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Generalised deep learning
model for semi-automated
length measurement of fish
in stereo-BRUVS
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Scott Bainbridge3 and Marcus Stowar3

1Curtin Institute for Computation, Curtin University, Perth, WA, Australia, 2Curtin University, School of
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Assessing the health of fish populations relies on determining the length of fish in

sample species subsets, in conjunction with other key ecosystem markers;

thereby, inferring overall health of communities. Despite attempts to use

artificial intelligence (AI) to measure fish, most measurement remains a manual

process, often necessitating fish being removed from the water. Overcoming this

limitation and potentially harmful intervention by measuring fish without

disturbance in their natural habitat would greatly enhance and expedite the

process. Stereo baited remote underwater video systems (stereo-BRUVS) are

widely used as a non-invasive, stressless method for manually counting and

measuring fish in aquaculture, fisheries and conservation management.

However, the application of deep learning (DL) to stereo-BRUVS image

processing is showing encouraging progress towards replacing the manual

and labour-intensive task of precisely locating the heads and tails of fish with

computer-vision-based algorithms. Here, we present a generalised, semi-

automated method for measuring the length of fish using DL with near-human

accuracy for numerous species of fish. Additionally, we combine the DL method

with a highly precise stereo-BRUVS calibration method, which uses calibration

cubes to ensure precision within a few millimetres in calculated lengths. In a

human versus DL comparison of accuracy, we show that, although DL

commonly slightly over-estimates or under-estimates length, with enough

repeated measurements, the two values average and converge to the same

length, demonstrated by a Pearson correlation coefficient (r) of 0.99 for n=3954

measurement in ‘out-of-sample’ test data. We demonstrate, through the

inclusion of visual examples of stereo-BRUVS scenes, the accuracy of this

approach. The head-to-tail measurement method presented here builds on,

and advances, previously published object detection for stereo-BRUVS.

Furthermore, by replacing the manual process of four careful mouse clicks on

the screen to precisely locate the head and tail of a fish in two images, with two
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fast clicks anywhere on that fish in those two images, a significant reduction in

image processing and analysis time is expected. By reducing analysis times, more

images can be processed; thereby, increasing the amount of data available for

environmental reporting and decision making.
KEYWORDS

stereo-BRUVS, deep learning, automated fish length, photogrammetry, machine
learning, cameras
1 Introduction

It is estimated that one third of global fish stocks are overfished

(Duarte et al., 2020) which impacts the ecosystem services provided

by fish (Steneck and Pauly, 2019). Numerous management actions

at local, national and international scales will be required to rebuild

fish stocks by improving governance, including lowering fishing

pressure; implementing harvest controls which limit the types of

gear used and the size and number of fish caught; and the use of

closed-area management or sanctuaries (MacNeil et al., 2020;

Melnychuk et al., 2021). Fishery-dependent information from

traps, hook and line, trawls and nets has provided much of the

data for monitoring the status of fish populations. With the

implementation of closed areas and sanctuaries, there has been an

increase in the interest of fishery-independent sampling techniques,

as many of the conventional sampling techniques are not

permissible. Fishery-independent techniques have largely been

based on underwater visual census (UVC) (Brock, 1954). Baited

remote underwater video systems (BRUVS) (Ellis and DeMartini,

1995; Cappo et al., 2001; Cappo et al., 2003) can collect a relative

abundance of data on a range offish species from numerous habitats

and depths (Harvey et al. 2021). While estimates of abundance are

an important metric, accurate and reliable information on the

length and size of fish within wild populations is more useful

(Jennings and Polunin, 1997; Jennings and Kaiser, 1998). This is

because it has been shown that fishing and other impacts decrease

the mean length, length frequency and biomass of fish populations

(Roberts, 1995; McClanahan et al., 1999). For UVC, biomass is

calculated from fish length based on visual estimates by SCUBA

divers (Wilson et al., 2018) with the standing biomass of fish

thought to be a good metric for expressing the health of fish

populations (Friedlander and DeMartini, 2002; Seguin et al.,

2022). But these estimates have been demonstrated to be neither

accurate nor precise, which can affect biomass estimates (Harvey

et al., 2002). Stereo video systems are a more accurate and precise

technique for non-destructively estimating the lengths of fish

(Harvey and Shortis, 1995; Harvey et al., 2001a; Harvey et al.,

2010) and have been modified for use by SCUBA divers (Goetze

et al., 2019), remotely operated vehicles (ROVs) (Schramm et al.,

2020; Jessop et al., 2022; Hellmrich et al., 2023) and BRUVS

(Harvey et al., 2007; Langlois et al., 2020; Harvey et al. 2021).

Determining the size and quantity of fish populations in a

specific area is crucial to understanding and assessing the health of
02
fish stocks so that informed decisions can be made about

sustainable fishing and management practices (Pauly et al., 2002).

Fish measurement provides important information in the context of

stock assessment by monitoring changes in the size of fish, which

gives insight into the impacts of fishing and other factors on the

overall health of fish communities and ecosystems.

Automation has the potential to improve the accuracy,

efficiency and consistency of fish measurement (e.g. Shortis, 2015;

Marrable et al., 2022) to reliably increase the accuracy of stock

assessment information that can then be used to support and design

improvements to sustainable fishing practices which protect fish

populations and ecosystems. Some benefits of using automation

include: 1) improved accuracy – automated systems can measure

fish more precisely than manual methods, reducing the potential for

human error; 2) increased efficiency – automated systems can

process large numbers of fish much more quickly than manual

methods, reducing the time and effort required for stock

assessments; 3) consistent data – automated systems can provide

consistent and standardised measurements, reducing the potential

for variation due to differences in the way measurements are taken;

4) reduced labour – automated systems can reduce the need for

manual labour, freeing up resources for other tasks and potentially

reducing costs.
1.1 Traditional approaches to
measuring fish

Existing methods that enhance manual measurement by using

automation and computer vision have the potential to support

fishing operations and ecosystem monitoring; however, these

remain inaccessible to most small-scale fisheries due to their

associated high cost (Andrialovanirina et al., 2020). Even systems

that use remote surveillance monitoring to measure, process and

count discarded fish via video record once the vessel has returned to

port have shown that the analytical processing time required is

equally as labour intensive (Needle et al., 2015; French et al., 2019).

Such examples provide further justification for the need of

computer vision tools to increase the efficiency monitoring for

managing vessel operations. Similar challenges are faced by those

conducting research in aquaculture and fish ecology. There is a

seemingly exponential trend in the availability of automated fish

detection tools for researchers, yet their documented use is still
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minimal, with researchers also requiring ways to measure and track

fish (Bradley et al., 2019; Lopez-Marcano et al., 2021).

Assessing the health of fish populations depends on

determining the average length of fish in sample population

subsets and inferring health in conjunction with other key

ecosystem markers. Methods applying the length-based

measurement of fish for assessing the health of fisheries have been

around for decades (Pauly and Morgan, 1987) with few

technological advancements until recently. Manual measurement

remains the principal tool in collecting essential management

information on board fishing vessels. However, this method is

documented as highly time consuming and involves considerable,

and potentially harmful, handling of fish to gain accurate

measurements (Upton and Riley, 2013). Traditionally, evaluating

stock levels has relied on manually measuring fish length, as it is

frequently the only possibility where monitoring is limited and

collecting length measurements is easier than quantifying a total

catch (Rudd and Thorson, 2018). However, this method does not

consider the fluctuations in fish recruitment and death rates over

time, which is crucial for comprehending the indirect impacts of

fishing on predator–prey dynamics and for identifying the factors

that influence the structure of fish communities on a larger scale

(Jennings and Polunin, 1997). Average length is also considered an

operational indicator of fishing impact; whereas indices on the

composition of species assemblage are difficult to interpret, average

length is well understood and reference points can be set (Rochet

and Trenkel, 2003). As well as causing impacts on targeted species,

commercial fishing affects bycatch, including by-product and

discarded/released species; and sometimes habitats, when fishing

gear (e.g. demersal trawling) interacts with the sea floor or benthic

zones (Little and Hill, 2021). An increasing range of mechanisms

and technical tools is being used to reduce interactions with

seabirds, marine mammals, reptiles and other vulnerable species.

Such bycatch-reduction measures include tori lines, sprayers, and

seal and turtle excluder devices (Cresswell et al., 2022). In Australia,

as around the world, guidelines and rules on fish measurement

methodology and length quotas are enacted and overseen

by governments1.
1.2 The move toward automation

Monitoring devices and advances in data processing and

analysis techniques can, and should, form part of an effective

monitoring approach. However, data or capacity limitation is

widespread in global fisheries resulting in ineffective or non-

existent management as a result of this lack of data and/or an

inability to generate statistical estimates of stock status. Significant

improvements in management outcomes, leading to conservation

and livelihood benefits, could be achieved through cost-effective

analytical approaches; these exist, but are hampered by a range of

challenges, including data availability and requirements; resources
1 https://www.daf.qld.gov.au/business-priorities/fisheries/recreational/

recreational-fishing-rules/measuring.
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for processing and analysis; and a lack of understanding of costs and

advantages (Dowling et al., 2016; Cresswell et al., 2022). Deep

learning (DL) can address these challenges by replacing the

manual, labour-intensive task of precisely locating the heads and

tails of fish with computer-vision-based algorithms (e.g. Marrable

et al., 2022). White et al. (2006) were the first to test this method

with computer vision on a fishing vessel. Measurement using digital

imagery is a growing field and has been successfully implemented

with both single image (e.g. Lezama-Cervantes et al., 2017;

Monkman et al., 2019; Andrialovanirina et al., 2020; Wibisono

et al., 2022), and stereo image (e.g. Johansson et al., 2008; Shafait

et al., 2017; Suo et al., 2020; Connolly et al., 2021; Lopez-Marcano

et al., 2021; Marrable et al., 2022). Datasets now also exist to

explicitly support the development of DL algorithms; for instance,

segmentation, classification and size estimation (e.g. DeepFish,

Garcia-d’Urso et al., 2022).

Automated fish detection has been demonstrated using a range

of computer vision methods of measurement targeting single

species for aquaculture (Atienza-Vanacloig et al., 2016; Shi et al.,

2020; Yang et al., 2021). Some invasive methods of measurement

involve channelling fish past stationary cameras (Miranda and

Romero, 2017; Shafait et al., 2017), or methods which use active

sources of light, such as sonar (Uranga et al., 2017), which are

potentially stressful to the fish. Furthermore, removing fish from the

water (White et al., 2006) or measurement on board trawlers

(Monkman et al., 2019) adds to fish mortality. These challenges

highlight the importance of developing automated methods for

non-invasive means of measurement, such as BRUVS.

Although there have been advances in using DL for image

analysis, video imagery presents additional complexities and

requirements, particularly with regard to curated and structured

data (e.g. Marrable et al., 2022).

Recent reviews of machine learning in aquaculture found that

there is a need for DL and neural networks to optimise current

approaches but have also identified certain pitfalls in the process,

including noise, occlusions and dynamic viewing spaces (Yang

et al., 2021; Zhao et al., 2021).

Stereo baited remote underwater video systems (stereo-BRUVS)

are widely, and increasingly, used as a non-invasive, stressless

method for counting and measuring fish in aquaculture, fisheries

and conservation management (Harvey and Shortis, 1995; Harvey

et al., 2021). Recently, Marrable et al. (2022) demonstrated the

application of DL to stereo-BRUVS imagery for the semi-

automation of fish identification and early success with species

identification. Extending the application of DL to automate fish

length measurement would greatly enhance and advance marine

environment monitoring, speeding up data collation on localised

fish populations and increasing the amount of data that can be

processed and used for environmental reporting and decision

making. The current limitation of BRUVS is that the data

processing is a highly time-consuming manual exercise, prone to

human error and is costly, delaying the production of length data

and limiting how much BRUVS imagery can be processed

(Connolly et al., 2021; Marrable et al., 2022). However, as with

species identification, mean length data is highly valuable for

determining frequency distributions of fish populations and the
frontiersin.org
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spatial and temporal changes required for environmental

assessment and reporting. In addition to cost and processing

time, BRUVS is limited by the MaxN ecological abundance

metric (Whitmarsh et al., 2017), creating an opportunity for a

much larger use of the data held within a video, such as including

fishery-independent assessments of fishing pressure. Recent use of

open-source image processing software to measure fisheries catch

has also been successful for a wide range of fish sizes

(Andrialovanirina et al., 2020).
1.3 A semi-automated and generalised
method of length measurement

Here we present a semi-automated and generalised method of

measuring the length of fish using DL with near-human accuracy

for numerous species offish across a wide range of habitats. Speed of

analysis is therefore much increased, and demonstrates progress

towards the use of stereo-BRUVS for length measurement in

fisheries, aquaculture and marine ecology research applications.
2 Method

In this section, we describe the DL method used for locating the

heads and tails of fish, combined with a highly precise stereo-

BRUVS calibration method method (Shortis, 2015), which makes

use of calibration cubes to ensure precision in calculated lengths to

the nearest millimetre. Once trained and deployed, this semi-

automated approach solves the problem of finding the same fish

in both images; that is, the ‘fish correspondence challenge’, with

ecologists only having to select the same fish in the left and right

images by clicking anywhere on the body, eliminating the need for

four very precise clicks on the head and tail in both images. The

method is illustrated in Figure 1 and examples of the results

in Figure 2.
2 https://cocodataset.org.
2.1 Datasets

The fish length measurement data made available for this study

study (Australian Institute Of Marine Science, 2020) was taken

from OzFish stereo-BRUVS imagery along with annotations

conducted by fish ecologists using EventMeasure. In order to

develop a training dataset for the DL model, the head and tail

annotations, which were initially made manually by the ecologists,

were extracted by exporting the frame number and pixel location of

each annotation in the frame from the data files.

The original OzFish dataset has 37695 measurements inside

unique bounding boxes which indicate the location and extent of a

fish and include markers which identify its head and tail. Crops

from pairs of stereo images were taken from the full images to create

head and tail stereo pairs. Small fish, or ones far away in the

background, were excluded by filtering out any fish objects smaller

than 200 pixels in either height or length. Another filter was applied

to exclude fish that had been measured with a root mean square
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(RMS) value >20 mm. The RMS value is calculated by the

photogrammetry library in EventMeasure and is an indicator of

how close two corresponding points in each image are to the

epipolar line calculated by the opposite point. An RMS value

greater than 20 mm is considered by SeaGIS (outlined in the

EventMeasure software manual) as an imprecise measurement or

error in calibration and, therefore, was discarded in this study. This

reduced the number of images for training to 15558 stereo pairs of

cropped fish images.
2.2 Data preparation

The annotated data in OzFish did not include head or tail labels

and does not store the annotations in any particular order. There

was no consistent order to which the heads and tails were labelled.

Head and tail labels are required to train the DL model to classify

them. Therefore, a systematic review of the images was conducted

to reorder many of the annotations, resulting in a dataset in which

two labels, ‘head’ and ‘tail’ in consistent order, were reliably applied

to all of the points for training the DL model.

The final step, before training and testing the system, was to split

the data between ‘in-sample’ and ‘out-of-sample’ datasets. The videos

in OzFish have had the metadata removed before publishing,

although the data were given prefix letters in their filenames to

indicate they were taken from different deployments and at different

locations. Calibration files required for photogrammetry were only

published for the images with the prefix A and E. As these calibration

files are needed to do a human versusmachine comparison, they were

withheld from any training or validation and made up the out-of-

sample data used for testing algorithm performance. Images with

prefix B and G were not published with calibration files; however,

these files were not needed for training the head and tail detection

model and made up the in-sample training data.

After filtering the data, a total of 13555 stereo pairs of cropped

fish images remained with correct head and tail labels. The available

data for training and testing amounted to 59 unique family, 153

unique genus and 319 different species. The in-sample data were

split 70% (5348 stereo pairs) for training, and 30% (2292 stereo

pairs) for validation and hyperparameter tuning. In this study, the

calibration file verification process, taken to ensure that the ground-

truth length in OzFish dataset and calculated length using

photogrammetry was consistent, resulted in approximately 30%

of the out-of-sample data (1761 stereo pairs) being removed. The

remaining out-of-sample data comprised 4154 stereo pairs.
2.3 Model training

This study used You Only Look Once (YOLO; Redmon et al.,

2016) a type of DL model used in object-detection algorithms.

Specifically, the YOLOv5 model, which has been pre-trained on the

Common Objects in Context2 (COCO) dataset, was chosen for its
frontiersin.org
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ability to handle various sizes, numbers of classes, and

computational requirements. The variant used in this study was

the ‘YOLOv5 small’ model. To adapt the model for head and tail

detection, transfer learning was employed, which built on

knowledge gained from the pre-trained model while reducing the

amount of training data and time needed. A subset of the in-sample

dataset was used to retrain the model according to the standard

procedure outlined on the YOLOv5 website3.

The YOLOv5 model needs to be trained by defining the extent

of an object of interest (heads and tails in this case) by defining a

bounding box. Therefore, the head and tail points in the training

data were converted to bounding boxes by defining a box of 25 × 25
3 https://github.com/ultralytics/yolov5 Access Date (Nov 22, 2022).
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pixels around the head and tail points, respectively. Finally, the in-

sample training and validation fish crop images with head and tail

labels were used to train the YOLOv5 small model. The early-

stopping method was also implemented in this study to avoid

overfitting the model.
2.4 Model prediction

The head and tail predictions from the object-detection model

were converted to overall fish length by first taking the bounding

box predictions from the trained DL model and converting them to

points by using the centre location of the box in stereo image pairs.

On occasions when the DL model failed to find one or two of either

a head or a tail in both images, the location of the missing feature
FIGURE 1

Illustrates the workflow for data preparation, model training and model evaluation.
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was estimated by taking the reflection of one the classifier feature

locations in the bounding box of the fish. On occasions when the

model returned more than one candidate for a head or tail, the one

with the highest confidence score was chosen. On the occasions

when predicted head and tail points were inconsistent in both left

and right cropped fish images; for example, if head or tail points

were swapped, the predicted result was discarded as an incorrect

measurement. Once the four required points were returned by the

model, the camera calibration files were used along with

EventMeasure’s photogrammetry library to calculate the length of

the fish.
2.5 Model evaluation

The out-of-sample dataset was used for evaluating the

performance of the model and gives an indication of model

generalisability and performance in different domains. Inference

for both heads and tails was performed on the 4154 out-of-sample

data (stereo pairs of cropped fish images), and heads and tails pixel

coordinates were converted to the original scale of stereo-BRUVS

imagery. EventMeasure’s stereophotogrammetry tool was used to

calculate the length of a fish from the four predicted points of head

and tail pairs. Two hundred predictions were removed by the post-

processing steps described in the previous section, and the

remaining 3954 automated measurements were then compared to

the manual measurements made by the fish ecologists. Results are

presented in Figures 3, 4.
2.5.1 Recall, Precision and F1 Score
Simplifying model performance for fish head and tail detection

into a single metric can be beneficial. One such metric is the F1
score, which is a combination of recall and precision. Recall is the

likelihood of detecting all actual positive instances, while precision
Frontiers in Marine Science 06
is the proportion of true positive (TP) predictions out of all positive

predictions. False negative (FN) represent the number of

predictions the model missed and false positive (FP) predictions

are incorrectly predicted results. The F1 score is calculated by taking

the harmonic mean of recall and precision.

The recall, precision and F1 score for fish head and tail detection

are presented in Table 1.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)
FIGURE 3

Human versus DL comparison showing how DL and
photogrammetry-derived length compares with human and
photogrammetry-derived length for the same fish. The Pearson
correlation coefficient is 0.99 indicating that even though DL
sometimes overestimates or underestimates the length compared
with a manual measurement by an ecologist; with repeat
measurements, the total length estimates average to be very similar.
FIGURE 2

Presents four out-of-sample examples of automated fish length measurements using the method described in this study. The example presents fish
of different sizes, habitat and distance from the camera.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1171625
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Marrable et al. 10.3389/fmars.2023.1171625
F1 =
2� Recall � Precision
Recall + Precision

(3)
2.5.2 Human–machine comparison
The Pearson correlation coefficient used for the human–

machine comparison was calculated by:

r = o(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(xi − �x)2o(yi − �y)2

q (4)

Where:
Fron
x are the individual DL inference length results
�x is the average DL length

yi are the individual human annotated length results
�y is the average human annotated length
3 Results

The following section presents the results of the human–

machine comparison by comparing the machine learning and

photogrammetry-derived length measurements with the

ecologists’ manual measurements (Figure 3) and the density of
tiers in Marine Science 07
those measurements and compared in Figure 4. The results

presented here are calculated from the out-of-sample data.

Table 1 shows the DL precision (P), recall (R) and F1 for heads,

tails and the combination of both.
4 Discussion

The semi-automated method presented in this paper

demonstrates the potential to rapidly increase analysis time and

decrease reporting time for assessing fish biomass. Challenges

remain for a completely autonomous solution, some of which are

discussed below.
4.1 Semi-automation of length
measurement

The challenge of applying this model in real-world scenarios is

that the model cannot currently match the fish in the corresponding

left and right images. This was not a problem when building and

testing the model, as the data were already analysed by experienced

ecologists who had matched the stereo image pairs. To address this

challenge, the DL model was adapted to communicate with Event

Measure; wherein, the DL model requires an ecologist to click

anywhere on the body of the fish in both images. Inference on the

length is conducted after the ecologist has solved the image

correspondence problem by identifying the same fish in each of the

left and right images. The fish is then precisely cropped from the

stereo-BRUVS image using the DL method described in Marrable

et al. (2022), which places a bounding box over the fish, then parsed

by the head and tail DL model. Without isolating the fish first, the

model returns all of the heads and tails of all the fish it finds with no

correspondence data to match them. The head and tail locations are

returned to EventMeasure which automatically calculates the length

of the fish using its photogrammetry library. This reduces the number

of mouse clicks on the screen, from four precise clicks (i.e. left head,

left tail, right head, right tail) to two. Additionally, placing clicks

anywhere on the body is significantly faster and requires much less

precision. This semi-automated method of length measurement has

the potential to significantly increase analysis speed.

Furthermore, by requiring ecologists to choose the corresponding

fish individuals, users can draw on their contextual knowledge to wait

for a moment when a fish is the best pose for measurement and not

occluded by other fish, seagrass, the BRUVS bait bag or other objects.

This reduces false positive detection. Context is something that is not

currently possible by using computer vision alone.
TABLE 1 Deep learning precision (P), recall (R) and F1 for classification.

Feature Images Labels P R F1

Head 8308 8308 77.50% 70.50% 73.83%

Tail 8308 8308 77.20% 69.50% 73.15%

Both 8308 16616 77.40% 70.00% 73.51%
FIGURE 4

Histogram of the human versus DL comparison demonstrating the
density of the number of length measurements. A higher density of
points indicates the total number of measurements aggregate to
close agreement.
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4.2 Sources of error

The DL model cannot correspond the head and tail of a given fish

and, therefore, the largest source of error is incorrect correspondence;

that is, when a head and tail pair are matched to two different fish.

This is because the model searches within the bounding box for

features that look like heads and tails and returns the match with the

highest confidence. This works well when there is only one matching

pair; however, there are occasions when there are heads and tails

belonging to many fish. The model has no knowledge of

correspondence and so matches them based on the highest

confidence level, and sometimes pairs them incorrectly. An example

of this is seen in Figure 5. This results in either the incorrect length

being calculated from the photogrammetry, or the RMS value

returned from EventMeasure being >20, so no length is reported.

Figure 5A shows an example where two fish tails fall within the

bounding box and the model identifies the wrong tail. This false

positive is seen most commonly where fish are schooling and

swimming between 30° and 45° to the plane of the camera. Angles

within this span produce a large bounding box with more likelihood

that tails from other fish will be captured. One way to reduce this

effect is to automate a rotation of the bounding box, Figure 5B, or the

image in sympathy with the orientation of the fish to reduce the

empty space in the bounding box. Automating this process remains a

challenge, as even establishing that a false positive detection has

occurred would require logic and processing beyond the capability of

the current model. There are published detection models that use

rotated labels (Li et al., 2018) for ship identification in satellite

images; but, as yet, YOLOv5 does not have the ability to train using

rotated bounding boxes. Addressing these false positive cases

remains the subject of ongoing research.
4.3 Stereo calibration

Harvey and Shortis (1998) highlight the importance of precise

measurement systems for accurate length. This was also the

objective of this approach by using the OzFish dataset for model

training and validation. The OzFish data were calibrated using the

calibration cube method (Shortis, 2015) which is more accurate and

precise than using 2D calibration patterns as reported by Boutros

et al. (2015) in their comparison study.
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4.4 Model generalisability

Previous published models capable of automating the length

measurement of fish have either used a single camera out of water

(Monkman et al., 2019); been limited to a single species (White et al.,

2006); or used less accurate stereophotogrammetry calibration

methods (Tonachella et al., 2022). The model presented in this study

was trained and tested on 319 unique species of fish, making it much

more generalisable than any other previously published model. The

data used to train this model was restricted to the species in the OzFish

dataset, which includes those mostly found along the coast of Western

Australian. However, the species richness and diversity shows evidence

that the model generalises across different species with varying colour,

texture and morphometrics. An effort to separate in-sample and out-

of-sample data was made to give some indication of model

generalisability by training and testing to data collected at different

dates and locations. Howwell themodel works with species outside the

OzFish data will be the focus of future work. For applications in marine

environments with species not included in the OzFish data, the

method described in this study should be repeated with a new

training corpus that includes species in which users wish to measure.
4.5 Challenges with data quality

One reason for choosing the OzFish dataset for DL training was

because the data were annotated by expert fish ecologists. However,

when auditing the DL data there were still errors in the labelling.

Some errors included head and tail points that seemed to be

systematically shifted a few pixels away from the head and tail of

the fish, which may have been caused by incorrect synchronisation

of the stereo-BRUVS. There were also some instances where labels

were randomly out of place, such as labels placed on a rock.

One issue that continues to be a challenge for computer-vision-

based DL is that it is so far incapable of using context in the way fish

ecologists do to help them label fish. For example, in the OzFish

dataset, where a fish was partially occluded by an object, labels were

placed where heads or tails would logically be expected, estimated by

ecologists from experience and numerous previous observations of

similar fish. When such an example is viewed by a computer-vision

algorithm which, unlike an ecologist, cannot extrapolate from the

context, the algorithm may see a label on a rock and interpret that
BA

FIGURE 5

Example of a false positive detection of a tail leading to an incorrect length measurement; (A) two fish tails fall withinthe bounding box and the
model identifies the wrong tail. (B) the yellow box demonstrates that rotating theobject-detection bounding box, would eliminate the second tail
from the area and correct the false tail label.
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rock as a fish head or tail. In such cases, those data must be removed

as they would incorrectly train the DL model to detect some rocks as

fish heads and tails. Additionally, there were many instances of

seemingly very small fish labelled with heads and tails which were

very hard to distinguish between in static images. However, upon

viewing the moving video, swimming behaviours clearly indicated the

direction fish were swimming in, which made head and tail

identification easy to the human eye. Although there are published

DL tracking algorithms (Bertinetto et al., 2016; Hu et al., 2022),

YOLO-based methods only consider static images for training or

inference. Combining tracking with head and tail detection will be the

focus of future work so that numerous length measurements of the

same fish can be made to calculate the average size, a method that is

shown to be more statistically robust and less prone to measurement

error (Harvey et al., 2001b). Validation experiments of measurements

from stereo-BRUVS (Harvey and Shortis, 1995; Harvey et al., 2003;

Harvey et al., 2010) have been conducted using three or more repeat

measurements of fish. However, this is seldom done when conducting

field surveys due to the extra labour required.
4.6 Combining optical and acoustic
sampling methods

In recent years, size-spectrum models derived from acoustic

surveys have emerged as essential tools for fish stock assessment

and ecosystem-based fisheries management. Acoustic surveys possess

the advantage of rapidly and efficiently covering vast spatial scales.

However, stationary video platforms, such as stereo-BRUVS, are

constrained by a limited field of view and can only monitor a small

area around the camera. Acoustic surveys also face challenges,

including difficulties in discriminating between fish species and

detecting fish close to the seabed or within dense schools.

Size and shape information of fish targets is extracted from echo

data by adjusting model parameters, such as growth rates, mortality

rates, and species-specific traits, to match observed data (Edwards

et al., 2017; Froese et al., 2019). Calibration and validation of these

models often necessitate biological samples, which are invasive due to

the physical capture and potential harm to fish during the process.

Assessing fishery resources in reef ecosystems, where obtaining

biological samples is sometimes prohibited, remains challenging. To

address these limitations, optic-acoustic methods combine video

footage and acoustic measurements (Ryan and Kloser, 2016; Demer

et al., 2020). Underwater cameras or video systems, either mounted

on a research vessel, towed platform, or remotely operated vehicle

(ROV), capture images or footage of fish, providing high-resolution

information on size, shape, colour, and behaviour, which aids in

species identification and refining size distribution estimates

without the need for biological samples.

The automated length measurement offish in stereo-videos using

the method described in this study could be integrated with the optic-

acoustic approach to capitalise on the strengths of both methods.

Combining acoustic surveys with stereo-BRUVS, such as the

preliminary work by Landero-Figueroa et al. (2016), or other

sampling techniques can help overcome the limitations of each

method and provide more accurate and comprehensive information
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on fish populations for stock assessment and ecosystem-based

fisheries management. This non-invasive approach enables

continuous monitoring of fish populations without harming the

organisms or their habitats, offering a promising alternative for

sustainable fishery management.
5 Conclusion

The semi-automated length measurement method presented

here builds on and advances previously published DL-based fish

detection from stereo-BRUVS imagery (Marrable et al., 2022). This

new method combines that fish detection approach to isolate and

crop individual fish from a busy scene with a new DL model for

detecting the head and tail and applying photogrammetry to

determine fish length measurements.

Although not completely autonomous, the machine-assisted, semi-

automated labelling approach solves both the object correspondence

challenge and allows for expert contextual knowledge to choose which

fish (and in which pose) are sent for analysis using DL. This is expected

to significantly reduce labour and analysis time by speeding up the

manual process of precisely locating the head and tail of the fish in both

images by carefully placing four mouse clicks on the screen, to two fast

clicks anywhere on a fish while still using expert knowledge to truth

and validate the result. By accelerating stereo-BRUVS analysis, more

imagery can be processed; thereby, increasing the amount of data

available for environmental reporting and decision making.
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