: cruising, slow speed, maneuvering, anchoring

(at anchorage), and berthed.

The main engine of the ship provides power for ship navigation;

the propeller drives the ship by absorbing and dissipating the power

provided by the main engine. The main engine must be operating

while the ship is cruising, running at slow speed and maneuvering,

and in these modes of operation, carbon emissions are at a

maximum. Auxiliary engines provide electric energy for ships

during navigation. Since the research area we selected surrounds

the port, the average sailing speed of ships in the research area was

less than if we had selected ships at sea. Thus, in the research area,

compared to vessels at sea, the emissions of main engines are

proportionately reduced, and the emissions of auxiliary engines are

proportionately increased. Carbon emissions of auxiliary engines in

the research area accounted for about one-third of the total, and

were also the main source of ship carbon emissions. The boiler
FIGURE 9

Carbon emissions from ships by place of registration.
TABLE 1 Carbon emissions of ships under different operating conditions (t).

Operating
condition

Main
engine
emissions

Auxiliary
engine
emissions

Boiler
emissions

Total
emissions

Cruising 14 178.02 2020.09 0 16 198.1

Low speed
sailing

14 373.2 7826.53 0 22 199.73

Maneuvering 21.46 64.16 7.9 93.52

Mooring 46.21 216 065.39 66 162.31 282 273.91

Berthed 0.36 516 275.90 194 822.55 711 098.81
f
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operates mainly when the main engine is under low load and

provides heat energy for the normal operation of the ship. The

maximum load and emission factor of the boiler are both much less

than those of the main engine and the auxiliary engine, and the

carbon emissions of the boiler are generally less than those of the

main engine and auxiliary engine.

After track consolidation, there were 31 769 data points for ship

AIS data in Tianjin Port in 2018; 7161 were cruising, 23 337 were

sailing at low speed, 163 were maneuvering, 888 were at anchor and

219 were berthed. Ships at anchor in the Tianjin Port anchorage

numbered 20 343 and berthed ships numbered 45 377.

Table 1 shows the CO2 emissions of main engines, auxiliary

engines and boilers for different operating conditions.

The primary source of air pollution in coastal and riverside

ports is pollutant emissions from ships berthing at port. The high-

power diesel engines on these vessels need to operate continuously

to ensure the smooth functioning of onboard equipment and

support systems. In normal sailing, the boiler is off. When the

ship is cruising or sailing slowly, there is no load on the boiler. In

many cases, therefore, the predicted carbon emissions of the boiler

are 0. When the ship is cruising or sailing slowly, it is mostly in

channels. When the ship is maneuvering or berthed, the ship is

most likely in the anchorage or in a berth; the main engine ceases

operation, and carbon emissions are generated by the auxiliary

engine and boiler. A ship is berthed for about 70% of the total time

it is in harbor, and the carbon emission of a berthed ship is high.

When maneuvering, the ship is at low speed, and the sailing time is

short; pollutant emissions are the least. Being berthed therefore

drives pollutant emissions by contributing most of a ship’s total

pollutant output. The carbon emission rate near the harbor

anchorage and berths is significantly greater than the emission

rate of other pollutants.

The reduction of ship CO2 emissions can be accomplished

through operational measures, such as reducing speed, or technical

solutions like waste heat recovery (Wang et al., 2010). The cost-

effectiveness and CO2 reduction potential of each option

significantly vary depending on the vessel’s type, size, and age.

For instance, container ships, in contrast to oil tankers and bulk

carriers, possess a greater potential for reducing emissions via speed

reduction, as they are relatively slower vessels (Wang et al., 2010).

Experimental studies indicate that reduced sailing speed is a pivotal

measure in lowering CO2 emissions. A speed reduction of

approximately 30% in medium-sized containers can result in a

fuel consumption reduction of 55% (Cariou, 2011). For the effective

implementation of environmental protection and emission

reduction measures, governments can utilize various policies and

tools to motivate and negotiate with ports, and foster participation

in carbon reduction efforts from all parties. Meanwhile, the

reasonable development of environmental protection facilities

such as SP, which can enhance air quality by shutting down ship

diesel engines. This approach demands investments from both the

port and the ship, encompassing the construction of SP facilities at

the port and the upgrading of ship power facilities. Additionally, the

appropriate carbon pricing signal can achieve significant results

(Jiao and Wang, 2021).
Frontiers in Marine Science 14
3.4 Temporal fusion transformer
prediction model

Taking the Tianjin Port waterway as an example, the temporal

fusion transformer model with attention mechanisms was used

(Lim et al., 2021). We used the high-resolution CO2 emissions

inventory of all shipping lanes in Tianjin Port as the input to the

model to predict multi-horizon characteristics of carbon emissions

from ships in Tianjin Port. The input contained all time-varying

data and static metadata related to the target value. The equipment

ID in the emissions inventory was used as the static variable, while

the carbon emissions in each equipment of Tianjin Port in 2018

(with a granularity of day), year, month, day, week and day from the

commencement of the study were the time-varying variables. The

time series prediction model based on the attention mechanism was

used to explore the characteristic relationships between the input

variables and the target predictions (ship carbon emissions) to

generate the range of possible target values within each forecast

range. The input dataset contained emission data for 7 channels of

Tianjin Port in 2018. We took days as the time step, and there were

365 time steps in the dataset. A total of 2556 time series data records

were extracted and divided into a training set used for learning, with

a validation set used for hyperparameter optimization and a test set

used to assess the performance of the model according to the ratio

of 7:2:1. Hyperparameter optimization utilized random searching.

Due to the small dataset, 240 iterations were set. The epoch of each

iteration was 100. The full search range for all hyperparameters was:
Hidden Layer size: 10, 20, 40, 80, 160, 240, and 320;

Dropout rate: 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9;

Minibatch size: 64, 128, and 256;

Learning rate: 0.0001, 0.001, and 0.01;

Maximum gradient norm: 0.01, 1.0, and 100.0;

Number of heads: 1 and 4.
We used the data from the previous 30 days to predict ship

pollutant emissions for the next day. For model training and

hyperparameter optimization, TFT was assessed by jointly

minimizing quantile losses summed across all quantile outputs:

L(W,W) =oyt∈Woq∈Qotmax
t=1

QL(yt , ŷ (q, t − t , t), q)
Mtmax

(16)

QL(y, ŷ , q) = q(y − ŷ )+ + (1 − q)(ŷ − y)+ (17)

where W is the field containing the training data of M samples,

W is the weight of TFT, and Q is the set of output quantiles (Q =

{0.1, 0.5, 0.9} used in the experiment, and (.)+ = max(0,.). The results

of different parameters are different. The result show that the

parameter configuration with Hidden Layer size = 10, Dropout

rate = 0.3, Minibatch size = 128, Learning rate = 0.001, Max

gradient norm = 0.01, Number of heads = 4 was optimal, and the

loss value of validation set can reach about 0.14.

For the test set, the loss of normalized quantiles was assessed

across the entire forecast range, focusing on P50 and P90 risks:
frontiersin.org

https://doi.org/10.3389/fmars.2023.1174411
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2023.1174411
q − Risk =
2oyt∈~Wotmax

t=1QL(yt ,~y(q, t − t , t), q)

oyt∈~Wotmax
t=1 ytj j (18)

where W̃ is the domain of the test samples. Under optimal

parameter configuration, P50 and P90 of the test set were

approximately 0.244 and 0.118, achieving better results than the

experimental data set in the paper on the TFT model (Lim et al.,

2021). The predicted value of the test set and the carbon emissions

in the emissions inventory are shown in Figure 9.

To further investigate how model parameters affect prediction

performance, we conducted experiments on different network

configurations. The performance comparison of different

parameters is partially shown in Table 2.

Table 2 shows that the model’s performance varied greatly

under different parameters. For example, validation loss varied by as

much as 0.1 with dropout rate values of 0.9 and 0.3 and other values

being the same. When the learning rate was 0.0001 and 0.01, the

difference in the validation loss was about 0.11. Therefore, it is

necessary to find suitable hyperparameters for the model

through iterations.

In this paper, root mean square error (RMSE) and mean

absolute error (MAE) were used as evaluation indexes of the

model. RMSE is the standard deviation of the prediction error,

which represents the distance between the actual point and the

predicted regression line. It also represents the distribution of the

actual point around the predicted regression line, and the range is

[0,+∞]. The larger the error, the larger the RMSE. The calculation

formula is as follows.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(byi − yi)

2

r
(19)

The range of MAE is [0,+∞], and the larger the error, the larger

the MAE.
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MAE =
1
no

n
i=1 byi − yij j (20)

These methods are widely employed to assess the accuracy of

regression problems. For all indicators, the lower the value, the

better the performance. In order to visually display the differences

of model prediction performance of ship’s carbon emissions in each

channel of Tianjin Port, we draw the comparison chart of model

prediction performance of different channels under the optimal

parameter configuration, as shown in Figure 10.

Figure 11 indicates that RMSE and MAE values under Q = 0.5

are smaller than those underQ = 0.9. QuantileQ = 0.5 indicates that

there is a 50% chance that the true value will be lower than the

predicted value, whereas quantile Q = 0.9 indicates that there is a

90% chance that the true value will be lower than the predicted

value. Therefore, the predicted value under Q = 0.9 is higher than

the real value and the predicted value under Q = 0.5, and the

obtained RMSE and MAE values are also higher.
4 Discussion

Ship exhaust emissions are a primary source of air pollution in port

cities. However, adopting clean energy technologies makes a ship an

important protector of the inland river environment, but the extra cost

of clean energy use is a barrier to its adoption by shipping enterprises.

This barrier can be targeted by strict government control and policies

of other relevant authorities. We used ship AIS data and Lloyd’s

registry data and applied big data technologies such as data cleaning,

trajectory integration, data fusion to preprocess the data to eliminate

duplicate or incorrect data. We then fitted and completed missing ship

information using interpolation and extrapolation to ensure high-

quality accurate AIS data. The subsequent avoidance of data quality

problems improved calculation results. We incorporated geographical
TABLE 2 The performance of different model parameters.

Validation loss Dropout rate Hidden layer size Learning rate Max gradient norm Minibatch size Number of heads

0.244 0.9 10 0.001 0.01 128 4

0.146 0.3 10 0.001 0.01 128 4

0.277 0.7 10 0.0001 1 64 4

0.168 0.7 10 0.01 1 64 4

0.160 0.5 10 0.01 100 64 4

0.175 0.5 240 0.01 100 64 4

0.195 0.5 80 0.01 0.01 128 4

0.223 0.5 160 0.01 0.01 128 4

0.173 0.3 80 0.01 0.01 64 1

0.164 0.3 80 0.01 0.01 64 4

0.178 0.9 240 0.001 1 64 1

0.216 0.9 240 0.001 1 64 4

0.243 0.1 240 0.01 100 256 1

0.194 0.1 240 0.01 100 256 4
frontiersin.org

https://doi.org/10.3389/fmars.2023.1174411
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2023.1174411
information for Tianjin Port and dynamically calculated carbon

emissions of the main engines, auxiliary engines, and boilers of ships

in each channel, in berths and at anchor in Tianjin Port to create a

high-resolution carbon emissions inventory of ships. We were then

able to precisely trace and analyze individual ship emissions and to

relate them to ship registration and vessel type. We also analyzed ship

emissions from various perspectives such as space, time, ship sailing

state, and emission source components. The temporal fusion

transformer, a temporal prediction model based on attention

mechanisms, was used to predict multi-horizon pollutant emissions

of ships in Tianjin Port using high-resolution temporal ship emission

data and to determine the relationships between ship operational

characteristics, pollution-generating shipboard equipment, and ship

carbon emissions. This study therefore provides powerful data support

and theoretical reference for relevant authorities to create targeted

emission reduction policies.
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We used ship emission data for Tianjin Port in 2018 as an

example of using the emission prediction model we employed. Time

series data collected over the preceding 30 days were used to predict

ship pollutant emissions for subsequent days. This high-resolution

multi-feature prediction of ship carbon emissions provides

pollution data that can be used as a baseline for port

environmental management as it forecasts time, emission sources

and emission quantities, thus making it possible for planners to

respond proactively to anticipated pollution.

Sources of carbon emissions in the waterways around Tianjin

Port were mainly in the vicinity of Tianjin Port, the Dagusha

waterway and the main Xingang waterway. Carbon emissions

peaked in July. However, in 2018, due to the fishing ban in Bohai

Bay, China–United States trade disputes, and winter sea ice

conditions, carbon emissions from ships in the area around

Tianjin were less in some months than in other months. The

government and other relevant authorities must adjust available

human resources and regulatory efforts in time to respond to the

high emissions in July–October and to prepare for the lifting of the

fishing ban and the period of winter sea ice.

Except for ships registered to mainland China, ships registered

to Hong Kong and Liberia produced most carbon emissions. This

indicates that in addition to the management of China-registered

vessels, control of foreign vessel emissions is necessary. Ships that

illegally discharge pollutants must be dealt with seriously, but

shipping companies that use clean energy can be provided with

construction subsidies and carbon emission trading subsidies in the

early stages of a ship’s service life to offset the cost of energy

procurement and material transformation.

We analyzed pollution in terms of ship type. Dry bulk carriers

produced the greatest percentage of emissions, and of other types,

container ships and dry bulk carriers produced greater percentages of

total pollutants than others. Tianjin Port is an international port with

comprehensive cargo facilities. It has formed a cargo handling structure

with containers, crude oil and related products, ore, and coal as the four

pillars, and steel and grain as key cargoes. It is one of the largest

comprehensive ports in the Bohai Rim region. Local governments
FIGURE 11

Comparison of model performance in different channels.
A B

FIGURE 10

Prediction performance. (A) Q = 0.5; (B) Q = 0.9.
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should take advantage of the investment in capital, technology and

human resources and introduce initiatives to attract more investors to

promote clean energy-related projects and reach agreements with local

ports and docks to prioritize the loading and unloading of clean energy

ships, among other measures, to engage all parties (Xu et al., 2021).

Analysis of the operating state of vessels showed that carbon

emissions were the greatest when a ship was berthed or waiting for a

berth. Carbon emissions were the least when a ship was

maneuvering, sailing slowly, or cruising. A ship at anchor emitted

more carbon than greater than when the ship was underway. Port

authorities and dock managers could optimize loading and

unloading plans to reduce unnecessary emissions.

The application of a deep learning model to predicting

ship pollutant emissions provides a new technique for use in

emission reduction, but there remain directions for improvement in

this research work. Follow-up research will continue to

focus on improving the model by increasing prediction accuracy and

broadening the scope of the model to provide better data for port

authorities to develop proactive emission reduction policies.
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