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Pick-up of fluoroquinolones
from the aqueous phase via
magnetically propeled
microrobots: kinetics,
thermodynamics, and site
energy distribution analysis
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YongRui Pi1*, Chongfeng Liu1 and Jinchen Zhao1

1School of Ocean, Yantai University, Yantai, China, 2Frontiers Science Center for Deep Ocean
Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology,
Ministry of Education, Ocean University of China, Qingdao, China, 3College of Chemistry and
Chemical Engineering, Ocean University of China, Qingdao, China
Removing fluoroquinolones (FQs) in marine culture tailwater is crucial for the

coastal marine environment. The application of a bacteria-based microrobot for

FQ removal was discussed. Norfloxacin (NOR) and levofloxacin (LEV) had static

maximum adsorption capacities of 114.8 and 49.4 mg/g, respectively, by a

magnetic microrobot. The experimental results of NOR adsorption by a

magnetic microrobot were well supported by the Langmuir isotherm and

Elovich kinetic models. Both the Langmuir isotherm model and the pseudo-

second-order kinetic model may be able to accurately represent the LEV

adsorption process. The mass transfer mechanism of the NOR and LEV

adsorptions was divided into two steps and described better using the

intraparticle diffusion (IPD) model. The exothermic and spontaneity of the

sorption process were demonstrated through the study of thermodynamics.

The magnetic microrobot’s heterogeneous surface was validated by the

examination of site energy distribution. Additionally, this study demonstrated

that the majority of the NOR and LEV sorption took place at sites with energies

over 4.25 and 17.36 kJ/mol, respectively, supporting the notion that NOR and

LEV adsorption constitute physical–chemical processes. Based on the above

results, a magnetic microrobot, as a new-style green bio-adsorbent, can

potentially be used to remove NOR and LEV from the mariculture in an

inexpensive and effective manner.

KEYWORDS

magnetic microrobot, fluoroquinolones, kinetics, adsorption mechanisms, site
energy distribution
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1 Introduction

Fluoroquinolones (FQs) are extensively consumed for disease

prevention and growth promotion in animal breeding and

aquaculture (Coffie et al., 2021). Mariculture tailwater has drawn

much attention, as it brings serious eutrophication offshore and

damage to the surrounding estuary ecosystems (Gao et al., 2022).

Also, some of the FQs were officially detected in the mariculture

system around the world (Wang et al., 2022). Most of the FQs

cannot be metabolized or absorbed by the body, and so enter into

the environment instead (Oberoi et al., 2019). They have also been

recognized as new toxic organic pollutants in the aquatic

environment (Saya et al., 2022). Antibiotic residues in water may

endanger the ecosystem and human health because they can cause

central nervous system stimulation, convulsions, ocular problems,

inhibition of the neurotransmitter gamma-aminobutyric acid,

reproductive dysfunction, and gastrointestinal disturbances

(Saya et al., 2022). It is imperative to develop a green and

effective technology to remove antibiotic residues from the

aquatic environment.

When FQs enter the environment, they undergo migration and

transformation processes such as adsorption, hydrolysis, photolysis,

and biodegradation (Sarmah et al., 2006; Patel et al., 2019; Yang

et al., 2021). While FQs are relatively stable in water they are not

particularly suitable for hydrolysis (Van Doorslaer et al., 2014; Patel

et al., 2019). The photolysis process is much easier to carry out

(Wammer et al., 2013; Lakshmi Prabavathi and Muthuraj, 2019),

but will produce active free radicals and cause secondary pollution.

Therefore, adsorption is the primary way of removing FQs in land-

based mariculture tailwater since the biodegradation rate of FQs is

very low (Oberoi et al., 2019; Saya et al., 2022). Many absorbents

have been confirmed to remove FQs from aqueous media, such as

clay minerals (Hacıosmanoglu ˘ et al., 2022), biochar (Cheng et al.,

2021), activated carbon (Kah et al., 2017) and other carbonaceous

materials (Scaria et al., 2022), plastic polymers (Rai et al., 2022),

graphene-based nanomaterials (Wang et al., 2019a), and Fe-oxide-

based composites (Chu et al., 2022). Some green materials, such as

plant leaves, fruit, algae, fungi, and bacteria, were employed to

achieve energy-efficient, cost-effective, and environmentally

friendly removal of organic pollutants (Altaf et al., 2021).

Moreover, the favored adsorption has some strengths, such as a

simple operation process, high treatment efficiency, rich adsorbent

materials, and no highly toxic by-products (Fang et al., 2021b;

Hacıosmanoglu ˘ et al., 2022).

Magnetic substrate-loaded adsorbent has been employed in

the removal of FQs with easy regeneration (Fang et al., 2021a).

Magnetic micro/nanorobots have piqued the interest of

researchers because of their enormous potential for use in

biomedicine and environmental remediation (Zhou et al., 2021).

In addition to their bio-friendliness, recoverability, and toxin-free

nature due to magnetic manipulation, they can actively swim

around aquatic contaminants and remove them via capture

(adsorption/absorption) or degradation (Zhang et al., 2018).

Owing to the strong dynamic intermixing, also known as the

magnetic stirring function, the magnetic fields can also be used to
Frontiers in Marine Science 02
speed up reaction kinetics or increase recognition efficiency. They

can also be used to retrieve nano/microrobots after the cleaning

process is finished (Ji et al., 2020). The magnetic micro/

nanorobots will eventually be able to be recycled or reused

without their parts being altered. To deal with oil spills,

researchers designed a micromotor that moved like a walnut

and was made of polycaprolactone, Fe3O4 nanoparticles, and

catalase in a solution with H2O2. The micromotor could be

navigated and recycled using an external magnetic field (Wang

et al., 2019b). Porous biohybrid microrobots made of fungal spores

and Fe3O4 nanoparticles were found to be very effective at

removing heavy metal ions. The group behaviors and

magnetically driven movement of the microrobots may enhance

pollutant adsorption more than static microrobots (Zhang et al.,

2018). Carbon soot-based micromotors were simultaneously

activated by a magnetic field and oxygen microbubbles, allowing

for efficient on-the-spot degradation of methyl blue (MB) dye

contamination (Singh et al., 2020). Additionally, it has been

reported that functional magnetic micromotors were powerful

enough to absorb or remove antibiotics from contaminated water

(Li et al., 2019b; Liu et al., 2019).

In a previous study, we made magnetic microrobots with iron

(II, III) oxide nanoparticles (Fe3O4 NPs) based on hydrocarbon-

degrading bacteria (Pi et al., 2022). The magnetic microrobot

performed excellently for Congo red adsorption from the aquatic

phase (Pi et al., 2022). Owing to FQs having a similar benzene ring

structure to that of organic dye, the removal of FQs with the help of

a magnetic microrobot was the goal of this work. Norfloxacin

(NOR) and levofloxacin (LEV) are FQs that are used widely, and

the concentration of ng/L to mg/L has been detected in different

aqueous environments (Fang et al., 2021a, b; Yan et al., 2017a; Yan

et al., 2017b). They were used as typical FQs in this work.

Adsorption capacity, kinetics, isotherm equilibrium, site energy

distribution analysis, and mechanism were used to investigate

NOR’s and LEV’s removal potential. Adsorption parameters,

which corresponded to a specific site energy distribution, were

also determined using a variety of isotherm models. Owing to their

magnetic characteristics, microrobots were easy to navigate and

were recycled under a magnetic field.
2 Materials and methods

2.1 Materials

Without further purification, all chemicals are at an analytical

grade. The bacteria were isolated from an antibiotic-producing

pharmaceutical factory’s sewage outlet. Our previous research

serves as a reference for the isolation procedure (Pi et al., 2015).
2.2 Synthesis of microrobots

The microrobot can be simply defined as a nanocluster

magnetite (Fe3O4) attached to bacteria. The Fe3O4 was prepared
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in accordance with previous studies (Schwertmann and Cornell,

2000; Jiang et al., 2018; Jiang et al., 2020). The preparation of

magnetic microrobots is referred to in the literature (Pi et al., 2022;

Vaghasiya et al., 2022). The details of the characterization of bio-

based materials were also demonstrated according to the field

emission scanning electron microscopy (FESEM), transmission

electron microscopy (TEM), fourier transform infrared (FTIR),

and X-ray diffraction (XRD), nitrogen adsorption-desorption

isotherms, magnetic behaviors, and point of zero charges (Pi

et al., 2022).
2.3 Adsorption experiments

All adsorption experiments were conducted using 50-mL glass

tubes in accordance with our previous work (Wang et al., 2021; Pi

et al., 2022). To investigate the adsorption isotherm equilibrium,

50.0 mL of a NOR/LEV solution was mixed with 5 mg Fe3O4 or a

magnetic microrobot, with initial NOR/LEV concentrations

ranging from 10 to 50 mg/L. In addition, 0.1 mol/L NaOH and/

or 0.1 mol/L HCl solutions were used to adjust the NOR/LEV

solutions’ pH. The tubes were shaken at 150 rpm at a controlled

temperature using a shaker in the dark. Then, the pH value (4–10),

the adsorbent dose, and the adsorption temperature were changed

to obtain the adsorption capacity.

In the kinetics experiments, a 500-mL NOR/LEV solution was

mixed with moderate adsorbents. The NOR/LEV solution was

measured using high-performance liquid chromatography

(HPLC) after being adsorbed for various amounts of time. To

avoid light, all samples were shaken in the dark. Each experiment

was replicated three times.

Ultraviolet-(UV-)HPLC (1260, Agilent Technologies) was

utilized for the detection of NOR and LEV. With a mobile phase of

60:40 (v/v) acetonitrile anhydrous and formic acid at 1% in deionized

water and a flow rate of 0.75 mL/min, the HPLC was equipped with a

C18 column (2.7 m, 4.6 mm × 100 mm). The wavelengths used for

UV detection were 278 nm (NOR) and 293 nm (LEV).
2.4 Methods of data analysis

2.4.1 Equilibrium adsorption capacity
The following formulae (1–3) were used to calculate the NOR/

LEV removal efficiency (adsorption percentage), adsorption

capacities at time t, and equilibrium:

R =
(C0 − Ce)

C0
� 100 (1)

qt =
(C0 − Ct)

w
V (2)

qe =
(C0 − Ct)

w
V ; (3)

where R is the NOR/LEV’s removal efficiency; C0 (mg/L), Ce (mg/L),

and Ct (mg/L) are the concentrations of the initial, equilibrium, and
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time t of the NOR/LEV, respectively; the NOR/LEV’s adsorption

capacities at time t and equilibrium are qt (mg/g) and qe (mg/g); and

the adsorbent’s mass is w (g) and V (L) is the volume of the solution

(Pi et al., 2022).

2.4.2 Fitting of adsorption isotherms
The empirical relationships between adsorption capacities of

NOR/LEV on Fe3O4 and the magnetic microrobots with the

equilibrium concentration in the liquid phase were fitted with

Langmuir, Freundlich, Temkin (Pi et al., 2022), and Langmuir–

Freundlich (Yan et al., 2017a; Yan et al., 2017b) isotherm (Carter

et al., 1995) equations (4–7):

Ce

qe
=
Ce

qm
+

1
KLqm

(4)

ln qe = lnKF +
1
nF

lnCe (5)

qe = (
RT
bT

) ln (KTCe) (6)

qe =
qmbC

n
e

1 + bCn
e

; (7)

where KL (L/mg), KF [(mg/g) (L/mg)1/n], and KT (L/mg) are the

adsorption coefficients for the Langmuir, Freundlich, and Temkin

models, respectively. qm (mg/g) was the calculated maximum value

of the adsorbents’ NOR/LEV adsorption capacity. The 1/nF
indicates the Freundlich model parameter, while bT (L/mg) is the

equilibrium constant for the adsorption of the Temkin model (Yan

et al., 2017a; Yan et al., 2017b). b (L/mg) is the equilibrium constant

for the adsorption of the Langmuir–Freundlich model.

2.4.3 Fitting of adsorption kinetics
The pseudo-first-order, pseudo-second-order, and Elovich

kinetic models were used to establish the rate-governing

adsorption process, as shown below (8–10) (Sun et al., 2022):

ln (qe − qt) = ln qe − k1t (8)

t
qt

=
1

k2q2e
+

t
qe

(9)

qt = a + b ln t ; (10)

where k1 (h–1) and k2 (g/mg·h) are the pseudo-first-order and

pseudo-second-order rate constants, respectively. In the Elovich

model, a and b are constants.

2.4.4 Mass transfer mechanisms
The adsorption process’s speed-limiting steps were investigated

using intraparticle diffusion (IPD) (Wang et al., 2010) and liquid

film diffusion (LFD) models.

The LFD and IPD models were expressed as:

− ln (1 − F) = k3t (11)
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qt = kIPDt
1=2 + c (12)

The constant for the diffusion rate of a liquid film is k3 (min−1),

and F is the qt/qe. The IPD diffusion rate constant is kIPD [mg/

(g·min1/2)], and the linear intercept c (mg/g) provides information

about the thickness of the boundary layer (Foroutan et al., 2021).

2.4.5 Thermodynamic calculation
The following equations were used to calculate the

thermodynamic parameters to ascertain the nature of the

adsorption process (13–15):

Kc =
qe
Ce

(13)

lnKc =
DS
R

−
DH
RT

(14)

DG = −RT lnKc ; (15)

where the coefficient of the adsorption distribution is Kc (L/g).

Entropy, enthalpy, and Gibb’s free energy are represented by DS (J/
mol), DH (J/mol), and DG (J/mol·K), respectively. The universal gas

constant is R (8.314 J/mol K) and the temperature is T (K).

2.4.6 Approximate site energy distribution
The adsorbent’s adsorption site energy distribution was linked

to the equilibrium adsorption capacity (Carter et al., 1995). Using

the parameters of the Langmuir–Freundlich model, the following

equations (16,17) were used to determine the magnetic

microrobot’s site energy distribution:

E* = E − Es = RT ln (
Cs

Ce
) (16)

F(E*) =
qmnbC

n
s

RT
•

e−nE*=RT

(1 + bCn
s e

−nE*=RT )2
(17)

where Ce = Cs, Es is the adsorption energy, E* is the difference in

adsorption energies between the adsorbate and solvent on the

adsorbent surfaces, and F(E*) is an approximate site energy

distribution function. The adsorbate’s maximum solubility is Cs

(mg/L). The Cs value of NOR in water is 303.5mg/L, 400 mg/L,

522.1 mg/L, 678.2 mg/L, and 872.5 mg/L at 293.15 K, 298.15 K,

303.15 K, 308.15 K, and 313.15 K (pH=7), respectively (Ross and

Riley, 1990; Blokhina et al., 2016). The Cs value of LEV in water is

46, 50, 54, 58, and 62 mg/mL at 293.15, 298.15, 303.15, 308.15, and

313.15 K, respectively (Ross and Riley, 1990; Blokhina et al., 2016).

The adsorption site energy distribution, which can be calculated

using the following equation, was used to determine the average site

energy:

u(E*) =

Z ∞

0
E*F(E*)d(E*)Z ∞

0
F(E*)d(E*)

(18)

Incorporating the above equation with Eq. (16) and Eq. (17), the

average site energy could be determined as follows:
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m(E*) =
RT
n

ln (1 + bCn
s ) (19)
3 Results and discussion

3.1 Adsorption property for norfloxacin
and levofloxacin

3.1.1 Effect of initial norfloxacin and
levofloxacin concentration

The impact of the initial concentrations of NOR and LEV on

the relative adsorption capacity and removal efficiency on the

magnetic microrobot is illustrated in Figures 1A, B. The relative

adsorption capacity increased with the initial concentration until 40

and 50 mg/L for NOR and LEV, respectively. The concentration

gradient is a vital driving force between the liquid adsorbate and

solid adsorbent. When it overwhelmed the resistance to bulk

transfer between the adsorbate and adsorbent, the adsorption was

enhanced as if the initial concentration of the adsorbate had

increased (Altaf et al., 2021). Also, the limited adsorption site of

the adsorbent reached a saturation state with the increase of the

initial concentration. Thereafter at this point, the absorbent

achieved the equilibrium, with the adsorption capacity up to 63.8

and 49.4 mg/g for NOR and LEV, respectively. The removal

efficiency of NOR and LEV decreased gradually with the increase

of the initial concentration. This can be attributed to the fixed

amount of adsorbent dosage in this experiment.

3.1.2 Effects of adsorbent dosage
The effect of the adsorbent dose on the adsorption capacity and

removal efficiency is presented in Figures 1C, D. When the dosage

increased from 3 to 30 mg, the removal efficiency increased

significantly due to the increase in the number and surface area

of the active adsorption sites (Altaf et al., 2021; Fang et al., 2021).

Also, the aggregation of the adsorbents resulting from a high dose of

nanoparticles enhanced the removal efficiency (Altaf et al., 2021),

while aggregation led to a decrease in the total surface area of the

adsorbent (Fang et al., 2021b). The adsorption capacity increased

with the increasing dosage, from 3 to 5 mg, peaking at 5 mg. The

high adsorption capacity at 5 mg could be attributed to the

fulfillment of most binding sites and an increase in total surface

area (Zhou et al., 2018). Then, there was a decline when the

adsorbent dosage was larger than 5 mg, indicating that the

absorbent achieved equilibrium. While the capacity was calculated

using the relative adsorption dose, the value declined according to

the increased dose of the adsorbent.

3.1.3 Effect of pH
The pH of the solution, which plays a crucial role in the

adsorption process, can alter the adsorbents’ surface charges and

adsorbate ionization, affecting the adsorption capacity even more

(Fang et al., 2021a). Because they have two distinct acid dissociation

(pKa1 and pKa2) from the carboxyl group and the amino group,

respectively, the form and adsorption effects of NOR and LEV were
frontiersin.org
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determined by the pH value of the solution, as shown in Figure 2. If

the solution pH was< pKa1, -COOH and -NH2
+- existed in the

molecular of the cationic form. When the solution pH was >

pKa2, -COO
- and -NH- existed in the molecular in anionic form.

When pKa1< pH< pKa2, then NOR and LEV were in the zwitterionic

form with -COO- and -NH2
+- existed in the molecular form.

Figures 1E, F depict the adsorption capacity and removal

efficiency onto a magnetic microrobot at various initial pH levels,

from 4 to 10. It can be seen that the adsorption limit and expulsion

proficiency under similar circumstances were NOR > LEV. The

adsorption capacity and removal efficiency of the capacity increased
Frontiers in Marine Science 05
with the pH ranging from 4 to 7 for NOR, peaking at pH = 7. The

LEV adsorption had a similar trend to that of NOR, with the highest

adsorption capacity at pH = 6. The removal capacities were 63.8 and

49.2 mg/g, respectively. The adsorption capacity and removal

efficiency significantly declined as the pH increased from 7 to 10.

In general, the adsorbents’ uptake of FQs was higher under pKa1<

pH< pKa2 than acid or alkaline conditions, which was related to the

properties of the FQs in zwitterionic form. The results are consistent

with the studies conducted by Altaf et al. (2021). The adsorption

capacity reached its maximum value at a pH of approximately 7,

which is consistent with the structural characteristics of zwitterionic
B

C D

E F

G H

A

FIGURE 1

The adsorption properties and removal percentage of norfloxacin (NOR) and levofloxacin (LEV) on Fe3O4 and the magnetic microrobot. (A, B) The
initial concentrations of NOR and LEV, (C, D) the adsorbent dosages, (E, F) the initial pH of NOR and LEV, and (G, H) the adsorption temperature.
Note: the columns represent the adsorption capacity and the lines represent the removal efficiency.
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FQs (Yan and Niu, 2017; Yan and Niu, 2018), and the quantity of

zwitterionic FQs gradually increased with pH, implying that FQ

adsorption results from complementary ion–pair interactions (Jiang

et al., 2021). According to the research, Fe3O4 makes a passive oxide

layer by coating on the surface when the pH is > 7 and reduces the

FQ adsorption from the magnetic microrobot (Rezaei and

Vione, 2018).

3.1.4 Effect of temperature
The adsorption performances of NOR and LEV by magnetic

microrobot at various temperatures are presented in Figures 1G, H,

respectively. The highest adsorption capacity and removal efficiency

were achieved at 30°C for NOR and at 25°C for LEV. The

interaction between FQs and absorbents was enhanced due to the

active site expansion, when the adsorption temperature increased

from 20°C to 30°C for NOR and 25°C for LEV (Altaf et al., 2021).

While the adsorption temperature continued rising, the updraft

movement of FQs was enhanced, which weakened the attraction

between active adsorption sites and themselves, leading to the

decline of the adsorption capacity and removing efficiency (Chen

et al., 2011).
3.2 Adsorption isotherms

The experimental data and model-fitted findings for NOR and

LEV adsorption from a magnetic microrobot are shown in Table 1.
Frontiers in Marine Science 06
The non-linearity of the NOR and LEV adsorption isotherms on the

absorbents suggests that the NOR and LEV concentrations and

distributional effects were related to the magnetic microrobot’s

adsorption capacity (Sun et al., 2022). At various temperatures,

the R2 values of the Langmuir isotherm model were greater than

those of the Freundlich, Temkin, and Langmuir–Freundlich

isotherm models, indicating that NOR and LEV mostly adsorb

onto the absorbents in monolayers. In the Freundlich model, nF is

the parameter relating to the mean energy of adsorption. If nF> 1, it

is preferred that adsorption is chemisorption in nature, and a strong

adsorbent/adsorbate interaction occurs (Lv et al., 2020; Gaho et al.,

2022). The calculated values of nF were all larger than 1, indicating

the chemisorption of NOR and LEV on the absorbents.

Many different adsorbents were listed in the comparison of the

adsorption capacity with magnetic microrobots. As shown in

Table 2, the Qm for NOR was 698.6 mg/g by FRMB consisting of

SDS (Li et al., 2019a). The Qmof Fe3O4-based adsorbents (5-IOW

and 14-IOW) for NOR (8.64 and 6.48 mg/g) were significantly

lower than those of the magnetic microrobot. The Qm,exp of the

magnetic microrobot for NOR was much larger than for most other

adsorbents (Table 2). The Qm for LEV was 298.43 mg/g by PCS-

KOH (Yang et al., 2020), which was much higher than for the other

absorbents. The Qmof the Fe3O4-based adsorbent (Fe3O4-gINPs)

for LEV was 22.47 mg/g, which was much lower than that of the

magnetic microrobot. Compared with other adsorbents, a magnetic

microrobot can be used as one of the markedly superior adsorbent

materials in wastewater treatment containing NOR or LEV.
B

A

FIGURE 2

Molecular structure and pH-dependent speciation of (A) NOR (norfloxacin) and (B) LEV (levofloxacin).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1169883
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


TABLE 1 Adsorption equilibrium isotherm models on norfloxacin (NOR) and levofloxacin (LEV) using a magnetic microrobot.

NOR LEV

03.15K 308.15K 313.15K 293.15K 298.15K 303.15K 308.15K 313.15K

55.02 25.33 21.84 35.72 49.36 45.86 41.48 37.83

62.46 31.76 23.66 2.337 113.51 359.71 94.70 165.84

0.0545 0.04095 0.07788 0.01424 0.009694 0.003193 0.01636 0.006584

0.8502 0.4715 0.7532 0.8375 0.7276 0.9674 0.9739 0.9840

5.987 1.609 2.847 2.074 1.306 1.229 19.06 1.652

1.804 1.289 1.805 1.484 1.143 1.049 1.452 1.216

0.7958 0.8263 0.9985 0.6660 0.6765 0.9724 0.9644 0.9781

143.98 225.78 325.69 167.42 97.40 86.78 125.62 122.10

0.3454 0.2431 0.3707 0.1471 0.09889 0.1043 0.1577 0.1251

0.6449 0.8891 0.9852 0.5128 0.5452 0.9319 0.9414 0.9807

30416.6 2221.49 48.87 12782.3 40599.3 2184.9 1361.5 93.14

8.43*10–5 4.22*10–4 0.0457 3.78*10–5 4.55*10–6 4.87*10–4 0.0021 0.0088

0.8466 0.8458 0.7614 1.1117 1.4427 0.9997 0.7064 1.1383

0.7264 0.8242 0.9898 0.7823 0.2015 0.9557 0.9154 0.9653
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Isotherm model Model
parameters 293.15K 298.15K 3

qm, exp(mg/g) 36.68 60.26

Langmuir
Ce

qe
=
Ce

qm
+

1
KLqm

qm,cal(mg/g) 73.53 153.61

KL (L/mg) 2.39*10–4 0.01618

R2 0.9842 0.9888

Freundlich

ln qe = lnKF +
1
nF

lnCe

Kf ((mg/g)(L/
mg)1/n)

0.52 3.778

nF 0.9317 1.322

R2 0.9582 0.9517

Temkin

qe = (
RT
bT

) ln (KTCe)

bT (J/mol) 141.28 95.06

KT (L/mg) 0.1257 0.2346

R2 0.7809 0.9226

Langmuir–Freundlich

qe =
qmbC

n
e

1 + bCn
e

qm(mg/g) 20475.1 3660.9

b(L/mg) 9.47*10–6 7.37*10–4

n 1.3545 0.8870

R2 0.9358 0.9963
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3.3 Adsorption kinetics

The kinetic data of NOR and LEV fitted with three kinetic

models are presented in Figure 3 and Table 3. Based on Figure 3 and

the high R2 values in Table 3, the adsorption of NOR fitted the

Elovich kinetic model well, while the adsorption of LEV fitted the

pseudo-second-order model well. The Elovich model was suitable

for simulating the adsorption of NOR, showing that it is the valence

electron, rather than just the electrostatic attraction, that causes the

adsorption of NOR on to magnetic microrobots (Sun et al., 2022).

The main process involved in LEV kinetic adsorption was

chemisorption due to the pseudo-second-order model (Sun

et al., 2022).
3.4 Mass transfer mechanisms

According to temperature, pressure, and the types of adsorbent

and adsorbate, varied mass transfer resistances may be able to limit

the adsorption rate, which was evaluated using a kinetic analysis.

The solid material was characterized by two primary resistances:

protection from outer dissemination (interparticle), connected with

mass exchange from mass liquid to the outside surface, and

intraparticle dispersion, connected with mass exchange from an

outside surface to an internal permeable construction. To

investigate mechanisms and the potential rate-determining steps,

several models have been proposed. Piecewise and linear

regressions were used to fit the adsorption data using the IPD

and LFD models to investigate the specific adsorption processes of
Frontiers in Marine Science 08
NOR and LEV. The results are shown in Figure 4 and Table 4. The

IPD model was better suited to represent the mass transfer process

of NOR and LEV adsorption by Fe3O4 and a magnetic microrobot

based on the statistical parameter (R2 > 0.90). From Figures 4A, B,

the fact that the connection between qt and t1/2 is non-linear and

does not pass through the origin point indicates that there are other

rate-limiting steps besides IPD and that the rate of adsorption may

potentially be controlled by an external diffusion mechanism. IPD

and equilibrium are the two steps of the adsorption process. The

adsorption rate of NOR and LEV was kIPD1 > kIPD2. The first stage

was relatively slow, and the second stage represented the

equilibrium condition for the adsorption–desorption process. The

internal mass transfer restriction of the magnetic microrobot was

stronger than that of Fe3O4 based on the fact that the R2 of the

magnetic microrobot for NOR adsorption was higher than that of

Fe3O4 (Yu et al., 2021). In conclusion, NOR and LEV were adsorbed

on magnetic microrobots by a chemical process that was regulated

simultaneously by internal and exterior diffusion processes.
3.5 Adsorption thermodynamics

To examine the adsorption thermodynamics of NOR and LEV

on a magnetic microrobot, a range of temperatures, including 298,

303, 308, 313, and 318 K were chosen. It is clear from Table 5 that

the adsorption of NOR had a negative DH value, which indicates

that the process was exothermic and involved the adsorption of

both chemical and physical substances. LEV adsorption by the

magnetic microrobot was an endothermic process (DH>0), which
TABLE 2 Comparison of the adsorption capacities of different adsorbents for the removal of norfloxacin (NOR) and levofloxacin (LEV) at ambient
temperatures (25°C).

Adsorbent
NOR

Adsorbent
LEV

Qm,exp (mg/g) Reference Qm,exp (mg/g) Reference

g-Fe2O3@BC 5.52 Wang et al., 2020 Fe-P-Mt 48.61 Liu et al., 2015

SCGB 19.52 Nguyen et al., 2022 Humic acid-treated zeolite 35.45(pH=4.85)
Chen et al., 2019

5-IOW 8.64
Fang et al., 2021b

47.68(pH=9.44)

14-IOW 6.48 G.Zn/MCM 60.5 Abukhadra et al., 2022

HLB 529.85 Zhou et al., 2023 PCS-900 299.23

Yang et al., 2020

FRMB 299.6

Li et al., 2019a

PCS-KOH 298.43

FRMB/SDS 698.6 PCS-Na2CO3 279.47

FRMB/SDBS 589.9 PCS-700 259.61

ZIF-8

63.29 (293K)

Zhou et al., 2019

AC 247.09

66.82 (303K) MWCNT 116.09

69.44 (313K) BC 76
Xu et al., 2021

PDMPs

304 (298K)

Wan et al., 2018

NFBC 172

321 (308K) Fe3O4–gINPs 22.47 Altaf et al., 2021

332 (318K) BMF 115 Yao et al., 2021

magnetic microrobot 114.8 This work magnetic microrobot 49.4 This work
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B

C D

E F

A

FIGURE 3

(A, B) Pseudo-first-order kinetic model, (C ,D) Pseudo-second-order kinetic model, and (E, F) Elovich kinetic model for norfloxacin (NOR) and
levofloxacin (LEV) adsorption.
TABLE 3 Adsorption kinetic models on norfloxacin (NOR) and levofloxacin (LEV) using Fe3O4 and a magnetic microrobot.

Kinetic model* Parameters
NOR LEV

Fe3O4 magnetic microrobot Fe3O4 magnetic microrobot

qe,exp(mg/g) 57.16 61.14 38.47 53.78

PFO
ln (qe − qt ) = lnqe − k1t

qe,cal(mg/g) 58.08 64.39 25.66 39.03

k1(h
–1) 0.00463 0.0042 0.0041 0.0021

R2 0.7374 0.9237 0.9662 0.9732

PSO
t
qt

=
1

k2q2e
+

t
qe

qe,cal(mg/g) 42.23 67.02 43.16 125.0

k2(g/mg·h) 1.90×10–4 8.42×10–5 1.27×10–3 1.26×10–4

R2 0.6842 0.8054 0.9539 0.9837

qt = a + b ln t

a(mg/g) –49.29 –55.92 –5.54 –29.71

b 18.16 20.89 9.283 21.58

R2 0.9322 0.9784 0.9553 0.8823
F
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shows that chemisorption may have occurred. DS was positive,

demonstrating that the solid/solution interface contains additional

unpredictability. It might be connected to the fact that the

molecules of the displaced solvent (like water) gained more

translational energy than the molecules of the adsorbate lost (de

Andrade et al., 2018).

To investigate the adsorption thermodynamics of NOR and

LEV on magnetic microrobots, a range of temperatures, including

298, 303, 308, 313, and 318 K, were chosen. It can be seen in

Table 5 that the DH of the adsorption of NOR was negative,

demonstrating that both physical and chemical adsorption was

involved in the exothermic process. For the LEV adsorption by a

magnetic microrobot, it is an endothermic process (DH), which
Frontiers in Marine Science 10
suggests that chemisorption may have occurred. Since DS was

positive, the solid/solution interface must have had additional

randomness. It could be related to the fact that the adsorbate

molecules lost less translational energy than the displaced solvent

molecules (like water) (de Andrade et al., 2018). DG< 0, which

means that adsorption was advantageous and spontaneous at

any temperature.
3.6 Adsorption site energy analysis

Based on Equation (17), the equilibrium NOR and LEV

adsorption capacities qe are plotted as a function of the magnetic
B

C D

A

FIGURE 4

The particle diffusion model (A ,B) and LFD model (C, D) of norfloxacin (NOR) and levofloxacin (LEV) adsorption by Fe3O4 and a magnetic microrobot.
TABLE 4 Adsorption kinetic models on norfloxacin (NOR) and levofloxacin (LEV) using Fe3O4 and a magnetic microrobot.

Kinetic model* Parameters
NOR LEV

Fe3O4 magnetic microrobot Fe3O4 magnetic microrobot

LFD
− ln (1 − F) = k3t

K3(min–1) 0.00693 0.00557 0.04686 0.02966

R2 0.8200 0.7773 0.8649 0.8651

IPD

qt = kIPDt
1=2 + c

k1(mg/g·min1/2) 5.84 5.60 4.44 12.27

c1(mg/g) –21.69 –17.11 1.04 –25.89

R2 0.9764 0.9882 0.9876 0.9790

k1(mg/g·min1/2) 0.58 2.21 27.00 57.41

c2(mg/g) 45.06 24.40 1.18 1.35

R2 0.9670 0.9808 0.9264 0.8397
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microrobot’s site energy E* values in Figure 5. The E* values

decreased dramatically as the amount of NOR and LEV adsorbed

on adsorbents increased. These findings demonstrated that NOR

and LEV molecules occupied the magnetic microrobot’s high-

energy adsorption sites first, and then the low-energy adsorption

sites. After the adsorbate occupied the high-energy sites, low-energy

sorption sites interacted with the NOR and LEV molecules as the

solution concentration rose. This was in line with the earlier NOR
Frontiers in Marine Science 11
adsorption on carbon nanotubes (Wang et al., 2010). On a magnetic

microrobot, the values of NOR’s site energy E* were significantly

lower than those of LEV’s. The E* values of NOR adsorbed on the

magnetic microrobot fell in the range of 4.25 to 10.73 kJ/mol, and

the E* values of LEV ranged from 17.36 to 21.22 kJ/mol.

Additionally, the plots of E* showed an increase with

temperature, indicating that the NOR and LEV adsorption on the

magnetic microrobot benefited from higher temperatures.
TABLE 5 Adsorption thermodynamic parameters of norfloxacin (NOR) and levofloxacin (LEV) adsorption by a magnetic microrobot.

Absorbent DH (kJ/mol) DS (J/(K·mol))
DG (kJ/mol)

293(K) 298(K) 303(K) 308(K) 313(K)

Fe3O4(NOR) –67.01 –219.79 –2.58 –1.48 –0.38 0.72 1.82

magnetic microrobot (NOR) –88.78 –291.42 –3.35 –1.89 –0.44 1.02 2.48

Fe3O4(LEV) –7.36 –22.73 –0.36 –0.55 –0.54 –0.31 –0.25

magnetic microrobot (LEV) 20.25 66.64 0.71 0.38 0.05 –0.29 –0.62
fr
B

A

FIGURE 5

Site energy of norfloxacin (NOR) and levofloxacin (LEV) adsorption. (A) site energy versus equilibrium NOR adsorption capacity; (B) site energy versus
equilibrium LEV adsorption capacity.
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Temperature increased the rate of molecular diffusion, making it

easier for NOR and LEV molecules to cross the magnetic

microrobot’s external boundary layer and enter its internal pores.

Based on the Langmuir–Freundlich isotherm model, the

approximate site energy distribution (F(E*)) for the adsorption of

NOR and LEV to the magnetic microrobot at various temperatures is

depicted in Figure 6. For NOR and LEV, the site energy had

unimodal distributions. Most of the NOR and LEV sorption

occurred on the sites with energy over 4.0 kJ/mol and lower than

16.0 kJ/mol, indicating that NOR and LEV sorption on the

biosorbent was a physical-chemical process. First, as the site energy

(E*) increased, the frequency function F(E*) decreased until it was

close to zero. The upward trend suggests that, at high concentrations,

some NOR and LEV molecules were forced to occupy lower-energy

sites. Conversely, at low-solution concentrations, NOR and LEV

molecules were preferentially captured at the high-energy site

(Zhang et al., 2021). Owing to the lower F(E*), however, the

extremely high- or low- energy sites contributed very little to the

maximum amount of adsorption (Liu et al., 2016).
Frontiers in Marine Science 12
4 Conclusion

The magnetic microrobot demonstrated outstanding NOR and

LEV adsorption capacities. The static maximum adsorption

capacities of NOR and LEV on the magnetic microrobot were

114.8 and 49.4 mg/g, respectively. The Langmuir isotherm model

and Elovich kinetic models agreed well with the experimental data

of NOR adsorption by a magnetic microrobot. The Langmuir

isotherm model and the pseudo-second-order kinetic model

might be able to adequately describe the LEV adsorption

procedure. The IPD was not the only mechanism regulating the

adsorption process, and the IPD model was better suited to describe

the mass transfer process of the NOR and LEV adsorption by

magnetic microrobot. Exothermic and spontaneous characteristics

were verified through thermodynamics. The biosorbents’

heterogeneous surface was verified by the analysis of site energy

distribution. Additionally, Figure 6 demonstrated that the majority

of the NOR and LEV adsorption took place on sites with greater

than 4.25 kJ/mol and less than 17.36 kJ/mol, supporting the notion
B

A

FIGURE 6

Site energy distribution of norfloxacin (NOR) and levofloxacin (LEV) adsorption on a magnetic microrobot at various temperatures. (A) Site energy
distribution of NOR; (B) site energy distribution of LEV.
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that this adsorption was physical–chemical in nature. Based on the

findings, the magnetic microrobot can potentially be employed to

inexpensively and efficiently remove NOR and LEV from aqueous

wastewater as a new-style green bio-adsorbent.
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