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Underwater noise pollution from theworld’s longest cross-sea bridge—the Hong

Kong-Zhuhai-Macao Bridge (HZMB)—which stretches across the Chinese White

Dolphin National Nature Reserve (of the People’s Republic of China, PRC) in the

Pearl River Estuary may affect the distribution of local humpback dolphins. In this

study, static passive acoustic monitoring was applied to monitor biosonar activity

of humpback dolphins and underwater noise adjacent to the tunnel section of

the HZMB for more than one year. During the monitoring period, dolphin

biosonar signals were detected on 88.5% of days. A significant temporal

pattern occurred in dolphin biosonar activity and in anthropogenic noise.

Biosonar activity was significantly higher at night than during the day, whereas

underwater noise occurred more in the day than at night. Significantly more

echolocation signals were detected in winter-spring than in summer-autumn,

and highest acoustic activity occurred significantly more during high tide than at

other tidal periods. In addition, the negative correlation between elevated

underwater noise and dolphin sonar activity in winter suggests that dolphins

may avoid noisy waters for short periods, perhaps due to auditory stress, but fish

prey movement cannot be ruled out. These findings facilitate understanding

activity patterns of humpback dolphins in the Pearl River Estuary and may

contribute to conservation efforts.
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Indo-Pacific humpback dolphin, passive acoustic monitoring (PAM), sonar activity,
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1 Introduction

Human-derived underwater noise in the ocean is ubiquitous

and has posed health risks to cetaceans. For example, underwater

noise can interfere with the reception of natural signals by

cetaceans. This reduces communication space (Richardson et al.,

1995; Erbe et al., 2019), leading to changes in cetacean habitat use

and distribution patterns (Morton and Symonds, 2002; Merchant

et al., 2014). Moreover, high-intensity noise can even cause auditory

system damage to animals (Wang et al., 2014b; Finneran et al., 2015;

Leunissen et al., 2019; Wang et al., 2020). Cetaceans serve as sentinel

and indicator species for assessing marine ecosystems, and they rely

on their sophisticated biosonar system for pivotal life activities,

including communication, navigation, localization, foraging, and

predator avoidance (Richardson et al., 1995; Au et al., 2008).

Therefore, monitoring cetacean acoustic signals can clarify the

distribution of these species and their behaviors (Gregorietti et al.,

2021). Investigating the potential effects of anthropogenic noise

pollution on local cetaceans is crucial to direct appropriate

conservation management measures.

Nearshore estuaries, as transitional zones linking land and sea at

the interface of saltwater and freshwater, often have high primary

productivity (Mallin et al., 1991), and these areas also tend to be

important habitats for most marine mammals (Jefferson and Hung,

2004; Hornby et al., 2016; Monteiro-Filho et al., 2018). However,

human activities in nearshore estuaries, including shipping traffic,

bridge construction, and shoreline development, crowd out the

habitats of marine mammals, raise ambient native noise levels and

increase the risk of their extinction (Davidson et al., 2012). The Pearl

River Estuary (PRE) in southern China has typical nearshore

estuarine features and is home to the world’s largest population of

Indo-Pacific humpback dolphins (IPHD, Sousa chinensis), comprised

of approximately 2500 individuals (Chen et al., 2010). However,

recent demographic analyses indicate that the IPHD population in

the PRE is decreasing at a rate of 2.5% per year (Huang et al., 2012).

IPHD are distributed in shallow coastal waters of the eastern

Indian Ocean and western Pacific Ocean, with their range

overlapping closely with areas of human activity (Jefferson and

Curry, 2015; Jefferson and Smith, 2016). This dolphin species is

classified as “Vulnerable (VU)” by the International Union for

Conservation of Nature (IUCN) Red List of Threatened Species and

categorized as a Grade One National Key Protected Animal by the

Chinese Wild Animal Protection Law. However, in the various

areas of China inhabited by IPHD, noise pollution from boat traffic,

water construction projects, and other heavily anthropogenic

activities has impacted the local cetaceans (Yamagiwa and

Karczmarski, 2014). For example, the communication and

echolocation signals of IPHD might be masked by various

shipping noises (such us small high-speed boats and commercial

ships) up to 1000 m from the source (Li et al., 2015; Liu et al., 2017).

Furthermore, increases in noise pollution may force IPHD to

change their vocalization frequency to avoid sound masking

(Yuan et al., 2021).

Among the numerous water infrastructure projects in the PRE,

the world’s longest sea-crossing bridge—of the Hong Kong-Zhuhai-

Macao Bridge (HZMB), which began operating in 2018, has attracted
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the more concerned. The HZMB connects Guangdong, Hong Kong,

and Macao, promoting economic and trade growth in the Greater

Bay Area and the wider world. The structure comprises the bridge,

islands, and tunnel schemes, and has a total length of 55 km of which

the section passing through the Pearl River Estuary Chinese White

Dolphin National Nature Reserve is approximately 20 km (Xiao,

2020). Additionally, the east and west artificial islands are located in

the core area of the reserve. The stretch of water between these two

artificial islands is an essential channel for ships to enter and exit the

port of Guangzhou. Piling noise during HZMB construction and its

impact on local IPHD was assessed (Wang et al., 2014b); however,

noise pollution during bridge operation and its potential negative

impact on local dolphins has yet to be investigated.

Visual expeditions and acoustic monitoring are mainly used for

marine mammal surveys. Passive acoustic monitoring (PAM)

allows continuous tracking of marine mammals and habitats over

longer time scales compared with traditional visual surveys

(Zimmer, 2011; Todd et al., 2020), as well as at night and under

extreme weather conditions (Thompson et al., 2015). In this study,

PAM was employed to investigate IPHD sonar activity and the

varying temporal patterns of underwater noise in the waters near

the HZMB tunnel, aiming to inform underwater noise mitigation

and conservation management strategies for humpback dolphins.
2 Materials and methods

2.1 Study area

A PAM station (22°16′36′′N, 113°48′18′′E) was deployed in a

fairway beacon located in the core area of the Pearl River Estuary

Chinese White Dolphin National Nature Reserve at approximately

700 m from the HZMB, 4 km from the east artificial island, and

2 km from the west artificial island (Figure 1). This beacon was

located on the channel boundary, approximately 150 m from the

center of the waterway, and provides an essential indication of the

entry and departure of ships from the Lingding waterway.
2.2 Data collection

An acoustic recorder (SoundTrap 300 HF, Ocean Instruments

Ltd, New Zealand) was fixed to the anchor chain of the beacon 5 m

underwater by a diving support service. The effective operating

frequency range of this hydrophone was 20 Hz to 150 kHz, with a

3 dB margin of error. The hydrophone was equipped with a 16-bit

analog-to-digital converter. Acoustic sound was continuously

recorded for 24 h at a sampling rate of 288 kHz, and the recorded

audio files (.wav) were imported into a computer. Data were collected

seasonally between July 2021 and March 2022 (Table 1).
2.3 Data analysis

Dolphin sonar signals were identified using a custom-written

analysis program in MATLAB R2021b (The Math Works, Natick,
frontiersin.org
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MA, USA). The WAV files were uploaded into the program, which

first divided the waveform data into several tone frames in seconds,

and filtered out low-frequency (20 kHz) noise through a high-pass

filter. Filtered signals with a sound pressure level (SPL) greater than

120 dB were marked as specific frames and Fourier transformed to

calculate the power spectral densities of each frame (Window

size = 0.01 s, 90% frame overlap; Time resolution = 0.001 s,

Frequency resolution = 100 Hz). The peak frequency, center

frequency, −3 dB bandwidth and the rms bandwidth were

calculated. These were then compared to the pulse parameters of

IPHD (Fang et al., 2015), marking and extracting the frames that

matched the statistical range of the four parameters simultaneously.

Spectrograms of each file (.wav) were examined with Raven Pro

1.6 (The Cornell Lab of Ornithology, Ithaca, NY, USA) to manually

verify the dolphin sonar activity. MATLAB R2021b sequentially cut

and analyzed acoustic data each second and calculated the root

mean square sound pressure level (SPLrms) for each clip of

underwater noise (Au et al., 2008).
Frontiers in Marine Science 03
The diel phase was divided into daytime (sunrise time to sunset

time) and nighttime (sunset time to sunrise time) (Deconto and

Monteiro-Filho, 2015; Guan et al., 2015). The seasons were defined

as spring (March, April, and May), summer (June, July, and

August), autumn (September, October, and November), and

winter (December, January, and February). The tidal phase was

divided into four phases: high, ebb, low, and flood. The high and

low phases were the highest water level (Th), and the lowest water

level (Tl) of the tidal phase pushed forward and backward by 1.5 h,

respectively. Ebb and flood phases were the periods between the

high-to-low and low-to-high phases, respectively (Wang et al.,

2015b). The times of Tl and Th were obtained from the website

of China Shipping Service (https://www.cnss.com.cn/tide/).

Biosonar and noise data were partitioned into 10-min bins for

convenient analysis and statistical evaluation (Todd et al., 2009;

Wang et al., 2015b). Each 10-min bin was assigned to different diel,

seasonal, and tidal phases to investigate the pattern of IPHD sonar

activity and underwater noise under different diel, tidal, and
TABLE 1 Acoustic recorder deployment and detection of humpback dolphin biosonar activity.

Recording period Recording duration
(days)

No. days with dolphin sonar
detection

No. click
trains

No.
buzzes

Echolocation encounter
duration (min)

N Mean Max Min

04 July to 16 July 2021 13 9 592 11 17 436.87 1914.59 0

28 September to 10
October 2021

13 11 977 8 16 622.62 1826.99 0

30 November to 12
December 2021

13 13 3094 139 28 1323.01 6697.84 0.38

16 March to 28 March
2022

13 13 4329 304 35 1357.26 6332.36 2.22

Total 52 46 8992 462 96 934.94 6697.84 0
frontier
Biosonar statistical parameters include the number of click trains and buzzes and the duration of the echolocation encounter.
FIGURE 1

Locations of passive acoustic monitoring stations. Two triangles show the east and west artificial islands. The black dashed line indicates the subsea
tunnel. The blue area is the Pearl River Estuary Chinese White Dolphin National Nature Reserve, and from left to right are the experimental, buffer,
and core areas.
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seasonal patterns. A collection of click trains with spacing of 10 min

or less was considered an echolocation encounter (Carlstrom, 2005;

Todd et al., 2009; Wang et al., 2015b). The seasonal acoustic signal

detection rate was calculated by dividing the number of detections

each season by the total number of hours recorded per season.
2.4 Statistical analysis

Descriptive parameters were calculated, including the mean

and standard deviation of the number of click trains per 10-min

and buzzes per 10 min (Wang et al., 2015a). The Kolmogorov–

Smirnov test was used to test for normality. Owing to the discrete

non-normally distribution of most of the acoustic data, the

variables of the median, interquartile range (IQR), 5th percentile

(P5), and 95th percentile (P95) were adopted to describe the

SPLrms data. A Mann-Whitney U test (Mann and Whitney, 1947)

was used to compare the biosonar activity between daytime and

nighttime. For comparison of multiple data groups, Kruskal–

Wallis analysis of variance (Kruskal and Wallis, 1952) tested the

overall variability, and Dunn’s post hoc test (Zar, 1984) compared

the variability of each group. Spearman correlation analysis was

employed to investigate the relationship between underwater

noise and the sonar activity of IPHD. All statistical analyses

were completed using IBM SPSS Statistic 26.0 (IBM, Armonk,

NY, USA).
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3 Results

Acoustic monitoring data were collected for 52 days, consisting

of 1209 hours of data that could be divided into 7254 10-min bins.

Dolphin sonar was detected on 46 days, accounting for 88.5% of the

total monitoring period. Overall, 96 IPHD echolocation encounters

were monitored, 40 of which contained buzzes (Table 1). Among

the 10-min bins, 260 bins contained click trains, representing 3.6%

of the total dataset, and 8992 echolocation signals were

monitored (Figure 2).

The values for noise SPLrms were 136.98 ± 9.70 dB (median ±

IQR) with a range of 125.81–149.80 dB for P5–P95 (Figure 3).
3.1 Sonar activity

The detection rates of humpback dolphin acoustic signals at the

monitoring station were 16% and 12% in winter and spring, respectively,

which were higher than those in summer (6%) and autumn (5%)

(Figure 4). Kruskal-Wallis tests showed significant differences in IPHD

acoustic activity between seasons (number of click trains per 10 min:

c2 = 74.326, df = 3, P < 0.05; the number of buzzes per 10 min:

c2 = 53.993, df = 3, P < 0.05). Dunn’s post hoc multiple comparisons

revealed that the number of click trains per 10 min and the number of

buzzes per 10 min were significantly higher in winter and spring than in

summer and autumn (P < 0.05) (Figure 5A).
A B

DC

FIGURE 2

Daily occurrence of dolphin click trains per 10 min by the time of day in (A) summer 2021, (B) autumn 2021, (C) winter 2021, and (D) spring 2022.
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At high tide, the number of click trains per 10 min and the

number of buzzes per 10 min was 2.29 ± 0.30 and 0.10 ± 0.03 (mean

± SD), respectively, which were significantly higher than those of

other phases at this station (c2 = 41.867, df = 3, P < 0.05, number of

click trains per 10 min; c2 = 21.402, df = 3, P < 0.05, number of

buzzes per 10 min). No significant differences in the dolphin

biosonar activities were found during flood, ebb, and low

tide (Figure 5B).

The number of click trains and the number of buzzes per 10 min

at the monitoring site did not show significant differences during

the day or night (Figure 5C). However, dolphin echolocation

detection rates during daytime and nighttime were 4% and 2% in

summer, 2% and 3% in autumn, 3% and 8% in winter, and both 8%
A B

DC

FIGURE 3

Sound pressure levels (SPLrms) of the water environment in different seasons as a function of time of day (X-axis) and date (Y-axis), (A) summer 2021,
(B) autumn 2021, (C) winter 2021, and (D) spring 2022.
FIGURE 4

Echolocation detection rates of Indo-Pacific humpback dolphins in
different seasons and during day and night.
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A

B

C

FIGURE 5

Number of click trains and number of buzzes per 10 min as a
function of (A) seasonal, (B) tidal, and (C) diel phases. Error bars with
different uppercase and lowercase letters refer to post-hoc Dunn’s
multiple comparison tests with click trains and buzzes, respectively.
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in spring, respectively (Figure 4). In winter, the number of click

trains and buzzes per 10 min was significantly higher at night than

during the daytime (P < 0.05), while no differences were found in

other seasons (Table 2).
3.2 Underwater noise

Underwater noise SPLrms of the monitoring station exhibited

significant differences between seasons (c2 = 2487.139, df = 3, P <

0.05), with significantly higher SPLrms in winter (median ± IQR:

144.45 ± 6.94 dB) than in summer (133.26 ± 6.96 dB), autumn

(136.21 ± 7.85 dB) and spring (136.15 ± 8.19 dB). Furthermore,

SPLrms in autumn and spring was significantly higher than in

summer (Dunn’s post hoc multiple comparisons, P < 0.05)

(Figure 6). Throughout the acoustic monitoring period, SPLrms

was significantly higher during the day than at night (Mann-

Whitney U test, P < 0.05).

There was a significant negative correlation between SPLrms and

the number of click trains per 10 min, only in winter (Spearman’s

rho = −0.073, P < 0.01, n = 1776).
4 Discussion

PAM has previously been used to monitor IPHD biosonar activity

in the PRE (Wang et al., 2015b; Pine et al., 2017; Wang et al., 2019;

Liang et al., 2020). The subsea tunnel of HZMB is located within the

core area of the Pearl River Estuary Chinese White Dolphin National

Nature Reserve. Sonar signals of dolphins were detected near the

HZMB subsea tunnel on 88.5% of monitoring days in this study,

indicating the frequent occurrence of dolphins in the vicinity.
4.1 Sonar activity

Monitored biosonar activity revealed significant seasonal, tidal, and

diurnal rhythms of IPHD. The echolocation detection rate and biosonar

activity of dolphins in winter and spring were higher than those in

summer and autumn. These findings are in contrast to those of the

IPHD populations in the adjacent Hong Kong waters, in which a higher

dolphin abundance was observed in summer than in winter (Chan and

Karczmarski, 2017). The possible explanation for the difference between
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this study and the Hong Kong waters was that seasonal flux of dolphins

may exist between mainland and Hong Kong waters. In western

Taiwan, the spatial distribution of humpback dolphins in an estuary

habitat varied seasonally, with the dolphins inhabiting waters close to

the estuary during the dry period and migrating outside the estuary

during the abundant period (Lin et al., 2014). The seasonal variation

pattern observed in this study is consistent with that of the eastern

waters of the PRE, Xiamen waters, and the western waters of Taiwan

(Chen et al., 2008; Chen et al., 2010; Lin et al., 2014;Wang et al., 2015b).

The seasonal variations of IPHD in various places reveal their multiple

patterns of habitat use in different seasons.

Seasonal changes in cetacean distribution are often related to

the availability of their prey (Forcada, 2009). Owing to seasonal

variations in the amount of freshwater entering the ocean, which

causes fish migration, dolphins are more likely to hunt in areas

where their fish prey are more prevalent (Hung and Jefferson, 2004;

Wang and Lin, 2006). The higher dolphin predation signals in the

subsea tunnel water during the dry season may be explained by

higher feeding activity in that period. Research on fish resources in

the Chinese White Dolphin National Nature Reserve showed that

the average biomass and abundance of the main prey of IPHD in

the PRE—including the spiny head croaker (Collichthys lucidus),

taper tail anchovy (Coilia mystus)—were higher in autumn

compared to spring (Huang et al., 2018). Moreover, after the

overfishing period (July to February of the following year),

dolphin food resources might decrease in winter and spring. In

the vicinity of the subsea tunnel of the HZMB, fishing intensity is

relatively weak owing to the restrictions of channel administrations.

Therefore, when food availability is relatively limited in spring, the

increased food rewards in the central fairway may motivate

dolphins to select these riskier waters and make more frequent

vocalizations to catch prey.

In this study, the acoustic activity of IPHD shows a significant

diurnal difference in winter, with higher detection at night than during

the day. The same diurnal patterns of dolphins were widely observed in

other regions of the PRE and the southwest of Hainan Island (Wang

et al., 2015b; Munger et al., 2016; Dong et al., 2017; Pine et al., 2017).

However, in the other three seasons, there were no diurnal differences

in biosonar activity, which was consistent with observations in western

Taiwan (Lin et al., 2013). This finding may indicate that there are no

marked differences between the daytime and nighttime activities of

IPHD near the monitoring station of this study. Greater dolphin

vocalization rates at night than during the day were widely observed
TABLE 2 Statistics of diel patterns between seasons based on Mann-Whitney U tests.

Biosonar
characteristic

Summer Autumn Winter Spring

d (Mean ±
SD)

Z-
value P d (Mean ±

SD)
Z-
value P d (Mean ±

SD)
Z-
value P d (Mean ±

SD)
Z-
value P

No. of click
trains

Daytime 0.40 ± 0.11 −0.858 – 0.61 ± 0.17 −0.634 – 1.03 ± 0.35 −3.943 ** 2.81 ± 0.41 −1.674 –

Nighttime 0.16 ± 0.08 0.47 ± 0.15 1.96 ± 0.42 1.96 ± 0.42

No. of buzzes
Daytime 0.01 ± 0.00 −0.292 – 0.00 ± 0.00 −0.469 – 0.02 ± 0.01 −2.508 * 0.15 ± 0.04 −0.759 –

Nighttime 0.01 ± 0.01 0.00 ± 0.00 0.12 ± 0.05 0.18 ± 0.08
f
rontiersin.
*P < 0.05. **P < 0.01.
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in previous studies conducted in the PRE (Wang et al., 2015b; Munger

et al., 2016; Pine et al., 2017). However, this might be ascribed to a

higher vocalizations rate per animal at night and is not necessarily

indicative of increased dolphin abundance at night.

Tides are an environmental factor that can significantly influence

nearshore cetacean activity, and various cetaceans display varied

activity patterns during different tidal phases. Acoustic detections

of bottlenose dolphins (Tursiops aduncus) in Baja California Sur,

Mexico, peaked in floods and high tides (Gauger et al., 2022), while in

the Shannon Estuary, Ireland, more detections occurred during ebb

tide (Berrow et al., 1996; Philpott et al., 2007). Different

subpopulations of the same species exhibit distinct variations in

habitat usage patterns across different tidal cycles (Paitach et al.,

2017). No significant tidal cycles for the biosonar activity of

humpback dolphins were observed in the Modaomen estuary or

the Guishan windfarms in the PRE (Wang et al., 2015b; Liang et al.,

2020). Furthermore, tidal phases did not affect IPHD group size in

Zhanjiang waters (Liu et al., 2021). In the nearshore area of Taiwan’s

west coast, the acoustic monitoring rate was lower in the ebb tide

phase than the other phases. However, the four tidal phases in the

offshore area were not significantly different (Lin et al., 2013). The

acoustic activity of IPHD in this study was highest at high tide and

there were no significant differences between the ebb, low, and flood

tide phases. This suggests that IPHD in the tunnel waters of the

HZMB may be unaffected by tidal rhythm. The interaction between

freshwater and seawater might have an impact on the tidal-driven

behavior of estuarine dolphins and their prey (Mendes et al., 2002;

Lin et al., 2013). Consequently, the wandering of prey into the

intertidal zone during the tidal phase may account for the varying

activity patterns of humpback dolphins during different tidal cycles.
4.2 Underwater noise

Underwater acoustic investigations of habitats are essential to

determine the relationship between marine mammals and their
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habitat, along with analyzing the effects of various biological and

anthropogenic activities on marine mammals (Sueur and

Farina, 2015).

The underwater acoustic environments of Guishan windfarm in

the PRE, southwest of Hainan Island and the west coast of Taiwan

have been quantitatively described. This description indicates that

there are various spatial and temporal patterns (including

geospatial, seasonal, diurnal, and tidal) of underwater noise in

different areas and that the primary sources of underwater noise

include, but are not limited to, shipping traffic, pile-driving pulses,

and fishing activities (Guan et al., 2015; Wang et al., 2019; Caruso

et al., 2020; Xu et al., 2020; Dong et al., 2021).

The underwater noise created by pile driving with vibratory

hammers during the construction period of the HZMB and subsea

tunnel could mask dolphin whistles and have physiological impact

(Wang et al., 2014b). The broadband SPLrms during the acoustic

monitoring in this study was significantly lower than in the

construction period (Wang et al., 2014b), and thus the impact on

humpback dolphins during operation of the HZMB and subsea

tunnel might be less than that during construction of the structure.

However, compared with recordings prior to bridge construction,

the ambient SPLrms increased after operation. This may be

attributed to the fact that various noises generated by vehicles

driving on the bridge and in the tunnel are transmitted through

bridge the deck to the piers and then into the water, and this is

coupled with numerous vessels congregating through the few

navigable holes in the bridge. The underwater acoustic

environment of the Monitor–Merrimac Memorial Bridge–Tunnel

exhibited diurnally variable characteristics that were closely

correlated with the temporal distribution of vehicular traffic in

the underwater tunnel (Reeder et al., 2020).

Furthermore, the ambient underwater noise near the HZMB

subsea tunnel exhibited a significant pattern of temporal variation

in this study. Compared with the other three seasons, winter had a

significantly higher SPLrms (median ± IQR: 144.45 ± 6.94 dB),

which might be related to the increased waterway cargo flux during

that season (http://gwj.gz.gov.cn/). In a previous study, there was no

relationship between IPHD activities and underwater noise SPLrms

of Qi’Ao and Sanjiao islands in PRE, but had a positive correlation

with fish activity (Pine et al., 2017). In the Yangtze River, the

attractiveness of fish resources for Yangtze finless porpoise

(Neophocaena asiaeorientalis asiaeorientalis) also exceeded the

repelling effect of shipping (Wang et al., 2014a; Wang et al.,

2015a), which signified that finless porpoises were forced to be

exposure to ship noise when hunting. The high biosonar detection

rate of the increased underwater noise in winter in the current study

may indicate that IPHD were forced by survival pressures to select

the main channel, with higher predation risk. Meanwhile, the

negative correlation between noise and sonar monitoring rate

may indicate that with the temporary increase in SPLrms of

underwater noise in winter, the fishery resources in this water

area were insufficient to attract IPHD to overcome the auditory

pressure forcing animals to avoid noisy areas of water in the

short term.

Daytime traffic volumes on HZMB and in the channel waters of

the subsea tunnel are larger than those at night, which may explain
FIGURE 6

Comparison of broadband sound pressure levels (SPLrms) among
different seasons. Different lowercase letters refer to post-hoc Dunn’s
multiple comparison tests that yielded significant results (P < 0.05).
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why SPLrms at this monitoring site is significantly higher during the

day than at night. One third octave sound pressure level provided

information to assess the frequency components of underwater

noise audible to dolphins (Blackwell et al., 2004). The dominant

frequency of the underwater tunnel was primarily concentrated in

the frequency band below 200 Hz (Hou et al., 2020); thus, the SPL in

low-frequency bands (25–400 Hz) may be ascribed by underwater

tunnels (Figure 7). The optimal hearing range of fish is mostly

concentrated in the range 100–400 Hz (Popper et al., 2003).

Consequently, the low-frequency noise generated by the subsea

tunnel may drive some fish away from the tunnel waters, thereby

affecting the distribution of dolphins in the vicinity.

The noise level was above the threshold of the IPHD audiogram

at frequency bands between 5.6 and 128 kHz (Figure 7), indicating

that these sounds may be perceived by dolphins and therefore

limited their sound detection in these frequency bands. IPHD

habitat overlaps heavily with the main channel of Guangzhou

port. The increased vessel density of coastal regions frequently

causes noise levels to rise significantly above ambient levels (Duarte

et al., 2021). The Port of Guangzhou, a key global port, has one of

the greatest shipping throughputs in the world, with massive cargo

ships, tankers, fishing vessels, dredging or underwater operating

vessels, and small speedboats passing through the subsea tunnel

waters of HZMB. The busy vessel traffic in the Lingding waterway

may further result in potential impacts on marine mammals

including hearing masking and physiological damage to the

auditory system (temporary threshold shift: TTS; permanent

threshold shift: PTS), thereby shortening the communication

distance of marine mammals (Merchant et al., 2014; Liu et al.,

2017; Marley et al., 2017). When ships were presented, dolphins

reduced vocalization behavior and emitted shorter calls in shorter

frequency patterns, including whistles and echolocation signals (Hu

et al., 2022). Hectic vessel traffic in the waters west of Hong Kong
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also interfered with the behavior and hearing of humpback dolphins

(Sims et al., 2012).

Altering ship routes to limit the distance between vessels and

dolphins, and reducing ship speed are essential measures to mitigate

ambient noise levels in the habitats of marine mammals (Li et al.,

2018; Schoeman et al., 2020). However, navigational safety

restrictions, especially in coastal areas, mean it is not always

possible to reroute a vessel (Conn and Silber, 2013). Vessel speed

restrictions reduce engine noise and increase the chances of the

crew spotting marine mammals, thereby reducing the probability of

a collision between the vessel and animal (Vanderlaan and Taggart,

2007; Gende et al., 2011). Humpback whale-vessel collisions are

much more likely to occur at speeds of more than 12 knots (6.2 m/

s), independent of the size of the vessel (Gende et al., 2011; Currie

et al., 2017). A forecast model suggested that the best compromise

between noise exposure time and noise level is achieved at a cruising

speed of 8 knots/h (McKenna et al., 2013).

This study provides baseline data of the relationships between

underwater noise and dolphins in the HZMB tunnel waters of the

PRE. However, the data are limited by the single monitoring site close

to the tunnel and the two-week monitoring period for each season.

Future research could improve information on IPHD acoustic

activity and habitat use by increasing the number of monitoring

sites and extending the monitoring duration to several years. In

addition, the noise source is not solely correlated with traffic flux but

also with the distance between the boat and the monitoring site, the

boat type, the vessel traffic on the bridge, weather conditions, and the

noise of buoy chains. Consequently, an attempt should be made to

establish a noise calculation model to thoroughly assess the impact of

various underwater acoustic sources on IPHD, including fish chorus,

ship noise, and tunnel operation noise.
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