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A molluscan class struggle:
exploring the surprisingly uneven
distribution of chemosymbiosis
among two major
mollusk groups

Ian V. Hughes* and Peter R. Girguis*

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA,
United States
Many bivalves and gastropods frommarine reducing environments such as deep

ocean hydrothermal vents and seeps host chemosynthetic bacteria in a

nutritional symbiosis. Despite their functional similarities, the distribution of

chemosymbiosis in these two mollusk classes is surprisingly uneven: the

number of bivalve species known to host chemosynthetic symbionts is more

than twenty times that of gastropods, and chemosymbiotic bivalves are reported

from a far greater diversity of marine habitats. Here we explore the potential

drivers for this trend, including but not limited to physiological differences,

habitat characteristics, and sampling bias. Sampling bias likely contributes to

the magnitude of the observed discrepancy, but we posit that the phenomenon

itself reveals how intrinsic (e.g. morphology) and extrinsic (e.g. organic matter

availability) factors might have shaped the distribution of extant gastropod and

bivalve associations. These observations also serve as an impetus for increasing

investigation into gastropods and other mollusks from chemically reducing

environments to better understand the evolution and ecology of

chemosymbiosis among molluscan hosts.
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1 Introduction

Chemosynthetic symbioses between eukaryotes and chemoautotrophic microbes have

been reported in diverse metazoan phyla and in numerous marine environments. In

nutritional chemosynthetic symbiosis, bacterial symbionts oxidize reduced chemical

substrates, e.g., sulfide, to harness energy for carbon fixation. Symbionts then translocate

fixed organic carbon to the host or are digested by the host (Cavanaugh et al., 2006;

Dubilier et al., 2008; Sogin et al., 2020). A large portion of metazoan host diversity is

represented by mollusks, specifically gastropods and bivalves. Chemosymbiotic mollusks
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are abundant in many chemically reducing environments, including

deep sea hydrothermal vents and hydrocarbon seeps (Sasaki et al.,

2010), wood and whale falls (Smith et al., 1989; Duperron, 2010),

continental shelf sediments (Cary et al., 1989), and many shallow

water sulfidic sedimented environments (Cavanaugh, 1983).

Notably, bivalves and gastropods have independently acquired

chemosynthetic symbionts in multiple lineages. However, and

unexpectedly, this adaptation appears unequally distributed

between these groups, both with respect to the number of species

represented and the diversity of chemosynthetic habitats where they

are found. Among Bivalvia, there over 600 described species of

chemosymbiotic bivalves, across at least six families (Distel, 1998;

Taylor and Glover, 2010) that span a suite of marine reducing

habitats, including less conventional chemosynthetic environments,

like coral reef sediments (Dekker and Goud, 1994) and sewage

outfalls (Burd et al., 2013). Among Gastropoda, the total number of

known chemosymbioses is an order of magnitude fewer than in

Bivalvia, although there are representative species in four of the six

subclasses. Further, unlike their bivalve counterparts, only two

potential gastropod chemosymbioses occur in shallow water

environments (Smriglio and Mariottini, 2002; Judge and

Haszprunar, 2014), while the rest are reported from hydrothermal

vents and related deep-water environments. These observed

patterns are surpris ing given that Gastropoda is an

extraordinarily diverse clade and contains three-fold more marine

species than Bivalvia (species are an incomplete proxy for diversity

but provide a means of illustrating the disparities between these two

classes; WoRMS Editorial Board, 2023).

Gastropods and bivalves share similarities in basic anatomy,

physiology, and life history, which begs the question as to what

factor(s) account for this disparity. Here we briefly summarize

chemosymbiosis in bivalves, review known gastropod

chemosymbioses, then consider differences between bivalves and

gastropods that may account for the observed disparities in the

diversity of chemosymbioses between these two molluscan classes.
2 Bivalve chemosymbiosis

Chemosymbiosis is well documented in many bivalve groups

(see Taylor and Glover (2010) for review). The bivalve families that

contain chemosymbiotic taxa are Lucinidae, Thyasiridae,

Solemyidae, Vesicomyidae, Teredinidae, and Mytilidae (there is

circumstantial evidence for chemosymbiosis in several members of

Nucinellidae and at least one species in the bivalve family

Basterotiidae, though nutritional chemoautotrophy has not yet

been demonstrated; Oliver and Taylor 2012; Oliver, 2013). Most

recorded bivalve chemosymbionts belong to Gammaproteobacteria

(Sogin et al., 2021), however the nature of symbioses varies

considerably in metabolism, transmission modes, and host-

symbiont nutrient exchange.

Lucinidae is the most species rich group of chemosymbiotic

bivalves, with over 400 species described worldwide (WoRMS

Editorial Board, 2023). To date, all lucinids are obligately

chemosymbiotic (Taylor and Glover, 2010). Although lucinids

occur at hydrothermal vents and methane seeps (Sibuet and Olu,
Frontiers in Marine Science 02
1998; Glover et al., 2004), much of the diversity is found in shallow-

water sediments rich in sulfide (Taylor and Glover, 2006).

Thyasirids are the second most species rich group of

chemosymbiotic bivalves, however there are considerably fewer

studies on the diversity and nature of Thyasiridae symbioses

(Taylor et al., 2007). Chemosymbiosis is not obligate for

all Thyasiridae (Taylor et al. , 2007), and reliance on

chemosynthetically fixed carbon varies substantially among the

chemosymbioses (Dando and Spiro, 1993). One thyasirid species

hosts endosymbionts (Fujiwara et al., 2001), whereas others appear

to exclusively host extracellular symbionts on the gill surface

(Southward, 1986).

Solemyidae is a unique family of bivalves with three genera

(Solemya, Acharax and Petrasma) from diverse reducing habitats

(e.g., Stanley, 1970; Neulinger et al., 2006; Coan et al., 2000). Most

solemyids supplement symbiosis with heterotrophic filter feeding,

though there are exceptions, such as Solemya reidi, that lacks the

capacity to filter-feed as an adult (Felbeck, 1983; Stewart and

Cavanaugh, 2006). The Nucinellidae are another bivalve family in

the order Solemyida with taxa found in a range of marine habitats,

including deep sea sediments (Sasaki et al., 2005) and tropical

seagrass beds (Glover and Taylor, 2013). Chemosymbiosis has

been inferred in this group as some nucinellids have a reduced or

absent gut (Kuznetsov, 1984) and bacteriocytes are present in the

gill tissue of at least two species (Oliver and Taylor, 2012).

However, empirical assessments of chemoautotrophic activity in

these taxa are wanting.

Vesicomyidae are another family of chemosymbiotic bivalves,

primarily occurring at hydrothermal vents, hydrocarbon seeps, and

whale falls (Bennett et al., 1994; von Cosel and Salas, 2001). There

are over 100 described species in the family, and all members

studied host chemosymbionts (Fisher, 1990; Krylova et al., 2010).

Many vesicomyids have been shown to use their foot to uptake

reduced sulfur compounds and transport them to symbionts in the

gills (Arp et al., 1984).

Teredinidae are well known for their heterotrophic bacterial

symbiosis, which aids in breaking down wood (O’Connor et al.,

2014), though at least one species hosts sulfide-oxidizing symbionts

in the gills. While other teredinids bore into wood, the giant

shipworm, Kuphus polythalamia, occurs in muddy sediments and

utilizes thioautotrophic symbionts in a nutritional chemosymbiosis

(Distel et al., 2017).

Finally, within the family Mytilidae, the subfamily

Bathymodiolinae is a group of mussels found in hydrothermal

vents, methane seeps, and wood and whale falls (Duperron et al.,

2009). Bathymodiolins are primarily epibenthic and are often

densely packed in chemosymbiotic habitats. Although the

majority of species host chemosymbionts either intracellularly or

extracellularly, at least one species in the genus Idas is reported as a

predator on other mollusks and appears asymbiotic, likely

representing a secondary loss of chemosymbionts (Ockelmann

and Dinesen, 2011; Rodrigues et al., 2015). Bathymodiolins host

symbionts with a variety of metabolic pathways, including methane,

complex hydrocarbons, sulfide, and hydrogen metabolisms

(Childress et al., 1986; Duperron et al., 2005; Petersen et al., 2011;

Rubin-Blum et al., 2017).
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3 Chemosymbiosis in Gastropoda

As previously mentioned, evidence for chemosymbiosis has

been reported in taxa from four of the six gastropod subclasses,

though relatively less work has been done on the evolution and

diversity of chemosymbiotic gastropods (reviewed in Table 1).

Among caenogastropods, the sister genera Alviniconcha and

Ifremeria host chemosynthetic endosymbionts in the gills (Stein

et al., 1988; Endow and Ohta, 1989; Windoffer and Giere, 1997).

Both taxa are found at hydrothermal vents where they can form

large aggregations around vent effluent (Bouchet and Warén, 1991;

Desbruyères et al., 1994). Alviniconcha and Ifremeria co-occur

around Pacific hydrothermal vents, but their symbionts likely rely

on different chemically-reduced compounds that might alleviate

niche competition (Henry et al., 2008; Waite et al., 2008; Beinart

et al., 2015).

The Neomphaliones family Peltospiridae contains several

chemosymbiotic taxa from hydrothermal vent sites in the Pacific,

Southern and Indian oceans. Perhaps the most striking member of

this family is Chrysomallon squamiferum, or the “scaly foot snail”,

so named as it secretes iron-rich sclerites on the foot (Warén et al.,

2003). C. squamiferum and members of the peltospirid genus

Gigantopelta host sulfur-oxidizing bacterial endosymbionts in an

enlarged esophagus (Goffredi et al., 2004; Chen et al., 2017). Other

peltospirids from vents, namely the Ctenopelta and Hirtopelta, have

been suggested as chemosymbiotic due to a reduced digestive tract

(Warén and Bouchet, 1993), and, at least in the case of Hirtopelta,

hypertrophied gills (Fretter, 1989; McLean, 1989; Warén and

Bouchet, 1993). Bacteriocytes have also been observed in the gill

tissue of H. tufari, though the identity of these potential symbionts

is unknown (Beck, 2002). Finally, another Neomphaliones

gastropod suggested as chemosymbiotic is Cyathermia naticoides.

This species is endemic to the East Pacific Rise vents and is often

found in abundance on Riftia tubes (Warén and Bouchet, 1989).

Campylobacteria have been reported extracellularly on gill tissue of

this species in association with lysosomes, indicating possible

endocytotic digestion (Zbinden et al., 2015).

Lepetodrilus is a Vetigastopoda genus found at a diversity of

hydrothermal vent communities. Of the 16 described species, two

sister taxa from the Juan de Fuca Ridge are described as

chemosymbiotic: L. fucensis and L. gordensis (De Burgh and

Singla, 1984; McLean 1988; Johnson et al., 2006). Both species

host bacteria on the external surface of the gills, whereas other

Lepetodrilus species appear devoid of dense gill microbes (Bates,

2006). L. fucensis was among the first vent gastropods to be

described as chemosymbiotic, and De Burgh and Singla (1984)

implicate endocytosis and lysosomal digestion of episymbionts as a

type of “symbiont farming”. Around hydrothermal vent effluent,

Lepetodrilus fucensis can form aggregated stacks of individuals with

a density of over 300,000 individuals m-2 (Bates et al., 2005). L.

fucensis also filter feed and graze to supplement their nutrition

(Bates, 2007a).

Bacteriocytes have also been described in the mantle of Lepetella

sierrai, a gastropod found in the Bay of Biscay in association with
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empty tubes of polychaetes in the genus Hyalinoecia (Dantart and

Luoue, 1994). It is hypothesized that these polychaete tubes provide

an anoxic, sulfidic environment that supports chemosynthesis

(Judge and Haszprunar, 2014). Further molecular or physiological

work is needed to confirm the nature of this potential non-

vent chemosymbiosis.

Two heterobranch gastropods have also been suggested as

chemosymbiotic. The first, Parvaplustrum wareni, occurs at

hydrothermal vents in the Bering Sea in densities of up to

31,000 individuals/m-2 (Chaban et al., 2022). Evidence for

chemosymbiosis in this taxon comes from the dense aggregates

of bacteria that occur externally on gill filaments. Lurifax vitreus

is an orbitestellid gastropod originally described from

hydrothermal vents on the Mid Atlantic Ridge (Warén and

Bouchet, 2001). Bacteriocytes have been identified in the

mantle of this gastropod based on TEM microscopy (Hawe

et al., 2014). Individuals of L. vitreus have also been described

from non-vent environments in Mediterranean Sea (Smriglio and

Mariottini, 2002; Giuste and Sbrana, 2012), though these

identifications were made from shells collected by dredges, and

soft parts were not examined.
4 The uneven distribution of
chemosymbiosis among molluscs

As described above, to our knowledge there are at least 600

likely and confirmed bivalve chemosymbioses that span a wide

array of chemically reducing environments. In contrast, to our

knowledge there are approximately 19 likely and confirmed

gastropod chemosymbioses that are found in far fewer chemically

reducing environments, namely select hydrothermal vents and,

putatively, Polychaetae tubes and Mediterranean sediments

(Smriglio and Mariottini, 2002; Judge and Haszprunar, 2014). It

is highly likely that sampling bias towards bivalves has a marked

influence on the realized disparity. That said, even in

chemosynthetic environments where both bivalves and

gastropods are present and well-studied (e.g., seagrass beds and

hydrothermal vents), chemosymbiotic bivalves are far more diverse.

We thus raise the question of what other factors may have

collectively resulted in this phenomenon. In the paragraphs below

we consider the roles of environmental medium (including sulfide

toxicity), physiology, habitat productivity, motility, and our biases

in the definition of chemosymbioses.
4.1 Environmental medium

Chemosymbiosis often occurs at the interface between oxic and

anoxic environs (Stewart et al., 2005). At hydrothermal vents,

chemically reduced substrates are replete in the vent fluids that

often emanate from cracks in the basaltic crust (or emerge from

polymetallic sulfide deposits). At mud flats, seagrass sediments,

and many other habitats that harbor chemosymbioses, chemically
frontiersin.org
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TABLE 1 Summary of known gastropod chemosymbioses.

Behavior Refs

nt Classifica-
tion(s)
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Grazing

roteobacteria Y Suggested Johnson et al., 2015;
Breusing et al., 2022

obacteria Y Suggested Suzuki et al., 2006a;
Beinart et al., 2012;
Johnson et al., 2015

roteobacteria Y Suggested Okutani and Ohta,
1988; Stein et al.,
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2015
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Y Suggested Urakawa et al., 2005;
Johnson et al., 2015

obacteria Y Suggested Suzuki et al., 2005;
Johnson et al., 2015
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Beinart et al., 2014;
Johnson et al., 2015

roteobacteria Y Suggested Bouchet and Warén,
1991; Windoffer and
Giere, 1997;
Borowski et al., 2002

roteobacteria Y Unlikely Warén et al., 2003;
Goffredi et al., 2004;
Chen et al., 2015a

n Y Unknown Warén and Bouchet,
1993

roteobacteria Y Unknown (may
be similar to G.
chessoia)

Chen et al., 2015b;
Lan et al., 2021

roteobacteria
resent)

Y Grazing in early
life stages only

Chen et al., 2015b;
Chen et al., 2017

n N Unlikely McLean, 1989
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Taxonomy Environment Morphology

Subclass Family Genus and
Species

Chemosynthetic
Environment

Geographical
Distribution

Hypertrophied
Gills

Digestive
System Adapta-

tions

Symbiont
Location

Symbi

Caenogastropoda Paskentanidae* Alviniconcha
adamantis

Hydrothermal
Vents

Mariana Basin Y Y Gills Gamma

Alviniconcha
boucheti

Hydrothermal
Vents

Manus, Fiji,
and Lau Back-
arc Basins

Y Y Gills Camply

Alviniconcha
hessleri

Hydrothermal
Vents

Marina Back-
Arc Basin

Y Y (Stomach 1/
100 volume of
Provanna spp.)

Gills Gamma

Alviniconcha
kojimai

Hydrothermal
Vents

Manus, Fiji,
and Lau Back-
arc Basins

Y Y Gills Gamma
Camply

Alviniconcha
marsindica

Hydrothermal
Vents

Central Indian
Ridge

Y Y Gills Camply

Alviniconcha
strummeri

Hydrothermal
Vents

Southern Lau
basin

Y Y Gills Gamma
Camply

Ifremeria
nautilei

Hydrothermal
Vents

Southwest
Pacific

Y Y (Stomach 1/
100 volume of
Provanna spp.)

Gills Gamma

Neomphaliones Peltospiridae Chrysomallon
squamiferum

Hydrothermal
Vents

Central Indian
Ridge

Y Y (Stomach 1/
10th size of
typical
gastropod
deposit feeder)

Oesophagus Gamma

Ctenopelta
porifera

Hydrothermal
Vents

East Pacific
Rise

Y None reported Gills Unknow

Gigantopelta
ageis

Hydrothermal
Vents

Southwest
Indian Ridge

Not reported None reported Oesophagus Gamma

Gigantopelta
chessoia

Hydrothermal
Vents

East Scotia
Ridge

Not reported Y (Small single-
loop digestive
system)

Oesophagus Gamma
(others
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East Pacific
Rise

Y Y Gills Unknow
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TABLE 1 Continued

Morphology Behavior Refs

ed Digestive
System Adapta-

tions

Symbiont
Location

Symbiont Classifica-
tion(s)

Aggregation Supplementary
Grazing

Y Gills Unknown N Unlikely Beck, 2002

None reported Gills** Camplylobacteria Y Suggested Zbinden et al., 2015

Y (Stomach
absent, complex
multi-lobed
midgut)

Mantle Unknown N Suggested Judge and
Haszprunar, 2014

Y (Stomach 1/2
size of non-
symbiotic
cogeners)

Gills** Gammaproteobacteria Y Observed De Burgh and
Singla, 1984; Bates,
2007a; Bates, 2007b

Y (Stomach 1/2
size non-
symbiotic
cogeners)

Gills** Unknown Y Suggested De Burgh and
Singla, 1984

None reported Mantle Unknown N Unknown Warén and Bouchet,
2001; Smriglio and
Mariottini, 2002;
Hawe et al., 2014

None reported Gills** Unknown Y Suggested Chaban et al., 2022
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Taxonomy Environment

Subclass Family Genus and
Species

Chemosynthetic
Environment

Geographical
Distribution

Hypertroph
Gills

Hirtopelta
tufari

Hydrothermal
Vents

East Pacific
Rise

Y

Neomphalidae Cyathermia
naticoides

Hydrothermal
Vents

East Pacific
Rise

Y

Vetigastropoda Lepetellidae Lepetella
sierrai

Polycheate tubes
(genus
Hyalinoecia)

Bay of Biscay Not reported

Lepetodrilidae Lepetodrilus
fucensis

Hydrothermal
Vents

Juan de Fuca
Ridge

Y

Lepetodrilus
gordensis

Hydrothermal
Vents

Gorda Ridge
(NE Pacific)

Y

Heterobranchia Orbitstellidae Lurifax vitreus Hydrothermal
Vents,
Hydrocarbon
Seeps, "Bathyal
Sludge"

Mid Atlantic
Ridge,
Mediterranean
Sea, South
Pacific

Not reported

Parvaplustridae Parvaplustrum
wareni

Hydrothermal
Vents

Bering Sea Y

*Members previously assigned to Provannidae.
**Episymbionts.
i
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reduced substrates are abundant in the anoxic sediments, resulting

from anaerobic microbial processes such as sulfate reduction

(Preisler et al., 2007). At such localities, chemosymbiotic hosts

must bridge the redox gradient through behavioral and

morphological adaptations. Here, bivalves may have an

advantage as many are infaunal and use their siphon to access

oxygenated surface water while using a highly adapted foot to tap

into sulfide-rich sediment porewaters to support their symbionts

(Dando and Southward, 1986; Zanzerl and Dufour, 2017). Indeed,

much of the diversity of chemosymbiotic bivalves is represented by

infaunal, or semi-infaunal groups including the majority of

lucinids, thyasirids and solemyids (Taylor and Glover, 2010).

The acquisition of chemosynthetic symbionts in infaunal bivalve

groups may have facilitated widespread diversification of species

and habitats, contributing to the bivalve/gastropod disparity

(Seilacher, 1990). However, there are also many gastropod

groups that are infaunal and occur in chemosynthetic sediments.

For example, burrowing members of Strombidae and Cerithiidae

are found in sediments alongside lucinid clams (Ibrahim et al.,

2015; Lima et al., 2017), yet chemosymbiosis has not been reported

in either gastropod group. Perhaps bivalves are advantaged in this

scenario, as they may be better suited to supplement symbiont-

derived nutrition with heterotrophic filter feeding when symbionts

alone cannot support host metabolism, as the case for the majority

of molluscan chemosymbioses (Duplessis et al., 2004; van der Geest

et al., 2014).
4.2 Physiology and morphology

Chemosymbiotic organisms are faced with the challenges of

accessing both oxidants (typically oxygen) and reductants such as

sulfide, methane, and hydrogen (Childress and Girguis, 2011).

Sulfide is fundamental to many chemosymbioses, however it is

toxic to metazoans and presents a major challenge for

chemosymbiotic hosts writ large (Powell and Somero, 1986;

Grieshaber and Völkel, 1998; Tobler et al., 2016). The bivalve/

gastropod disparity begs the question as to whether gastropods face

greater physiological or morphological challenges in hosting

chemoautotrophic symbionts. One hypothesis is that some

gastropods, such as those without an operculum, may be more

vulnerable to sulfide toxicity than bivalves and thus are less likely to

host intracellular chemosymbionts. However, there are many

species of gastropods that lack intracellular symbionts (e.g.,

Vermeij, 1973; Warén and Bouchet, 2009) and live in

environments with elevated sulfide (where sulfide concentrations

are comparable to those of hydrothermal vents; Jorgensen and

Revsbech, 1983; Gartman et al., 2011). Given the abundance and

diversity of gastropods in sulfidic environments, both with and

without endosymbionts, it is unlikely that sulfide sensitivity alone is

driving this observed trend in chemosymbiotic diversity.

There are also morphological differences that may contribute to

the observed gastropod/bivalve disparity. As mentioned, many

chemosymbiotic mollusks host symbionts on or within the
Frontiers in Marine Science 06
ctenidia (Table 1). Although gill structure varies considerably

within classes (Owen, 1978), many bivalves have large

demibranch gills, compared to the relatively smaller gills of many

gastropods, which are located beneath the shell. Large gills may be

advantageous for bivalve chemosymbioses, as it may provide larger

surface area for symbiont colonization. There are a number of

extant chemosymbiotic gastropods, however, that successfully host

symbionts in hypertrophied gills, and several others that host

symbionts in the esophagus (e.g. Gigantopelta chessoia; Chen

et al., 2017) or mantle (e.g. Lurifax vitreus; Hawe et al., 2014),

indicating that gill morphology does not inherently preclude

chemosymbiosis in gastropods.
4.3 Habitat productivity and motility

Many shallow water chemosynthetic environments also harbor a

robust photosynthetic community (e.g., mangroves and seagrass

beds), which plays a role in driving chemosynthesis via the decay of

organic plant material by sulfate-reducing bacteria (Jørgensen, 1977).

In these environments, both bivalves and gastropods could take

advantage of photosynthetic and chemosynthetic food sources.

Motile gastropods have the potential to graze both surface

photosynthetic and subsurface chemosynthetic bacteria, without

having to expend the extra energy and oxygen required for hosting

intracellular symbionts (Childress and Girguis, 2011). Though filter

and deposit feeding are both used by many chemosymbiotic bivalves

(Allen, 1958; Duplessis et al., 2004; Zanzerl et al., 2019), hosting

intracellular chemoautotrophic symbionts can be an efficient way to

take advantage of carbon fixed via chemosynthesis for less motile

groups. In shallow reducing environments, both bivalves and

gastropods exploit carbon fixed by different pathways, but motility

in gastropods may allow more efficient heterotrophy without the

physiological impacts and costs of hosting chemosynthetic symbionts.

Although most hydrothermal vent ecosystems lack extensive

photosynthetic inputs, they can be comparable in productivity to

shallow water ecosystems and support microbial mats at high

densities (Gaill et al., 1997). Many vent gastropods are motile

grazers (Gaudron et al., 2015), but perhaps there are unique

attributes of hydrothermal vents that account for the high

concentration of gastropod chemosymbioses. Vent flows are highly

dynamic, with fluid flow regimes changing over many time scales

(from minutes to days; Johnson et al., 1988). This environment may

provide highly motile gastropods with a competitive advantage for

access to sufficient reductants and oxidants for their symbionts. In

western Pacific vents, Alviniconcha and Ifremeria form large

aggregations around vent effluent, moving around to access

reduced and oxidized substrates as needed (Desbruyères et al.,

1994). Chemosymbiotic gastropods also have the ability, to some

extent, to move out of environments when they become less suitable

(e.g. higher temperatures or lower oxygen or sulfide concentrations).

These attributes of vents may contribute to the prominence of motile

gastropods in some vent communities, but do not preclude the

overall success of bivalves in hydrothermal ecosystems.
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4.4 Sampling

We must, of course, consider the impact of sampling bias. The

discovery of chemosymbiotic metazoan taxa was relatively recent and

the number of documented chemosymbiotic taxa has grown

sporadically, particularly among mollusks. For example, the first

members of Lucinidae were described by Linnaeus (1758), however

it wasn’t until the 1980s that lucinids were found to host

chemosynthetic bacteria (Cavanaugh, 1983; Fisher and Hand,

1984). As such, it may be easy to attribute much of gastropod/

bivalve disparity to sampling bias in favor of the bivalves. That being

said, existing evidence from well-studied sites such as the Eastern

Pacific Rise reminds us that this observed disparity may be a

biological reality. Nevertheless, despite over four decades of

research on chemosynthetic symbioses, some new chemosymbiotic

gastropods have been described recently, including two species of

Gigantopelta (Chen et al., 2015b), Chrysomallon squamiferum (Chen

et al., 2015a), and Parvaplustrum wareni (Chaban et al., 2022).

Further, much of the evidence for chemosymbiosis in previously

described gastropods has also been reported in the last decade (Hawe

et al., 2014; Judge and Haszprunar, 2014; Zbinden et al., 2015).

Finally, we acknowledge the challenges of how we define

chemosymbiosis. There is a vibrant discussion in the community

about what constitutes a symbiosis (Martin and Schwab, 2013), and to

date there is no one simple “litmus test” for determining if an organism is

chemosymbiotic. Even among widely accepted chemosymbioses, there is

considerable variation in the nature of host/symbiont dynamics. Further

investigation into gastropod holobionts from both deep and shallow-

water chemosynthetic environments may reveal previously unknown

chemosymbiotic relationships.
5 Conclusions

Chemosymbiosis has evolved multiple times in diverse lineages of

bivalve and gastropod mollusks. Despite physiological and functional

similarities between these two groups, bivalves have a far higher

diversity of chemosymbiotic taxa, both in terms of species richness,

and the breadth of marine reducing habitats occupied. This observed

trend presents and interesting framework for investigating the

evolution and diversification of chemosymbiotic metazoan hosts. If

this trend is robust, this disparity reflects evolutionary, ecological, and/

or physiological differences between these two lineages that favors

chemosymbiosis in extant bivalves. That said, these observations

underscore the need for continued sampling to reveal the

undiscovered diversity of gastropod hosts, as well as the need to

continue to refine our notions of what constitutes a chemosymbiosis.
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