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Fermented soybean meal and soybean protein concentrate are products of

soybean that have been processed physically or biologically, and their use as an

alternative to fish meal results in a significant reduction in the effects of anti-

nutritional factors (ANFs) in soybean on aquatic species. Replacing fish meal with

soybean protein concentrate and fermented soybean meal can meet the high

protein requirements of carnivorous fish while effectively reducing aquaculture

costs; however, excessive substitution can also cause economic losses. In this

study, we used transcriptome sequencing to investigate the impacts of

fermented soybean meal and soybean protein concentrate on the growth and

physiology of pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus

lanceolatus ♂) juveniles and to examine the mechanisms by which fermented

soybean meal and soybean protein concentrate impair the intestinal condition of

fish. Originally weighed 12.55 ± 0.06 g, the selected pearl gentian groupers were

categorised into three treatment groups: one group was fed fish meal-based

diets (FM, control group), one group was fed fish meal- and soybean protein

concentrate-based diets (SPC40) and one group was fed fish meal- and

fermented soybean meal-based diets (FSBM40), with the same crude protein

and crude fat content in all three diets. The experiment was conducted for 10

weeks. The growth results showed that both the fermented soybean meal and

soybean protein concentrate diets significantly inhibited the growth of the fish.

Based on the results of enzyme activity, substance content and gene expression

levels associated with intestinal damage and intestinal inflammation, it is highly

likely that the fermented soybean meal and soybean protein concentrate diets

affected the intestinal health of the fish and triggered intestinal inflammation.

This study provides a theoretical basis to further explore the mechanism of

soybean-initiated intestinal problems in fish.

KEYWORDS

Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus ♂, soybean protein concentrate,
fermented soybean meal, intestinal inflammation, transcriptome sequencing
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1 Introduction
Many aquaculture species are carnivorous, and their traditional

feeds require high levels of fish meal and fish oil. The booming

aquaculture fuelled the market demand for fish meal, thus causing

unbalanced growth between fishing for feed and food, decreasing

the productive potential of fisheries and accelerating the depletion

of traditional fisheries. Therefore, it is detrimental to the future

growth of aquaculture (Zhang et al., 2020). Replacing fish meal with

plant-based ingredients in aquaculture is feasible. Soybean meal is a

common plant-based feed ingredient in aquatic feeds. However, it

contains saponins, lectins, soybean antigenic proteins, trypsin

inhibitors and other anti-nutritional factors (ANFs) that have

been shown to adversely affect the digestion and absorption of

some aquatic species (Sørensen et al., 2011). Soybean protein

concentrate extraction mainly adopts the alcohol process, and its

protein content is further increased and ANFs are substantially

reduced (Yang et al., 2014). The level of ANFs in fermented soybean

meal produced by microbial fermentation of soybean meal is also

significantly reduced compared to soybean meal. During the

fermentation process of soybean meal, soybean proteins can be

broken down into smaller peptide proteins that are more easily

digested and absorbed (Mugwanya et al., 2022). These products

obtained by processing soybean meal through different processes

have been used as alternative protein sources to fish meal in the

culture of a variety of aquatic fish species.

Replacing fish meal with soybean meal and its processing

products can essentially meet the nutritional requirements of

most aquatic species’ diets (Król et al., 2016; Uczay et al., 2019).

However, fish farmed with high levels of soybean meal instead of

fish meal often suffer from reduced growth performance, weakened

immunity, disruption of body metabolism, and other adverse

reactions during the breeding process. The intestinal mucosal

barrier of fish is found to be damaged and intestinal health is

affected, leading to intestinal inflammation (Rumsey et al., 1994;

Urán et al., 2008). Studies have shown that replacing fish meal with

soybean meal often causes soybean meal-induced enteritis (SBMIE)

in carnivorous fish. SBMIE is a non-infectious subacute enteritis

that triggers shortening of fish distal intestinal mucosal folds,

widening of the lamina propria, reduction of absorptive cell

vacuoles and inflammatory cell infiltration. This will greatly affect

the growth and survival of fish and reduce production efficiency

(van den Ingh et al., 1991). Numerous studies have shown that

replacing fish meal with excessive amounts of soybean protein

concentrate or fermented soybean meal can also affect the growth

performance of fish by disrupting their intestinal structure and

promoting an inflammatory response (Kissil et al., 2000; Deng et al.,

2006; Shiu et al., 2015; He et al., 2020). The intestinal inflammation

caused by soybean processing products following this substantial

reduction in ANFs requires further study.

The intestine is the main digestive and absorption organ of fish,

and the intestinal mucosa struggles in the front line against
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pathogens. An intact intestinal mucosal epithelial structure and

sound intestinal function are particularly important for the

intestinal health of fish (Brandl et al., 2017). Feeding excessive

plant-based ingredients, such as soybean meal, can damage the

fish’s intestinal tract and also affect its intestinal permeability,

allowing pathogens to invade (Hu et al., 2016). Moreover, the

importance of the vast microbial communities in the intestines to

maintain the integrity of the intestinal structure and function

cannot be ignored, and harmful microbial infections resulting

from an imbalance in the intestinal flora trigger the host to

perform an inflammatory response (Nayak, 2010). The causes and

specific mechanisms of intestinal inflammation in fish caused by the

replacement of fish meal with plant-based raw materials, such as

soybean meal, are still unclear, and past studies have tended to focus

on the effects of ANFs in soybean meal on fish intestinal (Krogdahl

et al., 2010). Fermented soybean meal and soybean protein

concentrate contain fewer ANFs, and relatively little research has

been done on their effects on fish intestinal health.

Pearl gentian grouper (Epinephelus fuscoguttatus ♀ × E.

lanceolatus ♂) is an excellent carnivorous marine hybrid fish that

combines the excellent quality of both parents. With fast growth

and strong disease resistance, the pearl gentian grouper has

gradually become the largest grouper species cultured in China

(Zhang et al., 2021). Research concerning the epistasis of pearl

gentian grouper at the transcriptional level is relatively scarce and

needs to be further improved. Since the advancement of the high-

throughput sequencing technique, transcriptome sequencing has

been commonly used in gene expression regulation. Comparative

transcriptomics is now common in studying various aquatic species,

which includes various aspects such as growth and development,

toxicology and immune response (Chen et al., 2020). In this study,

we fed pearl gentian grouper with soybean protein concentrate or

fermented soybean meal in place of 40% fish meal, aiming to

compare the differences in the distal intestine of fishes eating

these two soybean processing products at the transcriptome level,

analyse the mechanisms that induce enteritis and determine the

impact of the highly replaced fish meal with these two soybean

processing products on the growth and physiology of pearl

gentian grouper.
2 Materials and methods

2.1 Experimental diets

There were three experimental diets, among which the control

feed (FM) was mainly made of fish meal, while soybean protein

concentrate (SPC40) or fermented soybean meal (FSBM40) was

employed to substitute 40% fish meal protein in the remaining two

groups, respectively. The contents of crude protein and crude fat

in the three diets were the same. SPC40 and FSBM40 groups were

supplemented with appropriate amounts of lysine and methionine

to maintain equal lysine and methionine contents in the three
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diets. Table 1 shows the details of the diet formula and the

approximate ingredients. Accurate weighing of raw materials

that have been ground into fine powder according to the

formulation and then mixed uniformly using a stepwise

expansion method. Then, the weighed fine powder, fish oil,

soybean oil, soy lecithin and an appropriate amount of water

were mixed sequentially according to the formulation before being

granulated by the twin-screw extruder. The granules with

diameters of 2.0 mm and 3.0 mm were put at −20°C for later

experiments after being air-dried to about 10% moisture.
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2.2 Feeding management

The pearl gentian grouper juveniles used in the study were

purchased from Zhanjiang, Guangdong, China, and the culture

experiments were conducted in an indoor culture system at the

Zhanjiang Marine Biological Research Base, China. Seven hundred

and twenty fish weighing 12.55 ± 0.06 g were equally and randomly

divided into 12 tanks (three treatment groups, four biological

replicates per treatment group). The tank has a capacity of one

cubic meter (stocking density of 60 fish per cubic meter of water)

and is equipped with oxygenation equipment to prevent dissolved

oxygen levels from falling below 7 mg L−1. The fish were fed

commercial feeds containing ≥520 g/kg of crude protein

and ≥130 g/kg of crude fat content for one week before the

culture experiment. During the culture process, satiety feeding

was provided daily at 8:00 and 16:00 with a water temperature

of 29 ± 1°C.
2.3 Sample collection

After the culture was carried out for 10 weeks and feeding was

stopped for one day, the researchers counted and weighed the

surviving fish in each of the 12 tanks to calculate the weight gain

rate(WGR), specific growth rate (SGR), feed conversion ratio

(FCR), and survival rate (SR). After weighing the fish, we

anaesthetised it with eugenol (1:10,000), dissected and removed

the distal intestine and immediately stored it in liquid nitrogen. The

distal intestine was stored at −80°C for subsequent experiments.

The WGR, SGR, FCR and SR were calculated by the following

formulas:

Weight gain rate (WGR,  %)

=
100 �  (final weight – initial weight)

initial weight

 Specific growth rate (SGR,  %=d)

=
100 �  ½Ln (final weight) − Ln (initial weight)�

days

 Feed conversion ratio (FCR) =
feed intake

(final weight – initial weight)

 Survival rate (SR,  %) = 100 x (
final fish number
initial fish number

)

2.4 Biochemical analysis

To determine the activities of trypsin, total superoxide

dismutase (T-SOD), glutathione peroxidase (GSH-Px) and the

concentration of complement 3 (C3), complement 4 (C4) and

immunoglobulin M (IgM) in the distal intestine of fish, the

researchers used the fish ELISA kit manufactured by Shanghai
TABLE 1 Formulation and proximate composition of the experimental
diets (%, dry matter).

Ingredients (%)
Diets

FM SPC40 FSBM40

Red fish meala 50.00 30.00 30.00

Soybean protein concentrateb 0.00 21.74 0.00

Fermented soybean mealc 0.00 0.00 23.89

Vital wheat gluten 5.00 5.00 5.00

Wheat flour 18.00 18.00 18.00

Casein 4.60 4.60 4.60

Gelatin 1.00 1.00 1.00

Fish oil 3.02 4.41 4.49

Soybean oil 2.00 2.00 2.00

Soybean lecithin 2.00 2.00 2.00

Microcrystalline cellulose 11.48 8.14 5.84

Calcium monophosphate 1.50 1.50 1.50

Ascorbic acid 0.05 0.05 0.05

Choline chloride 0.50 0.50 0.50

Vitamin premixd 0.30 0.30 0.30

Mineral premixe 0.50 0.50 0.50

Ethoxyquin 0.05 0.05 0.05

Lysinef 0.00 0.05 0.13

Methioninef 0.00 0.16 0.15

Proximate composition) (%, dry matter)

Crude protein 50.97 50.63 50.45

Crude lipid 10.15 10.71 10.54
aThe red fish meal obtained from Corporación Pesquera Inca S.A.C., Bayovar Plant, Peru.
72.53% crude protein and 8.82% crude fat on a dry matter basis.
bThe soybean protein concentrate obtained from Zhanjiang Haibao Feed Co. Ltd (Zhanjiang,
China). 70.72% crude protein on a dry matter basis.
cThe fermented soybean meal obtained from Foshan CJ Biotechnology Co. Ltd (Foshan,
China). 60.75% crude protein on a dry matter basis.
dVitamin premix consisted of (g/kg premix): VB1 17.00 g, VB2 16.67 g, VB6 33.33 g, VB12
0.07 g, VK 3.33 g, VE 66.00 g, retinyl acetate 6.67 g, VD 33.33 g, nicotinic acid 67.33 g, D-
calcium pantothenate 40.67 g, biotin 16.67 g, folic acid 4.17 g, inositol 102.04 g, cellulose
592.72 g;
eMineral premix consisted of (g/kg premix): FeSO4·H2O 18.785 g. ZnSO4·H2O 32.0991 g,
MgSO4·H2O 65.1927 g, CuSO5·5H2O 11.0721 g, CoCl2·6H2O (10%) 5.5555 g, KIO3 0.0213 g,
KCl 22.7411 g, Na2SeO3 (10%) 0.5555 g, zeolite powder 843.9777 g;
fLysine and Methionine were added to balance amino acid with FM group.
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Jiang Lai Biotechnology Co., Ltd (Shanghai, China). The

experiment was in strict accordance with the instructions. The

protein content of the distal intestine was measured using the BCA

method (Beyotime Biotechnology Co., Ltd., Shanghai, China) to

calculate the relevant indicators.
2.5 Transcriptome sequencing and analysis

Oligo (dT) magnetic beads were employed to enrich the

mRNA was enriched, and SMARTer PCR cDNA Synthesis Kit

(Clontech, Japan) was used to synthesise the cDNA via reverse

transcription amplification. cDNA fragments ≥4 kb were enriched

by BluePippin screening. The full-length cDNA was ligated

by SMRT dumbbell-shaped connector repair. The complete

SMRT bell library was checked and sequenced using the Pacific

Biosciences Sequel platform. Seven databases were used to annotate

the full-length transcript: Gene Ontology, Kyoto Encyclopaedia of

Genes and Genomes Orthology database, Swiss-Prot, Clusters of

Orthologous Groups of proteins, Protein family, NCBI non-

redundant nucleotide sequences and NCBI non-redundant

protein sequences. In addition, four software were employed,

including Diamond BLASTX, BLAST, Hmmscan and Blast2GO.

Based on the thresholds of |Log2FC| > 1 and P< 0.05, the researchers

carried out the screening of differentially expressed genes (DEGs).
2.6 RNA extraction and real-time
quantitative PCR

Trizol (Invitrogen, Carlsbad, CA, USA) was employed to extract

RNA from the distal intestinal tissues. The researchers then used

NanoDrop 2000 (Thermo Fisher Scientific, USA) to measure RNA

concentrations and RNA integrity on a 1% agarose gel. To prepare

cDNA, RNA was processed using the Evo M-MLV Reverse

Transcription Kit (Takara, Japan).

Real-time quantitative PCR was carried out on a PCR

Mastercycler (Mastercycler® ep realplex, Eppendorf, Germany)

using the SYBR® Premix ExTaq™ II Kit (Takara, Japan). The

thermal profile included a 95°C cycle, 2 minutes for each and a

compound cycle twice, which is 95°C for 15 seconds, 60°C for 10

seconds and 72°C for 20 seconds. Primer synthesis template

sequences were referenced to the PacBio SMART pearl gentian

grouper distal intestine tissue full-length transcriptome sequencing

database obtained from past studies, as detailed in Table 2. Primers

were synthesised by Bioengineering Co., Ltd. (Shanghai, China).

The 2−DDCT method (Livak and Schmittgen, 2001) was employed to

carry out the target gene expressions.
2.7 Statistical analysis

In this study, the mean and standard deviation (�x ± SD) was

used to present the data, and SPSS version 22.0 (SPSS Inc., Chicago,

IL, USA) was selected for a one-way analysis of variance (ANOVA).

The Duncan multiple comparison test was performed to determine
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the significant differences between the groups. Statistically

significant differences were described as P< 0.05.
3 Results

3.1 Growth performance

The WGR, SGR and FCR of pearl gentian grouper were

significantly affected by high contents of soybean protein

concentrate or fermented soybean meal in the diets (P< 0.05), as

illustrated in Figure 1. The two comparative groups did not show a

significant difference in WGR, SGR and FCR (P > 0.05), but the

WGR and SGR were considerably lower, and the FCR was

substantially higher in the FSBM40 group. Survival rates were not

significantly different and were similar between the three groups

(P > 0.05).
3.2 Biochemical indices

The outcomes suggested that compared to the FM group, both

the SPC40 and FSBM40 groups increased fish intestinal trypsin, T-

SOD and GSH-Px activity and decreased IgM, C3 and C4 protein

content (P< 0.05) significantly. The SPC40 group had the highest

trypsin, GSH-Px and T-SOD activity and the lowest IgM, C3 and C4

protein content (Table 3).
3.3 Immune-related gene expression

Table 4 shows the expression levels of anti-inflammatory and

pro-inflammatory cytokines in the distal intestine of pearl gentian

groupers. The mRNA in pro-inflammatory cytokines, including

TNFa, IL1b, IL8, IL12, IL17 and IL32, were higher in the FSBM40

and SPC40 groups (P< 0.05). Furthermore, compared with those in

the FSBM40 group, the expressions of IL32 and TNFa in the SPC40

group were considerably lower (P< 0.05). Among the anti-

inflammatory cytokines, compared to the FM group, the mRNA

in TGFb1, IL4, IL5 and IL10 exhibited lower levels in the distal

intestine of the SPC40 and FSBM40 groups (P< 0.05). In addition,

compared to the FSBM40 group, the expression level of IL5 was

significantly higher in the SPC40 group (P< 0.05).
3.4 Analysis of differentially
expressed transcripts

3.4.1 Statistics of DEGs
The statistical results of the DEGs screened based on differential

analysis are shown in Table 5. It is indicated that by comparison

with the FM group, there are 2,328 up-regulated genes and 1,748

down-regulated genes in the SPC40 group (P< 0.05), with a total of

4076 significantly differential genes. In addition, compared with the

FM group, there are 1,457 genes significantly down-regulated and

2,005 genes significantly up-regulated in the FSBM40 group (P<
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0.05), for a total of 3,462 significantly different genes. As shown in

Figure 2, there were 1,440 overlapping DEGs between the SPC40

and FSBM40 groups as compared to the FM group (Profile A),

2,636 DEGs unique to the SPC40 group (Profile B) and 2,022 DEGs

unique to the FSBM40 group (Profile C).

3.4.2 Functional enrichment analysis
GO and KEGG were used to perform the functional enrichment

and classification of the DEGs. The annotation outcomes for the three

broad functional categories of GO (cellular component, molecular

function and biological process) show that Profile A has 47 subclasses.

In addition, in the biological process, the metabolic process (342) was

the most enriched. Profile B comprises 53 subclasses, and the single-

organism process (535) was the most enriched in the biological

process. Profile C has 51 subclasses, of which the metabolic process

(342) was the most enriched in the biological process category.

Binding was the most enriched sub-categories in both Profile A

(418), Profile B (670) and Profile C (554) among the molecular

functional categories. Among the cellular component categories, the

membrane was the most enriched sub-category in both Profile A

(301), Profile B (430) and Profile C (276) (Figure 3).

According to the significant results of the KEGG enrichment

analysis, in Profile A, 287 signalling pathways were enriched in Profile

A, with 38 signalling pathways showing substantial change (P< 0.05).

The largest proportion of these significantly changed pathways

involved the digestive system-related pathways (5/38), lipid

metabolism-related pathways (5/38) and those related to the

metabolism of cofactors and vitamins (5/38), including the

digestion and absorption of vitamin, fat and protein, mineral
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absorption, linoleic and alpha-linolenic acid metabolism, nicotinate

and nicotinamide metabolism, arachidonic acid metabolism, vitamin

B6 metabolism, thiamine metabolism, glycerophospholipid

metabolism, ether lipid metabolism, retinol metabolism, folate

biosynthesis and pancreatic secretion (Figure 4A). In Profile B, 326

signalling pathways were enriched, with 34 signalling pathways

exhibiting a significant change (P< 0.05). Most of these significantly

changed pathways were lipid metabolism-related (14/34) and

digestive system-related (7/34), including the digestion and

absorption of vitamin, protein, fat, steroid biosynthesis, synthesis

and degradation of ketone bodies, alpha-Linolenic acid metabolism,

sphingolipid metabolism, glycerophospholipid metabolism, mineral

absorption, primary bile acid biosynthesis, bile secretion, arachidonic

acid metabolism, linoleic acid metabolism, steroid hormone

biosynthesis, fatty acid degradation, biosynthesis of unsaturated

fatty acids, ether lipid metabolism, glycerolipid metabolism,

carbohydrate digestion and absorption, pancreatic secretion and

fatty acid biosynthesis (Figure 4B). In Profile C, 314 signalling

pathways were enriched, with 56 signalling pathways showing

significant change (P< 0.05), and most were related to infectious

diseases (11/56) and the immune system (8/56), including Epstein-

Barr virus infection, the intestinal immune network for IgA

production, staphylococcus aureus infection, leishmaniasis, measles,

B cell receptor signalling pathway, amoebiasis, natural killer cell-

mediated cytotoxicity, Fc gamma R-mediated phagocytosis,

tuberculosis, Th17 cell differentiation, legionellosis, hepatitis C,

complement and coagulation cascades, hematopoietic cell lineage,

African trypanosomiasis, Fc epsilon RI signalling pathway,

toxoplasmosis and influenza A (Figure 4C).
TABLE 2 PCR primers for mRNA expression of intestinal immune-related genes in grouper.

Gene Forward 5’-3’ Revise 3’-5’ Size (bp)

IL1b AAGGTGGACGCCAACAGACA GTTCACTGCAGGCTCAGGGA 153

IL8 TGTGGCACTCCTGGTTCTCC GGGTTCACCTCCACCTGTCC 132

IL12 GACGGAGCATTTCCTGGTGG TGCTCCAAGAGCTCGGGTAA 172

IL17 GAGAGGACGGTGTCTGTGTGG CATGCACAGTTGAGGGTGTGG 101

IL32 CAGCAACAGTAGCAGCAGGC CCATCCTCCTCAGCTCTGCC 176

TNFa AACTGTGTGTCCCCACTGCC CCACAGATGGCCCAGGTCAT 81

IL4 GCAGTGAGTGAAGCCATCGC TGCAGTTCCTGATAGCGCGA 146

IL5 GGCCAACAGTCAAGATGTCTGCC GAATGACCAGGAGCAGTTCAGTGT 160

IL10 ACACAGCGCTGCTAGACGAG TAGACTTGTGCCACGACGGG 142

TGFb1 CTTCTCCTCCTCCTCGCTGC GATGTTGCTGAGGGCTTCGC 195

P65 TCAACCCAGTCCAAGCAGCA GATGCTGCCAGCTGAACGTC 107

MyD88 GCATCTTGCGCTTCCTCACC CCTGGTCCTTGGTTACGGCA 107

IkBa ATGCAAAGGAGCAGCGTAACG GAGGTTGGGGTCTGCTCCT 107

b-actin GGCTACTCCTTCACCACCACA TCTCCAAGGCAACGGGTCT 188

IgA GATGGACCTGACAATAGC AAAGATGTCCGCAACAC 151

pIgR GTAACCACCGAGGGAGA GCAAGTCGGTTAGGTCG 167
fr
b-actin is the housekeeping gene in the experiment. IL, interleukin; TNFa, tumor necrosis factor a; TGFb1, transforming growth factor b1; MyD88, myeloid differentiation factor 88; IgA,
Immunoglobulin A; pIgR, Polyimmunoglobulin receptor.
ontiersin.org

https://doi.org/10.3389/fmars.2023.1170033
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pang et al. 10.3389/fmars.2023.1170033
FIGURE 1

Effect of soybean protein concentrate or fermented soybean meal substitution of 40% fish meal protein on the growth of pearl gentian grouper
(n=4). WGR, weight gain rate; SGR, specific growth rate; FCR, feed conversion ratio; SR, survival rates; *P< 0.05.
TABLE 3 Effect of different soybean processing products substitute for fish meal protein on the enzyme activities of pearl gentian grouper (n = 3).

Parameters FM SPC40 FSBM40

Trypsin (U/mg) 597.33 ± 75.53a 1378.25 ± 97.99b 1194.50 ± 90.84c

IgM(mg/mg) 94.33 ± 4.22a 37.77 ± 3.15b 50.84 ± 5.60c

C3 (mg/mg) 85.58 ± 5.31a 39.97 ± 7.49b 51.34 ± 7.73c

C4 (mg/mg) 128.83 ± 10.17a 60.32 ± 5.23b 76.83 ± 8.28c

T-SOD (U/mg) 78.23 ± 9.95a 154.04 ± 13.35b 135.55 ± 14.25b

GSH-Px (U/mg) 167.20 ± 21.34a 322.51 ± 22.74b 286.12 ± 24.83b
F
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Data in the same row with different superscripts indicate significant differences (P < 0.05).
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3.5 Validation of the transcriptome
data by qRT-PCR

To confirm the reliability of the full-length transcriptome

sequencing method, the real-time quantitative PCR findings of nine

immune-related genes, IL4, IL5, IL10, TGFb1, P65,MyD88, IkBa, IgA
and pIgR, were compared with the results of the transcriptome

sequencing method used in this experiment (Figure 5).
4 Discussion

Although the use of plant protein instead of fish meal can

effectively reduce the production cost of aquaculture, excessive use

is not conducive to the digestion and absorption of certain aquatic

species, which is more intuitive in terms of its growth performance

(Barros et al., 2002; Yun et al., 2017). Compared to the FM group,

the growth performance of both the soybean protein concentrate

and fermented soybean meal groups was inhibited, which was

reflected by the significantly changed values of WGR, SGR and

FCR. Wang et al. (2020) concluded that the optimal percentage of

fish meal substitution with soybean protein concentrate for juvenile

pearl gentian grouper was 37.32% and that excessive substitution

was detrimental to the results of growth. In studies on both Sparus

aurata juveniles and Paralichthys olivaceus juveniles, it was found

that their growth capacity decreased continuously with increasing

soybean protein concentrate content (Kissil et al., 2000; Deng et al.,
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2006). However, Zhao et al. (2010) showed that completely

replacing fish meal with soybean protein concentrate did not

significantly affect the SGR of Nile tilapia (Oreochromis niloticus)

fry. In addition, replacing fish meal completely with soybean

protein concentrate did not affect the growth of Litopenaeus

vannamei in a 72-day culture (Sá et al., 2013). This may be

related to differences in species and feeding habits. Studies on the

impacts of fermented soybean meal on aquatic animals are less

frequent than those on soybean protein concentrate, and the growth

performance of different species is affected by fermented soybean

meal, showing different results. Acanthopagrus schlegeli ingestion of

diets with fermented soybean meal replacing 32% and below of

pollack fish meal had no significant effect on its SGR (Azarm and

Lee, 2014). He et al. (2020) observed that replacing 30% fish meal

with fermented soybean meal had no significant effect on the

growth of Micropterus salmoides juveniles, however, increasing

the replacement amount to 60% resulted in an increase in FCR

and a decrease in WGR. In this study, compared to the FM and

SPC40 groups, where fish meal was replaced with 40% soybean

protein concentrate, WGR and SGR were found to be lower when

fish meal was replaced with 40% fermented soybean meal. The

study of Epinephelus coioides by Shiu et al. (2015) also concluded

that growth performance was significantly diminished when fish

meal was replaced with 40% fermented soybean meal. Soybean

protein concentrate and fermented soybean meal have substantially

eliminated the ANFs they contain, but there are still residuals that

can cause growth problems in some fish and seem more

pronounced in carnivorous fish.

The replacement of fish meal with soybean meal as a protein

source ensures dietary protein content and its amino acid

composition is appropriate. However, previous reports have often

suggested that soybean meal dietary manipulation affects multiple

physiological responses in a variety of fish that can affect the

digestive tract. Among these, the most widely studied is SBMIE, a

non-infectious subacute enteritis (Baeverfjord and Krogdahl, 1996;

Urán et al., 2008; Hedrera et al., 2013). ANFs are widely considered

one of the causes of this type of enteritis, and although two soybean

processing products, soybean protein concentrate and fermented
TABLE 5 Different soybean processing products substituted for fishmeal
in the distal intestine of the pearl gentian grouper for comparison of
significantly different genes (n = 4).

Number SPC40 vs FM FSBM40 vs FM

Up 2328 2005

Down 1748 1457

Total 4076 3462
TABLE 4 Expression of immune-related genes in the distal intestine of pearl gentian grouper fed different soybean processing products diets (n=3).

Gene FM SPC40 FSBM40

IL1b 1.16 ± 0.16a 1.58 ± 0.09b 1.74 ± 0.23b

IL8 1.00 ± 0.08a 1.86 ± 0.16b 1.62 ± 0.04b

IL12 1.01 ± 0.14a 1.86 ± 0.16b 2.25 ± 0.36b

IL17 1.00 ± 0.07a 1.37 ± 0.05b 1.35 ± 0.01b

IL32 1.01 ± 0.14a 1.12 ± 0.21a 1.42 ± 0.16b

TNFa 1.01 ± 0.15a 1.33 ± 0.03b 4.09 ± 0.61c

IL4 1.01 ± 0.15a 0.40 ± 0.02b 0.48 ± 0.06b

IL5 1.00 ± 0.05a 0.55 ± 0.10b 0.40 ± 0.05c

IL10 1.03 ± 0.06a 0.56 ± 0.04b 0.56 ± 0.03b

TGFb1 1.00 ± 0.08a 0.18 ± 0.05b 0.13 ± 0.01b
fr
Data in the same row with different superscripts indicate significant differences (P < 0.05).
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soybean meal, have been effective in eliminating most of the ANFs,

the physiological status of pearl gentian grouper fed diets

containing soybean processing products was distinctive from that

of the FM group (Krogdahl et al., 2010). The soybean protein

concentrate and fermented soybean meal in the diet resulted in a

substantial increase in trypsin activity in the distal intestine of pearl

gentian grouper, similar to the findings of Lilleeng et al. (2007) in

SBMIE-affected Atlantic salmon (Salmo salar). It has also been

found in humans and other animals with intestinal inflammation,

which may be related to a decrease in the degradation and

reabsorption capacity of trypsin due to intestinal damage (Motta

et al., 2011). In the study, the changes in the levels of the immune-

related components such as C3, C4 and IgM in the distal intestinal
Frontiers in Marine Science 08
tissues indicate that excessive addition of the two soybean

processing products mentioned above during culture impairs the

immune function of pearl gentian grouper. Adaptive and innate

immunity are two acknowledged components of the immune

system of teleost fish (Uribe et al., 2011). The complement

pathway belongs to innate immunity and is crucial in defending

against pathogens. The functions of C3 and C4, important bioactive

proteins in this pathway, have been described in various teleost fish,

such as Oreochromis niloticus (Bai et al., 2022), Ctenopharyngodon

idella (Meng et al., 2019), Paralichthys olivaceus (Wu et al., 2022)

and Oncorhynchus mykiss (Løvoll et al., 2006). IgM is the main

immunoglobulin in teleost fish and the immune response it is

involved in belongs to the acquired immunity (Hikima et al., 2011).

After adding soybean protein concentrate and fermented soybean

meal to the feed, the levels of these three immune-related

components in the intestinal tissue of pearl gentian grouper

decreased significantly, which may be related to their impaired

intestinal immune function. In terms of anti-oxidants, compared

with the FM group, the GSH-Px and T-SOD activity in the

experimental group that substituted fish meal with soybean

processing products showed a significant difference, and the plant

material in the diet may cause oxidative stress in the intestinal

tissues of pearl gentian grouper. Similarly, Wang et al. (2020)

showed that feeding pearl gentian grouper with soybean protein

concentrate substitution for fish meal significantly affects its

antioxidant enzyme activity. Many reports of protein source

substitution in aquatic animal feeds have explored antioxidant

capacity, and numerous studies of fish meal substitution with

other protein sources fed to aquatic species have shown that

excessive substitution is detrimental to the oxidative and

antioxidant balance of the aquatic species organism (Uczay et al.,
FIGURE 3

Results of GO enrichment analysis of DEGs enrichment under three broad functional categories (n = 4).
FIGURE 2

Venn map analysis of DEGs in the distal intestine of pearl gentian
grouper (n = 4).
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2019; Pervin et al., 2020; Shen et al., 2020; Wang et al., 2021). Severe

oxidative and antioxidant imbalances damage the gut and other

tissues of aquatic species, endangering their health and survival.

The analysis of the molecular responses of fish to different diets

can provide a reference value for the nutritional needs of

aquaculture species (Król et al., 2016). We employed the RNA-

seq technique to analyse the impact of the soybean protein

concentrate diet and fermented soybean meal diet on pearl

gentian grouper. The third-generation sequencing technology,
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single-molecule real-time (SMRT), developed by Pacific

Biosciences, was employed in our research to address the

shortcoming of second-generation sequencing, which can only

analyse small fragment sequences. There were more DEGs

between the SPC40 and FM groups than between the FSBM40

and FM groups in terms of number, and about 35% of the DEGs

between the SPC40 and FM groups were also found in the DEGs

between the FSBM40 and FM groups. This indicates that there are

large differences in the effects of these two soybean meals in the diets
FIGURE 5

Comparison of RNA Seq and qRT-PCR results (n = 4). The mRNA expression level of qRT-PCR was normalized by b-actin. The relative expression
level in RNA-seq analysis was calculated by FPKM value. Different letters assigned to the lines represented significant differences between the groups
at P< 0.05.
FIGURE 4

The top 20 differentially significant enrichment pathways in KEGG enrichment analysis of DEGs (n = 4).
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on fish at the transcriptional level. Functional enrichment analysis

allows for the classification of differential genes and the description

of gene functions. Three profiles were investigated using GO

enrichment analysis and KEGG enrichment analysis, from which

the similarities and differences of the impact of soybean protein

concentrate or fermented soybean meal substitutes on pearl gentian

grouper were inferred. The results of KEGG enrichment in Profile A

revealed significant differences in multiple digestion and absorption

pathways in fish, including the digestion and absorption of protein,

fat and vitamin and mineral absorption, which corroborated the

findings that both soybean protein concentrate and fermented

soybean meal diets significantly affected fish growth performance.

The activity of digestive enzymes in the fish intestine is influenced

by the nutrients in the diet. The significant effect of feeding soybean

protein concentrate and fermented soybean meal diets on the

digestion and absorption of pearl gentian grouper may be due to

changes in digestive enzyme activity, and the residual ANFs in

soybean protein concentrate and fermented soybean meal may be

one of the main reasons for changing the intestinal environment of

fish and thus affecting digestive enzyme activity (Li et al., 2014; Liu

et al., 2017). The nutrition of the soy processed product diet is not as

nutritionally balanced as that of the fish meal diet, and fish growth

receives an impact and responds through compensatory behaviour.

This includes a series of means to promote biosynthesis, in which

the secretion of many other substances related to digestive enzymes,

in addition to digestive enzymes, is also improved (Kemski et al.,

2020). In this research, the transcriptomic outcomes revealed that

the soybean protein concentrate diet significantly impacted the fat

digestion and absorption pathway in fish and that the bile secretion

pathway was also greatly affected. Among the membrane protein,

the second largest family is the solute carrier (SLC) superfamily.

The structure of the various proteins in the SLC superfamily varies

considerably, but their functions are united, and SLC transporter

proteins are crucial in the absorption of nutrients (César-Razquin

et al., 2015). In addition, the disruption of intestinal homeostasis in

human Crohn’s disease patients is associated with SLC22A4 and

SLC22A5 mutations affecting L-carnitine absorption (Fortin et al.,

2009). Another study found that SBMIE decreases the expression

level of the SLC22A5 gene associated with fatty acid metabolism

(Sahlmann et al., 2013). The differential genes under the soybean

processed product diet in the enrichment analysis results also

included various SLC transporter protein genes, such as SLC22A5,

SLC26A3, SLC23A1, and SLC4A4.

Diets that have an excessively detrimental effect on the intestinal

environment can promote intestinal tissue damage and

inflammation. More research is needed to determine the cause of

SBMIE in carnivorous fish caused by plant protein sources such as

soybean. In the present study, according to the outcomes of

inflammation-related gene expression levels, the soybean protein

concentrate diet and fermented soybean meal diet significantly

increased the expression levels of multiple pro-inflammatory

genes while reducing the expression levels of multiple anti-

inflammatory genes in fish intestinal tissues compared to the FM

group. It has been shown that a similar phenomenon occurs in fish

with SBMIE (Hedrera et al., 2013; Sahlmann et al., 2013; Wu et al.,

2018). In this study, the amount of soybean protein concentrate and
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exceeded the tolerance level of pearl gentian grouper, causing

intestinal inflammation. Urán et al. (2008) found that the

expression levels of inflammatory genes in the distal intestine of

carp (Cyprinus carpio) were also affected by soybean meal in the

diet. In the early stages of feeding the soybean meal diet, the

expression of pro-inflammatory cytokines TNFa and IL1b was

significantly up-regulated, but there was no downregulation of

anti-inflammatory cytokine IL10 expression in the intestinal

tissues of carp. The other difference is that carp will gradually

adapt to the soybean meal diet and normalise their intestinal

inflammatory gene expression levels. The digestive system of fish

differs depending on their dietary habits, and the protein

requirements of carnivorous aquaculture fish are high. There is

no effective treatment for intestinal inflammation in carnivorous

fish induced by replacing fish meal with plant material to reduce

costs. Undoubtedly, the reduction of ANFs in plants is effective, but

the use of soybean processing products after a substantial reduction

in ANFs did not produce better results in this experiment. Some

studies have shown that the soybean meal component of the diet is

detrimental to the stabilisation of the intestinal flora of teleost fish,

which may be one of the causes of SBMIE (Nayak, 2010; Miao et al.,

2018; Liu et al., 2019). In addition, whether adding dietary additives

to improve nutrition and intestinal flora can effectively relieve

intestinal inflammation needs further study.

To sum up, soybean protein concentrate or fermented soybean

meal components in feed can lead to a significant reduction in the

growth performance of juvenile pearl gentian grouper. Although the

differences in the SR of the fish were not significant, the intestinal

health of the SPC40 and FSBM40 groups had been severely challenged.

The DEGs obtained from the transcriptomic analysis of the distal

intestine in this study can help further explore the mechanisms of

food-borne intestinal inflammation caused by soybean components of

this species, providing a theoretical basis for solving SBMIE and thus

promoting green and sustainable aquaculture.
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