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Bioremediation of
propylbenzenes by a novel
marine microalga Rhinomonas
reticulata S6A isolated from
Daya Bay: acute toxicity,
growth kinetics and
biodegradation performance

Shuhao Du1,2†, Jiali Cui1,2†, Fanping Meng1,2*, Haiping Li1,2,
Hongwu Cui1,3 and Yufan Xia1,2

1Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of
China, Qingdao, Shandong, China, 2College of Environmental Science and Engineering, Ocean
University of China, Qingdao, Shandong, China, 3Yellow Sea Fisheries Research Institute, Chinese
Academy of Fishery Sciences, Qingdao, Shandong, China
This study investigated the degradation characteristics of propylbenzenes (PBZs,

including isopropylbenzene and n-propylbenzene), with high leakage risks and

ecological hazards, by a newly isolated marine microalga named Rhinomonas

reticulata S6A which is a promising candidate for eco-friendly bioremediation

from marine. About 72% and 56% of n-PBZ and i-PBZ can be degraded after 7

days in culture. The acute toxicity of n-PBZ (96h - EC50 = 2.38 mg/L) was higher

than that of i-PBZ (96h - EC50 = 3.65 mg/L). The growth inhibition kinetics of this

strain were consistent with the Edwards model (R2 = 0.998) and Aiba model

(R2 = 0.999). The optimal concentrations for the degradation of n-PBZ and i-PBZ

were calculated to be 2.42 mg/L and 2.78 mg/L, respectively. The degradation

trends of PBZs conformed to the zero-order kinetic model, and k increased with

initial concentrations. The moderate increase in inoculation density could

accelerate the degradation of PBZs, with the maximum specific growth rates

(r) of 1.116/d (n-PBZ) and 1.230/d (i-PBZ) at the initial inoculation density of 104

cells/mL, while over-inoculation (initial microalgae density more than 105 cells/

mL) was not conducive to the degradation of the pollutants. There is not much

data on the biodegradation of PBZs in the aquatic environment, so it would be

worthwhile to try to apply the new microalgae to explore the fate of PBZs.
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1 Introduction

Approximately 90% of transport mode for global trade is ocean

shipping, and maritime trade volumes are set to triple by 2050

(Organisation for Economic Co-operation and Development

(OECD), 2022). According to International Oil Pollution

Compensat ion Funds (IOPC Funds) , the carr iage of

propylbenzenes (PBZs) by sea belongs to Hazardous Noxious

Substances (HNS) (International Oil Pollution Compensation

Funds (IOPC Funds), 2019). Propylbenzenes have two isomers,

n-propylbenzene (n-PBZ) and isopropylbenzene (i-PBZ; cumene).

n-PBZ is a typical alkylbenzene that has been widely used as a

substitute component of jet fuel and diesel oil due to its moderate

molecular weight and chain length, and even electric outboard

motors discharge sewage containing n-PBZ directly into the sea

(Yuan et al., 2017; Peng et al., 2021). i-PBZ, a pivotal organic

chemical raw material, is necessary for the production of phenol

and acetone (Gollapudi et al., 2021). In particular, the typical

composition of C9 aromatics, which are produced during the

catalytic reforming of petroleum feedstocks and the cracking

process used to produce ethylene (Li et al., 2021a), includes n-

PBZ, i-PBZ, 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene, 1,2,3-

trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene,

and indene (Firth, 2008). Unfortunately, on November 4, 2018, 69.1

tons of industrially cracked C9 aromatics leaked in Quangang

District, Fujian Province. As a result, about 5.5 tons of n-PBZ

and 4.8 tons of i-PBZ entered the sea, paralyzing the nearby

Xiaocuo breeding area and causing sea economic losses (Li

et al., 2021a).

According to the European System of Behavioral Classification

(“SEBC” classification) documented in the Bonn Agreement

(Neuparth et al., 2011), the physical behavior of n-PBZ/i-PBZ

after entering the sea falls into the category of “floating

volatilization” based on its form (colorless oily liquid), solubility

(38.6/58.5 mg/L seawater), density (0.86) and saturation vapor

pressure (20°C: 0.33/0.43 kPa) (Peng et al., 2021). Based on the

predicted values of bioconcentration factor (BCF) (n-PBZ-375; i-

PBZ-356), PBZs has a moderate potential (Franke et al., 1994) for

accumulation in aquatic organisms and researchers have also

detected n-PBZ and i-PBZ in Anguilla, a widely distributed

freshwater fish (Roose and Brinkman, 1998; Roose et al., 2003).

However, the BCF test values for n-PBZ and i-PBZ were 38 and 36

based on the test organisms Carassius auratus (Donkin et al., 1989)

and Mytilus edulis (Ogata et al., 1984), respectively. In summary,

aquatic organisms showed a low to moderate accumulation capacity

for PBZs. Although marine biotoxicity data available for PBZs are

insufficient to date, the most sensitive species to n-PBZ and i-PBZ

were found to be Skeletonema costatum (96 h-EC50 = 1.97 mg/L)

(Peng, 2020) and Mysidopsis bahia (96 h-LC50 = 1.3 mg/L) (Peng

et al., 2021), respectively. The most tolerant species was Dunaliella

salina, with low 96 h-EC50 values of 8.91 mg/L (n-PBZ) and 14.13

mg/L (i-PBZ) (Peng, 2020). Based on the acute toxicity classification

of the Group of Experts on the Scientific Aspects of Marine

Environmental Protection (GESAMP) (Wells et al., 2002), both

PBZs were “moderate toxic” to many marine organisms, such as

Cyprinodon variegatus (Glickman et al., 1995), Phaeodactylum
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tricornutum (Peng, 2020) and Skeletonema costatum (Peng, 2020).

Furthermore, the feeding rate ofMytilus edulis was reduced by 50%

after 16 h of contamination with n-PBZ (0.86 mg/L) (Donkin

et al., 1989).

Due to their wide application and large transportation quota,

PBZs are high-risk chemicals that are prone to leakage in marine

accidents. In the emergency response strategy for hazardous

chemical leakage at sea, the physical method is inefficient, costly,

and incomplete, and the chemical method is likely to cause

secondary pollution (Duan et al., 2020). In order to avoid marine

persistent ecological pollution caused by water-soluble fraction

(WAF), bioremediation has become an eco-friendly strategy for

emergency response to marine spills. Consistently, Kao and Prosser

(2001), proposed that biodegradation is more suitable for the

removal of single-ring aromatic hydrocarbons. Studies have

indicated that microalgae acclimated to contaminants showed

enhanced photosynthesis, growth rates, metabolic functions and/

or other cellular processes (Osundeko et al., 2014; Cho et al., 2016;

Rocha et al., 2018). In addition, microalgae can metabolize in three

modes: autotrophic, heterotrophic and mixed, depending on the

carbon sources available in seawater (Sutherland and Ralph, 2019).

Alternatively, microalgae can utilize some organics as carbon

nutrients, and these organics are metabolized into less toxic

substances or be mineralized. It boils down to the fact that the

extracellular or intracellular enzymes secreted by microalgae can

convert and degrade organic pollutants into small molecular

organic substances that can be further absorbed and utilized (Li

et al., 2021b). This mechanism of microalgae metabolism provides

advantages over that of bacteria and fungi. On the one hand,

microalgae induce indirect photodegradation in addition to the

direct secretion of enzymes that can oxidize pollutants as part of

their degradation mechanism (Zhang et al., 2012; Tian et al., 2019).

Algae-induced indirect photodegradation of organic matter is

depends on the active oxidizing agents (e.g., hydroxyl radicals

(·OH), singlet oxygen (1O2), superoxide (O2·
−), hydrogen

peroxide (H2O2), peroxyl radicals (·OOR)) generated by

photosensitizers, especially photosynthetic pigments, which are

rarely produced by bacteria (Wei et al., 2021). On the other hand,

both bacteria and fungi produce their respective toxic substances,

endotoxin, and mycotoxin, which make these microbes biological

pollutants, whereas neither endotoxin nor mycotoxin is found in

microalgae (Koh and Khor, 2023). For instance, microalgae are

more flexible and can adapt well to the change of living conditions

(Xiong et al., 2018), which was the main impetus for studying HNS

remediation by microalgae in seawater.

Three mechanisms are involved in the bioremediation of

organic pollutants, including biosorption, bioaccumulation, and

biodegradation. Biosorption or bioaccumulation can only transfer

contaminants and not remove them completely (Homem and

Santos, 2011). Several reports indicate that biodegradation plays

an important role in the removal of PBZs from the environment.

Marine bacteria isolated from Atlantic sediments were able to

degrade 37-60% of i-PBZ after 21 d (Walker et al., 1976); in situ

biodegradation tests at the North Bay site showed that i-PBZ was

completely degraded within 50 d (Acton and Barker, 1992). The

bacteria Pseudomonas putida RE204 and Pseudomonas fluorescen
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IP01 can degrade i-PBZ via meta-cleavage of the aromatic ring and

oxidize the side chain to isobutyric acid and 2-oxo-4-pentenoic acid

(Aoki et al., 1996; Habe et al., 1996; Eriksson et al., 2005). A soil-

derived bacterial community converts i-PBZ to several different

metabolites such as acetaldehyde and 4-hydroxy-2-oxovaleric acid

(Shahi et al., 2016). Eriksson et al. (2005) studied the anaerobic

biodegradation of n-PBZ under iron-reducing conditions and n-

PBZ was reduced to propylphenols over 18 weeks. Recently

published data showed that the bacterium Pseudomonas

frederiksbergensis SI8 was able to partially degrade Jet A

commercial aviation fuel (16.8% n-PBZ) within 14 d (Ruiz et al.,

2021). In particular, their biodegradation products (e.g. 1-

phenylpropanol and 3-isopropyleatechol) have been detected

(Peng et al., 2021). It is plausible to suggest that, for some

microalgae, their tolerance increases in response to chronic

exposure due to the induction of enzymatic pathways to

counteract the toxic effects (Chen et al., 2015; Xiong et al.,

2017a). Therefore, it is necessary to specifically screen native

microorganisms in specific samples of polluted seawater (such as

the coast of industrial parks or the sea area of oil spill accidents)

(Sakulthaew et al., 2014; Herrero and Stuckey, 2015). Accordingly,

in this study, the 28 stations were set up in the three sea areas near

China, with the coasts corresponding to different ports, industrial

bases, or inland river estuaries (Figure 1, Table S1), to screen for

candidate species. The ecological environment of Daya Bay, a semi-

enclosed shallow bay located in the northern part of the South

China Sea, has been significantly affected by human activities (Yu

et al., 2022). The eastern part of the Daya Bay petrochemical base

releases organics into the surrounding environment throughout the

year, thereby improving the tolerance of organisms in the nearby

sea area to pollutants (Wu et al., 2010). Compared with the seawater
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samples collected from other areas, the seawater at Daya Bay station

has a better ability to degrade PBZs (Table S2). Both PBZs were not

effectively degraded by enriched samples from sites not listed in

Table S2. An axenic microalga named Rhinomonas reticulata S6A

was isolated from the seawater sample of Daya Bay, which could

transform and further degrade both n-PBZ and i-PBZ in seawater.

In this study, the degradation characteristics and acute toxicity of

PBZs to R. reticulata S6A were clarified. In addition, a reasonable

initial inoculation density of R. reticulata S6A was proposed to

provide a theoretical basis for the practical bioremediation strategy.
2 Materials and method

2.1 Chemicals

The samples of the 28 stations used to screen microalgae come

from three sea areas near China (Figure 1, Table S1). F/2 medium

(Guillard, 1975) were used in this study for culturing, and the

composition was as follows (/L): NaNO3, 75 mg; Na2HPO4·H2O, 5

mg; EDTANa2, 4.36 mg; a solution of trace elements (ZnSO4·4H2O,

0.023 g/L; CoCl2·6H2O, 0.012 g/L; FeCl3·6H2O, 3.2 g/L;

MnC l 2 · 4H 2O , 0 . 1 78 g /L ; CuSO4 · 5H2O , 0 . 0 1 0 g /L ;

Na2MoO4·2H2O, 0.006 g/L), 1 mL; and a solution of vitamins

(Vitamin B12, 0.0005 g/L; Vitamin B1, 0.100 g/L; biotin, 0.0005 g/

L) 1 mL. NaHCO3 (250 mg/L) was added to provide inorganic

carbon source in closed cultivation system. n-PBZ, i-PBZ and 1-

chloronaphthalene with a purity higher than 99% were purchased

from Tokyo Chemical Industry Co., Ltd (Shanghai, China).

Dichloromethane (chromatographic grade) was purchased from

Merck Co., Ltd. (Yantai, China). Biochemical reagents mixed
FIGURE 1

Stations in Daya Bay, Shandong Peninsula and Quangang. The red circle symbol indicates the source locality of R. reticulata S6A.
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antibiotics (Penicillin- Streptomycin-Amphotericin B Solution) and

agar powder were purchased from Beijing Solarbio Science &

Technology Co., Ltd (Beijing, China). Other reagents were of

analytical grade and were purchased from Sinopharm Chemical

Reagent Co., Ltd (Shanghai, China).
2.2 Screening and isolation of microalgae

Fresh seawater samples without any treatment were added to a

sealed Erlenmeyer flask containing F/2 medium, n-PBZ/i-PBZ (20

mg/L, 0.22-mm filtered) and antibiotics for the first directional

culture. The natural seawater (salinity 31, pH 7.90 ± 0.02) used

for the next enrichment culture was taken from the coastal waters of

Shazikou, Qingdao, filtered for impurities with a 0.45 mm cellulose

acetate filter, and sterilized at high temperature (121°C) for 20

minutes. The antibiotics used in this study were a mixture of

penicillin (100 U/mL), streptomycin (0.1 mg/mL) and

amphotericin B (0.25 mg/mL). The culture was maintained in a

shaker incubator at 100 rpm with a photoperiod of 14-h light/10-h

dark under a fluorescent light at an intensity of 60 mmol photons/

(m2·s) at 25°C. The same three sets of experiments as above were

repeated. Next, the residual concentration of n-PBZ/i-PBZ in the

culture medium of each station was determined on day seven (Table

S2). The culture solution of the station S6 (from Daya Bay,

Guangdong, China: 114.67354E, 22.75070N) with the highest

degradation rate (n-PBZ: 28.6%; i-PBZ: 24.3%) of both PBZs was

selected for isolation of pure algae, and then separated by the

dilution and streak plate method.
2.3 Identification of microalgae

Optical microscope (OM) (YS2-H, Nikon, Japan) and scanning

electron microscope (SEM) (VEGA3, TESCAN China, Ltd.) were

used to observe the size and surface morphology of isolated

microalgae. 18S rRNA was sequenced by a commercial service

(Tsingke Biotechnology Co., Ltd., Qingdao, China) to perform

molecular identification. The 18S rRNA region was amplified by

polymerase chain reaction (PCR) with forward primer ITS1 (5’-

TCCGTAGGTGAACCTGCGG-3’) and reverse primer ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’). The ClustalW and MEGA 5.0

software suites were used for alignment and phylogenetic

analysis, respectively.
2.4 The biodegradation of by
isolated microalgae

The pure microalgae were pre-cultured in Erlenmeyer flasks

with sterile F/2 medium under the same culture conditions as

described in section 2.2. Biodegradation experiments were

performed in 50-mL glass sample bottles (sealed with Teflon®-

lined screw caps) containing 10 mL of F/2 medium with isolated

microalgae (104 cells/mL) in exponential phase. A total of five

treatments: 0.5, 1, 5, 10, 20 mg/L (dissolved in dimethyl sulfoxide,
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DMSO) with 30 replicates per treatment were used. The incubation

culture was shaken continuously at 100 rpm in an incubator at 25°C

for seven days under the same conditions as the preculture.

Sterilized control experiments (without microalgae) were

performed to calculate the losses due to abiotic effects. Samples

were then taken daily to determine cell density and n-PBZ residue

(in triplicate). The biodegradation of i-PBZ was the same as that of

n-PBZ except for the organic compound.
2.5 Degradation kinetics of PBZs by
Rhinomonas reticulata S6A

Degradation kinetics has been widely applied to the removal

process of organic compounds due to its good applicability and

fitting effect (Kureel et al., 2017; Carvajal et al., 2018; Li et al.,

2021b). Therefore, the zero-order (Eq. (1)), first-order (Eq. (2)) and

pseudo-first-order (Eq. (3)) kinetic equations were used to elucidate

the degradation kinetics of n-PBZ/i-PBZ removal in this study. The

model equations were analyzed using Origin 2021 (OriginLab,

USA).

St = S0 − kt (1)

St = S0 − S0 � e−kt (2)

St = S0 � e−kt (3)

where S0 was the initial concentration of n-PBZ/i-PBZ (mg/L);

and St represented the concentration of n-PBZ/i-PBZ (mg/L) at

time t; and k was the rate constant (/d) in the zero-order, first-order

and pseudo-first-order reactions.

According to the model fitting results, the degradation of n-PBZ

over time was fitted by the zero-order kinetic equation, and the half-

life (t1/2) can be calculated using Eq. (4):

t1=2 = S0=2k (4)

There is a lag phase in the degradation of i-PBZ by R. reticulata

S6A, so the degradation data in the lag phase were not included in

the kinetic fitting. Therefore, the true degradation time (DT50) of i-

PBZ can be considered as the sum of the t1/2 calculated from Eq. (4)

and the lag phase time (tlag) (Birch et al., 2017):

DT50 = t1=2 + tlag (5)
2.6 Growth inhibition kinetics

Six common growth inhibition kinetic models were used to

characterize the growth process of microalgae exposed to PBZs. The

Monod model is the most commonly used model to evaluate the

specific growth rate of microorganisms in biodegradation (Jegan

et al., 2010):

m =
mmax

Ks + S
(6)
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where, m is the specific growth rate (/d), mmax is the maximum

specific growth rate (/d), KS represents a substrate affinity constant

(mg/L), and S is the substrate concentration (mg/L).

The Haldane-Andrews model (Andrews, 1968) is one of the

most widely used models. The expression is as follows:

m =
mmaxS

Ks + S + S2
Ki

(7)

where, Ki is the inhibition constant (mg/L).

Webb (1963) developed a kinetic model that takes into account

enzyme kinetics and allosteric effects. The equation is given by the

following:

m =
mmaxS(1 +

S
K )

Ks + S + S2
Ki

(8)

where, K (mg/L) is a positive constant.

Yano et al. (1966) proposed a growth model based on the

inhibitory behaviour of microorganisms at high substrate

concentrations:

m =
mmaxS

Ks + S + S
Ki
+ S3K

Ki

(9)

Aiba et al. (1968) proposed an improved version of the Monod

model, which relied on an empirical correlation:

m =
mmaxS
S + Ks

exp(
−S
Ki

) (10)

Edwards (1970) proposed another model with which to predict

the inhibitory effect at higher substrate concentrations. The

equation is as follows:

m = mmax exp
−S
Ki

� �
− exp

−S
KS

� �� �
(11)

In this study, Origin 2021 (OriginLab, USA) was used to fit the

experimental data using a non-linear regression method.
2.7 Effects of inoculation densities on
PBZs removal

Under aseptic conditions, degradation batch experiments were

performed in 50-mL glass sample bottles with 10 mL F/2 medium

containing 5 mg/L n-PBZ (or i-PBZ). Five gradients were used to

study the effect of inoculation density: 103, 104, 5×104, 105, 3×105

cells/mL, with 30 replicates per treatment were used. The culture

conditions were the same as those described in section 2.4. The cell

density of microalgae and the residual concentration of n-PBZ (or i-

PBZ) were measured at 24 h intervals (three replicates for cell

density and three replicates for n-PBZ/i-PBZ concentration).
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2.8 Analytical methods

2.8.1 Determination of microalgae cell density
One milliliter of algal solution was filtered through a 300-mm

bolting-silk and mixed well. Then, Accuri C6 Plus flow cytometer

(BD, USA) was used to count and calculate the algal cell density (D,

cells/mL). The calculation formula is as follows:

D = N=Vi � Vm (12)

where N, Vi and Vm represent the number of living microalgae

displayed on the cytometer (cells), the injection volume (0.05 mL)

and unit volume, respectively.

The concentrations leading to a 50% growth inhibition at 72 or

96 h (72/96 h-EC50) were calculated by probit analysis (Finney,

1947). The concentration obtained at 5.0 of the probits was the

EC50 value.

2.8.2 Determination of fluorescence intensity
According to Chen et al. (2022) and Oukarroum et al. (2018),

the fluorescence intensity (RFU) of parameters PerCP and PE in

flow cytometry was used to characterize the photosynthesis

performance and phycoerythrin content on day 7.

2.8.3 Calculation of specific growth rate
The specific growth rate (m) was calculated for microalgae

according to the following expression:

m =
ln N2 − ln N1

t2 − t1
(13)

where N1 and N2 represent the cell densities of microalgae

(cells/mL) at times t1 and t2, respectively.

2.8.4 Determination of the concentration of PBZs
For extraction, 5 mL of dichloromethane containing 5 mg/L of

1-chloronaphthalene was added to the bottle and mixed for 5 min,

after which the concentration of PBZs in the methylene chloride

layer was quantified by GC-MS using an Agilent 6890 gas

chromatograph (HP-5MS column, 30 m × 0.25 mm i.d. × 0.25-

mm film thickness) coupled to an Agilent 5975 mass spectrometer.

The column was held at 100 °C for the first 1 min, increased to 150°

C at 25°C/min, and to 200°C at 30°C/min, and the final temperature

was held for 1 minute. The inlet and transfer line temperatures were

set to 230°C and 280°C, respectively. The selected ion monitoring

(SIM) mode was set for data acquisition and analysis.

2.8.5 Removal rate of PBZs
The removal rate (R) of PBZs is calculated according to the

following expression:

R =
C0 − Ct

C0

� 100% (14)
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where, Ct and C0 represent the concentrations of n-PBZ/i-PBZ

(mg/L) at t and initial time.
2.9 Statistical analysis

Means and standard deviations of the results were calculated

using three replicates of parallel experiments for each measurement.

The significance of any differences between the treatment and

control groups was evaluated by analysis of Games-Howell’s

(heteroscedasticity) or Tukey’s (homogeneity) statistics in SPSS

19.0 (SPSS Co., USA) and differences were considered statistically

significant when P< 0.05.
3 Results and discussions

3.1 Isolation and identification of
Rhinomonas reticulata S6A

After alignment with other 18S rRNA sequences in GenBank,

the similarity between the strain that we isolated from Daya Bay and

Rhinomonas reticulata CCAP 979/15 Clone D (GenBank ID

HF952563.1) (Figure 2E) was greater than 99%, therefore, the

isolated microalgae strain was identified as a strain of

Rhinomonas reticulata species and named Rhinomonas reticulata

S6A. The 18s rRNA sequence has been submitted to the GenBank

database under accession number OQ087126. The ecological

environment of Daya Bay, a semi-enclosed shallow bay located in

the northern part of the South China Sea, has been significantly

affected by human activities (Yu et al., 2022). The eastern part of the

Daya Bay petrochemical base releases organics into the surrounding

environment throughout the year, thereby improving the tolerance

of organisms in the nearby sea area to pollutants (Wu et al., 2010).

The Daya Bay Nuclear Power Plant (DNPP) and Lingao Nuclear

Power Plant (LNPP) on the northwest coast will discharge hot waste

water at a rate of 315 m3/s during operation (Hu et al., 2023), which

directly affects the carbon cycle in the nearby marine area and

promotes the heterotrophic growth of organisms. Marine

aquaculture industry is an important industry in Dapeng town

and Nan’ao (two towns in the western coastal area), so the

spreading of fertilizers on farmland has increased the

concentration of inorganic nitrogen and organic pesticides in

Daya Bay to increase (Wu and Wang, 2007). Water quality was

particularly poor in summer, as the mean concentration of BOD5

was higher in summer than in other seasons (Wu et al., 2010),

suggesting a high load of dissolved organic matter added from land-

based resources, such as domestic wastewater, agricultural-related

activities and industrial effluents (Wu et al., 2009). Thus, the

uncoordinated nutrient structure and complex polluted

environment like this may induce the stress tolerance of microbes

enhanced (Han et al., 2022; Zhang et al., 2022), which in turn may

harvest candidate organisms with biodegradable potential.

Surface images of R. reticulata S6A were clearly observed by

SEM (Figures 2B–D): the strain was elliptical, with a length of 10.0-

17.2 mm and a width of 4.4-8.8 mm, and two isometric flagella
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protruded from the oral groove, each with a length of 4.4-9.4 mm as

reported (Won et al., 2013; Lubiana, 2018). Hexagonal plates were

regular hexagons with a side length of 0.4 mm and some fibrils on

the surface. R. reticulata S6A, belonging to Cryptophyta,

Cryptophyceae, Pyrenomonadaceae, Rhinomonas sp., was

observed to have strong motility under the OM (Figure 2A).

Moreover, cryptophytes have strong adaptability, and can even

become dominant populations in harsh environments (Xu et al.,

2019), which can tolerate and even remove various pollutants.

Compared with bacteria and fungi, algal-based biodegradation

processes can realize the conversion of usable biomass and reduce

CO2 emissions (Abdel-Shafy and Mansour, 2016). So far, varieties

of microalgae have been used for the biodegradation of monocyclic

aromatic hydrocarbons in seawater. For example, Phaeocystis

globosa, Nannochloropsis oculata , Dunaliella salina and

Platymonas subcordiformis can degrade nonylphenol (Wang et al.,

2019a), and Isochrysis galbana can degrade phenol in seawater (Li

et al., 2021b). In this study, R. reticulata S6A with the ability to

degrade n-PBZ and i-PBZ was identified, providing an efficient and

eco-friendly strategy for the removal of pollutants in seawater.

Rhinomonas contains the water-soluble pigment Cr-

phycoerythrin 545 (PE) that is highly valuable (30-150 $/mg)

depending on the application (Majaneva et al., 2014; Latsos et al.,

2021). Rhinomonas contains the water-soluble pigment Cr-

phycoerythrin 545 (PE) that is highly valuable (30-150 $/mg)

depending on the application (Majaneva et al., 2014; Latsos

et al., 2021).
3.2 The growth inhibition of R. reticulata
S6A by PBZs

The changes in cell density for R. reticulata S6A after exposure

to n-PBZ or i-PBZ are shown in Figure 3. The growth of R.

reticulata was significantly inhibited (P< 0.05) except for the

treatments with the lowest PBZs concentrations (0.5 mg/L) on

day 7. For both PBZs, there was little difference between the 0.5 mg/

L group and the control after 7 days of exposure. However, the

growth lag phase of the treatments of 1 mg/L, 5mg/L and 10mg/L

were at least three days, and even, the growth inhibition rate more

than 90% (P< 0.05) under the maximum concentration (20 mg/L)

exposure. For i-PBZ, only the 10 mg/L and 20 mg/L treatments were

significantly inhibited (P< 0.05) at the end of the test. The EC50

values of R. reticulata S6A exposed to n-PBZ and i-PBZ for 72 h and

96 h, respectively, are calculated in Table 1, where the acute toxicity

values of other microalgae are also listed. Even though PBZs have

similar toxicity levels due to isomerism, it seems that i-PBZ was less

toxic than n-PBZ to an organism, and the EC50 value of i-PBZ was

1.44~2.11 times that of n-PBZ. On the one hand, the moderated

toxic effects of monocyclic aromatics may be attributed to

substituents possessing branched rather than straight chains

(Mehta et al., 2002). On the other hand, the high toxicity of n-

PBZ to microalgae may be closely related to the higher log KOW

than that of i-PBZ (Peng et al., 2021). The n-octanol/water partition

coefficient (KOW) is one of the important properties of organic

compounds, and log KOW is commonly used to characterize the
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lipophilicity of compounds, that is, the higher the log KOW value,

the better the bioaccumulation ability of organics in organisms

(Duan et al., 2017). As such, it is easy to penetrate the biofilm and

bind to the active site in the cell, causing physical damage and

toxicity to microalgae (Lu et al., 2001). Also, the larger specific

surface area of microalgae makes it easier to adsorb organic matter

compared to other plankton. An early report recorded that i-PBZ

(18h-LC50 = 0.012 mg/L) was four orders of magnitude more toxic
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to Colpidium colpoda than n-PBZ (18h-LC50 = 33.05 mg/L), which

could be associated with i-PBZ degradation products produced by

bacteria (Rogerson et al., 1983). The transformation process of i-

PBZ by bacteria is dioxygenated and the products are more toxic

than the phenols obtained from n-PBZ oxidized by

monooxygenation (Peng et al., 2021). For example, i-PBZ is more

easily oxidized to a hydroperoxide than n-PBZ, which may be very

toxic in itself, or to a phenol (Rogerson et al., 1983), 3-
FIGURE 2

OM (A), SEM (B–D) images and the neighbor joining phylogenetic tree (E) based on the 18S rRNA sequences of R. reticulata S6A.
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isopropylcatechol and 3-methylcatechol have been reported as

products of cumene degraded by Pseudomonas putida RE204

(Eaton et al., 1998). Of these, 3-isopropylcatechol were classified

as chronically harmful to fish and green algae (Sun et al., 2019).

As the cultivation time progressed, the microalgae began to

recover from the stress induced by PBZs, resulting in an increase in

the EC50 value in the exponential phase of R. reticulata S6A

(Table 1). The increase in EC50 values clearly indicated the

decrease in toxicity of PBZs, and the degradation products were

non-toxic and/or less toxic than the parent compound. Xiong et al.

(2017b) also reported similar observations of an increase in the

EC50 values of the emerging contaminant, ciprofloxacin, with an
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increase in cultivation time. Li et al. (2021a) found that the overall

toxicity (in terms of the inhibition rate of luminescence) of PBZs

gradually decreased during natural attenuation in seawater, it would

take at least 25 days for a complete reduction in toxicity to reach 0%,

while this timeline could be accelerated by R. reticulata S6A.

To describe the kinetics of growth inhibition of S6A by PBZs,

toxicant concentrations were chosen to be 0.5, 1, 5, 10 and 20 mg/L,

and the number of microalgae inoculated was 104 cells/mL. Since

the other initial culture conditions were consistent, the

concentrations of toxicants were considered as a single substrate

factor. The substrate inhibition of microbial growth may be

competitive or non-competitive. The Haldane-Andrews, Webb,
TABLE 1 Acute toxicity of n-PBZ and i-PBZ to microalgae based on literature.

Pollutants Microalgae* EC50 (mg/L) Toxicity grade # Reference

n-PBZ Pseudokirchneriella subcapitata (FW)
Scenedesmus quadricauda (FW)
Phaeodactylum tricornutum (SW)
Skeletonema costatum (SW)
Dunaliella salina (SW)
Platymonas subcordiformis (SW)
R. reticulata S6A (SW)
R. reticulata S6A (SW)

1.8 (72 h)
2.4 (96 h)
3.51 (96 h)
1.97 (96 h)
8.91 (96 h)
5.03 (96 h)
1.23 (72 h) a

2.38 (96 h) b

Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic

(Galassi et al., 1988)
(Di Marzio and Saenz, 2006)
(Peng, 2020)
(Peng, 2020)
(Peng, 2020)
(Peng, 2020)
This study
This study

i-PBZ Pseudokirchneriella subcapitata (FW)
Scenedesmus subspicatus (FW)
Scenedesmus quadricauda (FW)
Phaeodactylum tricornutum (SW)
Skeletonema costatum (SW)
Dunaliella salina (SW)
Platymonas subcordiformis (SW)
R. reticulata S6A (SW)
R. reticulata S6A (SW)

2.6 (72 h)
2.0 (72 h)
2.4 (96 h)
5.88 (96 h)
3.50 (96 h)
14.13 (96 h)
10.62 (96 h)
2.15 (72 h) c

3.65 (96 h) d

Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic
Moderately toxic
Slightly toxic
Slightly toxic
Moderately toxic
Moderately toxic

(Galassi et al., 1988)
(USEPA, 2023)
(Di Marzio and Saenz, 2006)
(Peng, 2020)
(Peng, 2020)
(Peng, 2020)
(Peng, 2020)
This study
This study
* SW: marine organism; FW: freshwater organism; # Based on the acute toxicity classification of the Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP)
(Wells et al., 2002); a: y = 1.4041x + 4.8722 R² = 0.8758 (the equation and R2 of the EC50 of n-PBZ to R. reticulata S6A calculated at 72 h); b: y = 1.521x + 4.4285 R² = 0.91868 (the equation and R2

of the EC50 of n-PBZ to R. reticulata S6A calculated at 96 h); c: y = 1.2609x + 4.5864 R² = 0.89648 (the equation and R2 of the EC50 of i-PBZ to R. reticulata S6A calculated at 72 h); d: y = 1.1833x +
4.3353 R² = 0.84798 (the equation and R2 of the EC50 of i-PBZ to R. reticulata S6A calculated at 96 h).
A B

FIGURE 3

The growth curves of R. reticulata S6A at different concentrations of n-PBZ (A) and i-PBZ (B). Data corresponds to mean ± SD (n = 3).
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Yano, Aiba and Edwards models used in this paper are the extended

form of the Monod model (Figures S1, S2). These models include

the substrate inhibition term (Ki). A low value of Ki indicates that

microbes are more sensitive to substrate inhibition, whereas a high

value of Ki indicates that microbes are less sensitive to substrate

inhibition (El-Naas et al., 2014). The fact that the Ki values of n-PBZ

corresponding to each model are smaller than that of i-PBZ also

indicates that R. reticulata S6A is more sensitive to n-PBZ than i-

PBZ (Table 2). The optimal prediction was based on the Edwards

(for n-PBZ) and Aiba (for i-PBZ) kinetic models, which

satisfactorily fit the experimental data with higher coefficient (R2)

of determination and lower residual sum of squares (RSS) compared

to the other five kinetic models. In fact, R. reticulata S6A could grow

normally (or be slightly promoted) under the stress of 0.5 mg/L

PBZs, but it was strongly inhibited after exposure to 20 mg/L PBZs,

and the inhibition constant parameters fitted by the two models

were consistent. The first derivatives of the expressions of the

Edwards (Eq. (10)) model and Aiba model (Eq. (11)) were as

follows:

m 0 =
mmaxKS

S + KS
(

KS

S + KS
−

S
Ki

)e−
S
Ki (10)

m 0 =
mmax

KSe
S
KS

−
mmax

Kie
S
Ki

(11)

There, the critical substrate concentration (Sm) values were

calculated as 2.42 and 2.78 mg/L, at which the specific growth

reached its maximum value, could be obtained, at m′ = 0. This

represented the optimum concentration of n-PBZ and i-PBZ in

seawater of the biodegradation by R. reticulata S6A predicted by the

Edwards and Aiba kinetic models, respectively. It was further

investigated that each value of Sm was similar to the acute toxicity

value (96h-EC50) of n-PBZ (2.38 mg/L) or i-PBZ (3.65 mg/L) to R.

reticulata S6A.
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3.3 The degradation performance of PBZs
by Rhinomonas reticulata S6A

As shown in Table 3, PBZs at initial concentrations of 0.5-

20 mg/L could be degraded to varying degrees by R. reticulata S6A

in 7 d. The removal efficiencies decreased from 72.2% and 55.6% to

15.2% and 24.5% respectively, when R. reticulata S6A was exposed

to 20 mg/L n-PBZ and 20 mg/L i-PBZ for 7 d. The two isomers were

also slightly degraded in sealed seawater without organisms, which

is mutually confirmed with the results of the natural attenuation

experiments (Li et al., 2021a). Due to the lack of hydrolysable

functional groups and the inability to directly absorb visible light,

the two PBZs are not directly hydrolyzed and photolyzed at ambient

temperature and pressure (Mopper and Zhou, 1990; Peng, 2020).

However, oxidation and indirect photolysis are possible

transformation pathways of PBZs on the water surface based on

the reaction of the gaseous PBZs molecule with photochemically

generated hydroxyl radicals (·OH) (Mopper and Zhou, 1990), and

this pathway was found to be inefficient according to Table 3.

The biodegradation process of microalgae can occur either

intracellularly or extracellularly, or a combination of both, where

the initial degradation occurs extracellularly and the degradation

products are further degraded intracellularly (Tiwari et al., 2017). At

an initial concentration of 0.5-20 mg/L, the degradation curves of n-

PBZ and i-PBZ over 7 d are shown in Figure 4. For n-PBZ, the

concentration decreased significantly (P< 0.05) in the treatments of

0.5-5 mg/L after one day of degradation, while the high concentration

groups (10 mg/L and 20 mg/L) decreased slowly until a rapidly decay

after four or five days. Similar to bacteria, microalgae can release

extracellular polymeric substances (EPS) and various types of soluble

proteins, combined proteins, soluble polysaccharides, and combined

polysaccharides (Vo et al., 2020). From this study, the degradation of

n-PBZ in the first day may be the effect of some extracellular enzymes

spontaneously secreted by microalgae in the culture of microalgae.
TABLE 2 The fitting parameters of six growth inhibition kinetic models.

Pollutant Model mmax (/d) Ks (mg/L) Ki (mg/L) K R2 RSS

n-PBZ Monod 1.075 0.057 / / 0.792 0.23828

Haldane-Andrews 2.163 0.737 10.604 / 0.995 0.00588

Webb 2.163 0.737 10.604 1.67 E20 0.995 0.00588

Yano 2.163 0.737 10.604 -1.14E28 0.995 0.00588

Aiba 1.856 0.534 21.575 / 0.995 0.00617

Edwards 1.605 0.640 25.587 / 0.998 0.00212

i-PBZ Monod 1.030 0.002 / / 0.762 0.20709

Haldane-Andrews 1.969 0.548 11.588 / 0.998 0.00068

Webb 1.969 0.548 11.588 1.71E17 0.998 0.00068

Yano 1.969 0.548 11.588 -4.75E19 0.998 0.00068

Aiba 1.716 0.393 22.514 / 0.999 0.00067

Edwards 0.648 21.476 0.016 / -0.476 1.60614
front
mmax: the maximum specific growth rate; Ks: a substrate affinity constant; Ki: the inhibition constant; K: a positive constant; R2: coefficient of determination, the closer the value is to 1, the better
the fit; RSS: residual sum of squares, the closer the value is to 0, the better the fit.
iersin.org

https://doi.org/10.3389/fmars.2023.1171944
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Du et al. 10.3389/fmars.2023.1171944
For i-PBZ, the treatments of the lower concentration (0.5 mg/L and

1mg/L) began to degrade rapidly on the first day, while in the higher

concentration groups (5 mg/L, 10 mg/L and 20 mg/L) were observed

three or four days of lag phase (where no significant difference in

daily concentrations). This apparent difference from n-PBZ was

presumed to be due to the different types of degradative enzymes

secreted by microalgae. Even if the reports on microalgal degradative

enzymes remain to be scarce, there have been reports where the

substrate can induce its degradative enzyme, e.g., several proteins

related to oxidative detoxification (monooxygenase, alcohol

dehydrogenase, benzaldehyde dehydrogenase, benzoate 1,2-

dioxygenase, and catechol 2,3-dioxygenase) were significantly up-

regulated in Thalassiosira sp. OUC2 during p-xylene biodegradation

(Duan et al., 2020); the phenol biodegradation in Isochrysis galbana

was mainly catalysed by intracellular enzymes (Wang et al., 2019b).

Besides, it was recently shown that the microalgal degradation of

benzo[a]pyrene by Selenastrum capricornutum could be partially

attributed to exocellular enzymes (Garcıá de Llasera et al., 2022).

To determine the degradation rate constant and half-life of

PBZs in each treatment, three kinetic equations (zero-order model,

first-order model, and pseudo first-order model) were applied in

fitting the changes in concentration of each component with time

from Figure 4. The fitting results (Table 4) showed that the
Frontiers in Marine Science 10
predictions via the zero-order kinetic model satisfactorily

matched the experimental data with higher correlation coefficients

(R2 was between 0.923 and 0.999) compared to the other two kinetic

models. The removal constants (K) for the n-PBZ and i-PBZ

concentrations determined in this study ranged from 0.04-0.44/d

and 0.04-1.37/d, respectively. The EC50 value characterizes the acute

toxicity level of the toxicant; the lower the value, the higher the

toxicity and also the higher the sensitivity of the organism to the

toxicant. Environmental concentrations of toxicants below the EC50

had less effect on growth than those above the EC50, and microalgal

growth was not strongly inhibited. At present, the half-life of n-PBZ

is shorter than that of i-PBZ because R. reticulata S6A is more

sensitive to n-PBZ (lower EC50) and more degradative enzymes may

be induced. In general, excessive concentrations of pollutants can

inhibit algal growth, increase oxidative stress, disrupt

photosynthetic systems, and decrease degradation performance.

In particular, R. reticulata S6A, which was more tolerant to i-

PBZ, was more adaptable to the stress as culture time increased

during the degradation of high concentrations of pollutants. Gibson

et al. (1968) observed that the rate of oxidation of i-PBZ by

Pseudomonas putida biotype B is faster than that of n-PBZ. This

may be attributed to the different initial oxidation of isomers, which

depends on the different substituents on the aromatic ring (Jigami
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FIGURE 4

The degradation curves of different concentrations (including 0.5 mg/L, 1 mg/L, 5 mg/L, 10 mg/L, 20 mg/L) of n-PBZ and i-PBZ by R. reticulata S6A.
Data corresponds to mean ± SD (n = 3).
TABLE 3 The removal rate (including abiotic removal and degradation by R. reticulata S6A) at different initial concentrations of n-PBZ/i-PBZ after 7 d.

Concentration Removal rate (%)

(mg/L) n-PBZ/Degradation n-PBZ/Abiotic i-PBZ/Degradation i-PBZ/Abiotic

0.5 72.2 8.1 55.6 8.6

1 49.3 5.5 41.4 7.4

5 34.6 2.2 38.8 5.3

10 22.3 1.7 25.4 4.9

20 15.2 3.5 24.5 4.3
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et al., 1979). In addition, a gradual increase in k with increasing

concentrations of PBZs were observed (Table 4), which also

indicated that the efficiency of R. reticulata S6A for PBZs removal

were related to the strength of the exogenous stimulus. Up to this

point, it can be speculated that moderate microbial sensitivity is

beneficial for the degradation of pollutants when the exposure

concentration is below the 96h-EC50 value, and strong tolerance

is a necessary condition for the degradation of higher pollutant

concentrations. In the preliminary work to simulate a real-world

propylene spill, 0.1 g of n-PBZ and i-PBZ were added to 10 L of

natural seawater and mixed to saturation. After 24 hours of natural

attenuation by the calm wind, samples were taken to detect

concentrations in seawater of 3.67 and 3.94 mg/L (Li et al.,

2021a). Therefore, once PBZs are spilled at sea, the concentration

that can be dealt with immediately the next day does not exceed 5

mg/L. However, without bioaugmentation technology, the

biodegradation by native organisms of PBZs in natural seawater

were very sluggish, with rates of only 0.06/d (n-PBZ) and 0.08/d (i-

PBZ). Under the effect of R. reticulata S6A, the biodegradation rates

of two PBZs (5 mg/L) were 0.27/d (n-PBZ) and 0.39/d (i-PBZ),

respectively, which can effectively promote the removal of PBZs.
3.4 Effect of initial inoculation density

As shown in Figure 5, the growth lag phase of microalgae was

obviously shortened when the inoculation density was increased so

that it entered the exponential phase on the first day (the initial

inoculation density more than 5×104 cells/mL), while the initial

inoculation density with the maximum specific growth rate (r) was

104 cells/mL (n-PBZ: 1.116/d, i-PBZ: 1.230/d). In the treatment with

the maximum inoculation density (30×104 cells/mL), the plateau

phase appeared on the second day of culture and the r value was the

minimum, then, the cell density began to decrease on the fourth day

(Table 5). Similarly, it was found that the environment of high cell

density may be overcrowded which weakens photosynthesis due to

shading effects and relative lack of nutrients, which eventually

hinders the rapid growth of cells (Liu et al., 2022). In turn, a high
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initial inoculation density will contribute to the stress resistance of

microalgae (Wang et al., 2016). Compared to the more toxic n-PBZ,

i-PBZ had less inhibitory effect on R. reticulata S6A, especially for

the high inoculation density treatment, and the growth lag phase of

the microalgae was short. The treatment with the initial inoculation

density of 5×104 and 105 cells/mL reached the peak (45.2×104 cells/

mL and 51.4×104 cells/mL) on the fourth and fifth day, respectively,

which was 2.43 and 2.23 times that of n-PBZ at the same period.

Extensive studies on extracellular proteins in bacterial and fungal

biofilms have shown that extracellular enzymes are involved in the

degradation of biopolymers, including polysaccharides, proteins, and

nucleic acids (Xiao and Zheng, 2016). Interestingly, in the present

study, the concentration of degradation on the first day was positively

correlated with the initial inoculation density for n-PBZ (R2 = 0.932).

The reason may be that the degradation enzymes of n-PBZ were

present in the EPS of R. reticulata S6A. Degradation enzymes in the

EPS were important in the life cycle of the host algal cells because a

wide range of enzymes were present in the EPS and may have been

responsible for degrading the EPS to provide energy and carbon

sources for the host cells to grow (Zhou et al., 2022). As the initial

inoculation density of R. reticulata S6A was increased, the

degradation rate of both PBZs tended to increase and then decrease

after 7 d (Figure 5), where high algal inoculation density can cause

hypoxia in the water column and reduce pollutant removal rates

(Zhou et al., 2022). And the degradation rate of PBZs was the lowest

when the initial inoculation density was the highest. The

photosynthetic pigment content is a sensitive parameter for various

environmental stresses (Ravi Kiran and Venkata Mohan, 2021).

Figure 6 showed the variation of photosynthetic pigment content

with initial inoculum density. It was found that the mean PerCP and

PE decreased with increasing initial inoculum density, with a peak at

1×104 cells/mL, and the photosynthetic capacity of the highest

density group under n-PBZ stress decreased by about half. This

indicated that the photosynthetic capacity may be more significantly

affected by the shading effect under n-PBZ stress. For i-PBZ, the

change in PE content was more pronounced, with the 1×104 cells/mL

group being significantly higher than the other treatment groups,

which may be an expression of the resilience of microalgae at lower
TABLE 4 Kinetic parameters and half-lives of n-PBZ and i-PBZ biodegradation by R. reticulata S6A.

Pollutant Concentration tlag (d) R2 k (/d) t1/2 (d) DT50 (d)

n-PBZ 0.5 0 0.923 0.04 6.25 6.25

1 0 0.999 0.07 7.14 7.14

5 0 0.927 0.27 9.26 9.26

10 0 0.943 0.32 15.63 15.63

20 0 0.956 0.44 22.73 22.73

i-PBZ 0.5 0 0.990 0.04 6.43 6.43

1 0 0.924 0.06 8.33 8.33

5 3 0.988 0.39 6.41 9.41

10 4 0.986 0.74 6.76 10.76

20 4 0.955 1.37 7.30 11.30
fro
R2: coefficient of determination; k: the constant of degradation rate; tlag: the lag phase time; DT50: the sum of the t1/2 and tlag.
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densities (Srinithi et al., 2023). Studies have shown that phenanthrene

concentrations > 5 mg/L affect the photosynthetic activity of Azolla

filiculoides due to oxidative damage of phenanthrene on plant cells

(Kösesakal and Seyhan, 2023). Furthermore, the microalgae could

increase their photosynthetic activity after tolerating the
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environmental stress (Zhao et al., 2023). In addition, PBZs were

degraded in the medium and the negative effect of PBZs on

microalgae were reduced when the culture time were increased.

Overall, no obvious difference in the degradation effect of PBZs

was observed at the inoculation density in the range of 103~105 cells/
TABLE 5 Specific growth rate (r) of R. reticulata S6A at different initial inoculation densities.

Initial inoculation density (cells/mL) rn-PBZ (/d) ri-PBZ (/d)

103 0.866 ± 0.050b 0.839 ± 0.015b

104 1.116 ± 0.001a 1.230 ± 0.008a

5×104 0.632 ± 0.013a 0.698 ± 0.028c

105 0.445 ± 0.008b 0.461 ± 0.011c

3×105 0.373 ± 0.008c 0.448 ± 0.006c
Letters represent statistical difference with 95% confidence interval (P < 0.05, n = 3).
A B

DC

FIGURE 5

The degradation rate of n-PBZ (A) and i-PBZ (C) and the growth curve of R. reticulata S6A (B: n-PBZ; D: i-PBZ) at different initial inoculation
densities. The initial concentration of n-PBZ or i-PBZ was 5 mg/L. Letters indicate statistical difference with 95% confidence interval (P < 0.05, n = 3).
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mL, and the degradation rates of n-PBZ and i-PBZ were

38.43~40.83% and 38.25~40.95%, respectively, at 7 d. Some

previous studies have found similar results. Likewise, the specific

growth rate and the degradation rate of p-xylene of Rhodomonas sp.

JZB-2 were the lowest when the initial inoculation density was as high

as 106 cells/mL (Liu et al., 2022). In addition, the degradation rate of

benzene, toluene, ethylbenzene and xylene (BTEX) would no longer

increase when the initial inoculation density of Janibacter sp. SB2 was

greater than 2.0 × 107 cells/mL (Jin et al., 2013). In general, higher

inoculation density in bioremediation has the potential to induce

more degradative enzymes, thereby improving the degradation

efficiency of pollutants (Robinson et al., 2009), however, there was

no doubt that the technical complication and consumption of pre-

cultivation will be increased (Liu et al., 2022). Since an excessive

initial inoculation density may have an inhibitory effect on pollutant

degradation, and both cost and ecological risks need to be considered,

104 cells/mL was selected as the initial inoculation density for the

degradation of PBZs in the follow-up study. This minimizes

additional organisms while ensuring stress tolerance to pollutants.
4 Conclusions

An indigenous microalgal strain isolated from Daya Bay, R.

reticulata S6A, was used to degrade the n-PBZ and i-PBZ which

have been of concern due to recent C9 aromatics spills or other leaks. It

has been found that 72.2% and 55.6% of n-PBZ and i-PBZ (with an

initial concentration of 0.5 mg/L) can be removed in 7 days. The

growth inhibition kinetics of R. reticulata S6A could be described by

Edwards model (R2 = 0.998) and Aiba model (R2 = 0.999) under the

stress of n-PBZ and i-PBZ, respectively, and the optimal concentration

for degradation was 2.42 mg/L (n-PBZ) and 2.78 (i-PBZ). For R.

reticulata S6A, n-PBZ (96h - EC50 = 2.38 mg/L) was more toxic than i-

PBZ (96h - EC50 = 3.65 mg/L). The degradation process of PBZs
Frontiers in Marine Science 13
conforms to the zero-order kinetic model, and k increased with

increasing initial concentration. The moderate increase in inoculation

density accelerates the degradation of PBZs, with a maximum specific

growth rate (r) of 1.116/d (n-PBZ) and 1.230/d (i-PBZ) at an initial

inoculation density of 104 cells/mL, while excessive inoculation density

(> 105 cells/mL) of algae reduced the removal performance of

microalgae to contaminants. Certainly, more research is needed to

reveal the mechanism of the removal pathway, but this work provides

an important basis for the degradation potential of PBZs by eukaryotic

microalgae, which could be very useful in environmental applications.
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