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Coastal dune sediments and landforms offer a unique opportunity to understand

climate change and sea level change on the centennial-millennial time scale.

However, there is a paucity of chronological studies on the effects of storms on

the evolution of coastal dunes along the temperate coastline of China. In this

study, optically stimulated luminescence (OSL) dating of sand dunes was

conducted to investigate the process and mechanism of coastal dune

evolution on the southeastern coast of Hainan Island, China. The results show

that the coastal dune evolution experienced three rapid accumulation periods:

28-21 ka, 14-4 ka, and 3.0 ka-present. The three rapid accumulation periods

correspond to the last glacial maximum, the late Pleistocene/early-mid

Holocene, and the late Holocene climatic dry-cold period, respectively. Sea

level change and the East Asian winter monsoon, in conjunction with the

enhanced storminess, play a key role in driving the sand dune evolution on the

south-eastern coast of Hainan Island. These findings are of great significance for

regional planning and coastal defense schemes.

KEYWORDS

palaestorm events, southeastern Hainan Island, OSL dating, East Asian winter monsoon,
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1 Introduction

Coastal dunes, which lie between marine and land areas, often play an important role

protecting humans against natural hazards (e.g. storm events; Dissanayake et al., 2015;

Martinez et al., 2016; Maximiliano-Cordova et al., 2021). With global warming, coastal

dunes are facing the ongoing threats of sea level rise, climate change, and changes in storm

intensity (Defeo et al., 2009; Morris et al., 2020). The knowledge of past coastal dune

evolution is critical for forecasting trends of sea level rise and coastal storm disaster

management practices. Coastal dune deposits have the great potential to provide records of

coastal processes, storm activities, environmental changes, and sea level fluctuations (Kunz
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et al., 2010; Wolfe et al., 2011; Clemmensen et al., 2012;

Clemmensen et al., 2014; Zhou et al., 2019a).

Based on coastal dune deposits , reconstruction of

paleoenvironment change and sea level changes have been studied

in various coastal areas including those in southeastern Australia

(Ashkenazy et al., 2012; Tamura et al., 2020), America (Wolfe et al.,

2011; Robin et al., 2021), Denmark (Clemmensen et al., 2012;

Clemmensen et al., 2014), the Mediterranean (Zazo et al., 2008;

Bardajı ́ et al., 2009), Japan (Tamura et al., 2011a, b), and South

China (Jin et al., 2022). These findings improved our understanding

of past changes in atmospheric circulation and sea level changes

(Searle and Woods, 1986; Tamura et al., 2011a; Tamura et al.,

2011b; Clemmensen et al., 2014; Hu et al., 2022; Jin et al., 2022).

However, there are few such studies of the effects of storms on

coastal dune evolution in the tropical coastal zone, especially on the

South China Coast (e.g. Hainan Island, Li et al., 2007).

The chronology of coastal dunes is a significant issue for the

temporal analysis of coastal dune evolution and the interpretation

of these variable responses to climate changes and storm behavior.

The main methods for dating palaestorm events from coastal dunes

are luminescence dating of the sand and radiocarbon dating of

organic material or marine shells (Murray and Clemmensen, 2001;

Sommerville et al., 2003; Cunningham et al., 2011; Clemmensen

et al., 2014; Zhou et al., 2019a). Radiocarbon dating has limited

applicability owing to the lacking of organic material in these

coastal dune sediments and overwash deposits. Moreover, if shells

exist, they are commonly contained within lagoonal or shelf

sediments and are not part of the barrier lithosome. However,

optical luminescence techniques proved capable of establishing an

absolute chronology for coastal sediments in various coastal

environments (van Heteren et al., 2000; Sommerville et al., 2003;

Reimann et al., 2012; Chazan et al., 2013; Jiang et al., 2018; Gao

et al., 2019; Zhou et al., 2019a; Nian et al., 2021).

The coastal dune in southeastern Hainan Island was selected in

this study. The coastal dune in this region has been frequently and

seriously affected by tropical storms from the northwestern Pacific

and South China Sea (SCS). We present the measured OSL ages

from 6 profiles at two sites in the area and compared them with

previous chronology and historical records in southeastern Hainan

Island, to reconstruct the history of the coastal dune evolution, and

to reveal the effect of storm activities on dune evolution.
2 Study areas

Hainan Island is separated from the Chinese mainland by the

narrow Qiongzhou Strait (Figure 1). The island has a staircase-like

topography, descending step by step from towering mountains to

flat tablelands and plains at its periphery. This island covers an area

of 33900 km2 with a coastline of 1725 km in length (Song, 1984).

The oceanographic conditions on its southeastern coast are

characterized by micro-tides, irregularly diurnal in character.

Here, the climate for the coastal region is generally tropical

monsoonal, with a dry season from November to April and a wet

season from May to October. Typhoons and tropical cyclones from

the western Pacific Ocean and the SCS frequently hit the
Frontiers in Marine Science 02
southeastern coast of Hainan Island from July to October (Wang

et al., 2001). During typhoon events, the accompanying high wind

speeds, large storm surges, and waves often cause serious damage to

the coastal infrastructure and residential areas.

The Li´an (LA) dune is about 5 km long and 1 km wide, located

on the east side of the Li´an Lagoon. The longshore transport of

sand, generated by the prevailing shore currents from the NNE, is

constrained by the southerly headland. The LA dune experiences a

micro-tidal regime with an average tidal range of 0.65 m and a

maximum tidal range of 1.50 m, as measured in the Li´an Lagoon

(Wang et al., 2016). Waves approach from the SEE (South-East-

East) for (on average) 90% of the year, and from the ESE (East-

South-East) during the remaining 10% of the time. Wave height

ranges from 0.30 m to 1.8 m, with rare exceptional heights of more

than 3.7 m. Such high waves are associated with storms from the

SW, during which waves attain an average of 2–3 m height with a

period of 7–8s.

The Jianling (JL) dune, located on the southeast side of Xincun

Lagoon, both sides are bound by low hills. The beachfront is

surrounded by a coral reef and bedrock platform (20-50 meters

wide). Behind the beach, there is a large area of coastal dune with a

top elevation of more than 15 msl.
3 Material and methods

3.1 Sampling and preparation

Sediment samples were collected between 2015 and 2016 from

the Li′an (LA) site and Jianling (JL)site (Figures 2, 3). During

fieldwork, three profiles (LA-A, LA-E, and LA-M) along fresh

ditches at the LA site and three exposure profiles (JL-A, JL-B, and

JL-C) at the JL site (Figures 2, 3), were observed and pedo-

stratigraphically described in detail. Pedostratigraphic subdivisions

were observed by close examination of the color, texture, and

structure in these profiles (Figures 2, 3). Storm deposits were

distinguished in the field using sedimentological criteria (e.g.

numerous planar beds; abrupt contracts; Zhou et al., 2019a).

Several typical samples were taken from each profile for grain size

analysis. Particle-size distribution was analyzed using a Malvern

Mastersize 2000 laser granulometer with a duplicate measurement

error of < 3%. Statistical indices such as median (Md), mean (Mz),

skewness (Sk), kurtosis (Kg), and sorting (QD) were calculated using

the GRADISTAT program (Blott and Pye, 2001).
3.2 Luminescence dating

Eight OSL samples were collected by hammering steel tubes

into cleaned profile walls. We first used 10% HCl and 30% H2O2 to

remove any carbonates and organic material in the OSL samples,

before wet sieving to obtain the 90-125 mm fraction. The sand grain

fraction was etched by a 40% HF for about 40 minutes to remove

any feldspar and the surfaces of the grains, and then a final 10% HCl

wash to remove any fluorides which may have formed during the

HF treatment (Lang et al., 1996; Chamberlain et al., 2017; Zhou
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et al., 2019a; Guo et al., 2023). We carried out an IR test to make

sure the samples were pure enough. OSL samples Demeasurements

were carried out on small aliquots (200-400 grains per aliquot).

Luminescence measurements were undertaken on an automated

Riso TL/OSL system (TL-DA-15) equipped with blue LEDs (470 ±

30 nm) for stimulation. We used the OSL signal from the first 0.8 s

of stimulation and subtracted the background signal estimated from

the integral of the last 4 s of stimulation. The single aliquot

regenerative procedures (Murray and Wintle, 2003) were used for

the equivalent dose (De) determination.

The environmental dose rates were derived from measured

radioactive element concentrations (Adamiec and Aitken, 1998).

The contents of U, Th, and K in the OSL samples were determined

by neutron-activation-analysis (NAA) at the China Institute of

Atomic Energy (Zhang et al., 2012). The water content was

estimated with an uncertainty of ±5%. The effective dose rate was

calculated by an AGE program (Grün, 2009).
3.3 RTK elevation measurement

The RTK–DGPS survey system was used to obtain high-accuracy

elevation and positional data for the profile. The RTK system has an

accuracy of ±10 mm for elevation measurements. In order to obtain

the elevation with reference to the local datum, reference points were

used.We also conducted a-a′ and J-J′ transect (Figure 1C) at 20–80 m
intervals across the LA dune and JL dune, respectively.
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4 Results and discussion

4.1 OSL ages

Typical natural OSL decay curves and dose–response curves for

coarse-grained quartz fractions from samples LA-A-01 and JL-B-01

are shown in Figure 4. The OSL signals rapidly decay to near-

background levels, implying that OSL signals from the two OSL

samples are dominated by the fast component. The consistency of

the first regeneration dose point and its repeated dose points

suggests that the sensitivity changes during OSL measurements

were corrected appropriately. The OSL signals produced by zero

doses are close to zero, suggesting that thermal transfers during

measurement are negligible.

A preheat plateau experiment was carried out on OSL samples

LA-A-01 and JL-B-01, with preheat temperatures increasing from

180°C to 280°C at 20°C intervals. At least three aliquots were

measured using the SAR protocol at each temperature. For

sample LA-A-01, the result shows that there is a plateau of De

values on preheat temperatures from 200 to 260°C (Figure 5A).

Thermal transfer varies in the range of -0.02–0.17 Gy (JL-B-01) and

0.03-0.22 Gy (LA-A-01) between 180°C and 280°C, respectively.

The thermal transfer from the 0 Gy regenerative dose for JL-B-01

and LA-A-01 range from 0-1.9% and 0.5%-3.3% (Figure 5A),

respectively. This indicates that thermal transfer can be negligible

for LA-A-01. A dose recovery test using blue LEDs was also

performed on the same samples LA-A-01 and JL-B-01, to further
FIGURE 1

The study area in the SCS. (A) and Hainan Island (B), and the location of study of the study sites (C).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1165551
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2023.1165551
validate the SAR procedure for these samples. The given doses for

samples LA-A-01 and JL-B-01 are 6.86 Gy and 0.92 Gy,

respectively. The recovery ratios (measured dose/given dose)

obtained for each aliquot as a function of preheat temperature

(Figure 5B) show that the measured doses are statistically consistent

with the given doses in the preheat temperature range of 200–

260°C. Furthermore, the recycling ratios at 200°C (for OSL sample

LA-E-01) and 220°C (for OSL sample LA-A-01) display the smallest

scatter between aliquots. To minimize the effects of the thermal

transfer of young samples, therefore, a preheat temperature of

200°C was chosen for the OSL sample in JL-A and JL-B, and

220°C was chosen for the OSL sample in LA-A, LA-E, LA-M, and

JL-C profiles for De determination of all the samples.

Table 1 shows all the samples have relatively high OD values

(OD>20%), implying that sediments at the two sites have

experienced insufficient bleaching. To minimize the effects of

partial bleaching, a formal decision procedure (Galbraith et al.,

1999; Zhang et al., 2019) was used to determine all OSL sample ages,

as indicated in Arnold et al. (2007). The results show that no

chronological inversion occurred in all ages (Table 1).

Environmental archaeological investigations have been conducted

in this area (Fu et al., 2016), and the archaeological age provides the

possibility of stratigraphic correlation. In the adjacent Qiaoshan

site, the Neolithic culture layer interbedded between the grey-yellow

sand layer and the reddish-brown sand layer, yield the age of 3.0-

3.50 ka (Fu et al., 2016). In the LA-A and LA-E, the OSL samples
Frontiers in Marine Science 04
collected from the bottom of the grey-yellow sand layer (LA-A-01

and LA-E-02), were dated to 3.0 ± 0.1 ka and 0.31 ± 0.20 ka,

respectively. The OSL results and archaeological age from the two

sites are remarkably consistent. In addition, the OSL age of JL-C-01

from the top of Brownish red sandy soil layer was OSL dated to 4.02

± 0.26 ka, which is very close to its underlying culture layer age

(Lianzi Bay Culture; ~5 ka; Fu et al., 2016; Table 1; Figures 3D, 6).

Therefore, our OSL ages in this study are reliable.

By plotting all OSL dates from the two sites, we can conclude

that the coastal dunefield in the LA-A site mainly formed in the

episode of >28-21 ka, 21-8 ka, and since 3.1 ka (Figure 6), and the

coastal dunefield in the JL site mainly formed in the period of 14.1-

4.0 ka, 4.0-0.3 ka, and 0.3-0.1 ka (Figure 6). The lithostratigraphy

and the OSL ages obtained in the two sites can be integrated to

provide the aggradation ages of the lithostratigraphic sand units:

Yellow-brown sand as >28 to 21 ka; Brownish-red sand and

brownish-yellow sand as 14 to 4 ka; Grey-yellow sand, grey sand,

and storm deposits as comprising the last 3 ka.
4.2 Grain size

The grain-size fractions and the statistical indices of the

sediments from the LA site and JL site are listed in Table 2. The

non-storm deposit in the LA site is dominated by coarse sand

(18.47%-29.41%) and very coarse sand (23.49%-69.07%). Storm
FIGURE 2

Photographs of the studied profiles LA-A(A), LA-M(B), LA-E(C) at the LA site along southeastern Hainan Island. Red circles denote the OSL samples.
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deposits from the LA-A and LA-E profiles are dominated by very

coarse sand (68.11%-75.14%), with a mean of 637.25 mm -646.18

mm, respectively. Non-storm deposits in the JL site are dominated

by fine sand (24.15%-30.31%) and medium sand (49.54%-63.12%)

and mean grain sizes range from 266.57 mm to 364.77 mm. Storm

deposits from the JL-A profile are dominated by very coarse sand

(82.88%), with a mean of 833.83 mm.
4.3 Coastal dunes evolution on the
southeastern Hainan coast

4.3.1 Stratigraphy and chronology
LA-A site, the upper grey-yellow sand unit, and the lower brick-

red sand unit were separated by erosional unconformity storm

deposits (Figure 2A; Zhou et al., 2019a). The lower unit is
Frontiers in Marine Science 05
dominated by coarse sand and poorly sorted, weakly weathered

or pedogenically modified, scattered fine gravel. The upper unit

exhibits a similar sedimentary structure and comprises loose coarse,

poor-sorted, with few scattered granules and gravel. The OSL

samples LA-A-01and LA-A-02 sampled from the bottom of this

unit were dated to 2.80 ± 0.20 ka and 2.96 ± 0.10 ka (Figure 2A;

Table 1), respectively, which means the dune sediment in the LA

site has been mainly deposited since around 3 ka.

LA-E site, a medium and coarse sand grey yellow sand behind

the LA Beach, displays a weakly developed, loose, and structureless

texture. This profile interbedded with some slightly laminated and

moderately parallel bedding, indicating these layers deposition

under storm events (Zhou et al., 2019). An OSL sample collected

from the bottom of the profile was dated to 3.10 ± 0.18 ka

(Figure 2C; Table 1), suggesting dune deposition also mainly

occurred over the last 3.0 ka.
FIGURE 3

(A) the location of JL-1 and JL-2 profiles. (B-D) Photographs of the studied profiles (JL-1, JL-2, JL-3) at the JL site.
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LA-M site, this 3.8 m road cutting reveals three sedimentary

units. The upper grey-yellow sand unit was similar to the LA-E site.

The reddish-brown middle unit consists of coarse-grained quartz

sand, with no discernable bedding or changes in texture. The base of

this profile, is composed of brick-red coarse sand, weakly

weathered, loose, and structureless in texture. The LA-M-02

sampled from the bottom of this profile were dated to 27.60 ±

2.50 ka. The lower layer of reddish-brown sand was OSL dated to
Frontiers in Marine Science 06
7.59 ± 0.90 ka (LA-M-01; Table 1). In addition, the OSL sample LA-

A-03 collected from the top of the brick-red sand unit was dated to

20.85 ± 2.40 ka. This means that the brick-red sand unit in the LA-

M site was mainly deposited between 28 ka and 21ka.

JL-A profile is about 220m from the shoreline, and the base of the

profile consists of gray-black sandy soil with much moisture.

Overlying this bottom layer are storm overwash deposits with

typical parallel bedding characteristics (340 cm). The JL-B profile is
A

B

FIGURE 5

(A) Plots of equivalent dose, measured/given, and thermal transfer versus preheat temperature for coarse-grained quartz of sample JL-B-01. (B)
Plots of equivalent dose, measured/given and thermal transfer versus preheat temperature for coarse-grained quartz of sample LA-A-01.0.0780.94.
A B

FIGURE 4

Luminescence properties of samples LA-A-01 and JL-B-01. Natural OSL decay curves for coarse-grained quartz (A, B). Insets are growth curves obtained
using the SAR protocol (see the text) for the same aliquots as the decay curves. Filled squares represent sensitivity-corrected natural OSL signals.
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about 300m away from the shoreline, and the storm deposits occur at

the top of the coastal dunes with a thickness of about 2~3 m; the

dunes are characterized by obvious stratification, parallel bedding

structure. The bottom sediment of this profile was gray-black sandy

soil. The JL-A-02 and JL-B-02 collected from the bottom of JL-A and
Frontiers in Marine Science 07
JL-B profiles was OSL dated to 0.19 ± 0.02 ka and 0.28 ± 0.05 ka,

respectively (Figures 3, 6; Table 1). This means the sand dune at the

JL-A site was mainly formed over the past 0.3 ka.

The JL-C profile was about 1200 m from the sea and can be

divided into three parts. The lower part was yellow-brownish sand
FIGURE 6

A generalized, schematic cross-section through the dune field at the LA and JL sites showing major stratigraphic features and the OSL ages.
TABLE 1 OSL ages from LA and JL site, southeastern Hainan Island (LA-A and LA-E source from Zhou et al., 2019a).

Sample Depth
(m)

De
(Gy)

OD
(%)

Water
content (%)

U
(ppm)

Th
(ppm)

K
(%)

Dose rate
(Gy/ka) Model Age

(ka)

LA-A-01 1.77 6.34 ± 0.26 32 15 1.42 ± 0.07 4.21 ± 0.01 1.79 ± 0.04 2.24 ± 0.11 MAM 2.80 ± 0.20

LA-A-02 1.97 7.14 ± 0.53 46 12 1.45 ± 0.07 4.82 ± 0.01 1.83 ± 0.05 2.41 ± 0.13 MAM 2.96 ± 0.10

LA-A-03 2.23 34.95 ± 3.87 35 20 0.96 ± 0.06 4.20 ± 0.01 1.27 ± 0.03 1.68 ± 0.05 MAM 20.85 ± 2.40

LA-E-01 3.73 5.78 ± 0.28 30 12 1.12 ± 0.05 2.98 ± 0.01 1.41 ± 0.02 1.86 ± 0.20 MAM 3.10 ± 0.20

LA-E-02 2.43 2.09 ± 0.18 50 15 1.28 ± 0.04 4.76 ± 0.02 1.53 ± 0.02 2.10 ± 0.10 MAM 1.04 ± 0.05

LA-M-01 1.74 21.59 ± 3.19 45 15 1.51 ± 0.07 5.90 ± 0.02 1.92 ± 0.05 2.45 ± 0.07 MAM 7.59 ± 0.90

LA-M-02 3.53 37.07 ± 3.15 43 12 0.83 ± 0.06 3.22 ± 0.12 0.99 ± 0.04 1.34 ± 0.04 MAM 27.60 ± 2.50

JL-A-01 1.15 0.19 ± 0.10 65 12 1.63 ± 0.08 8.55 ± 0.26 0.97 ± 0.04 1.42 ± 0.04 MAM 0.13 ± 0.03

JL-A-02 1.73 0.79 ± 0.17 36 15 5.01 ± 0.15 34.0 ± 0.78 1.12 ± 0.04 4.13 ± 0.10 MAM 0.19 ± 0.02

JL-B-01 1.10 0.40 ± 0.05 47 15 1.63 ± 0.08 8.55 ± 0.26 0.97 ± 0.04 1.88 ± 0.06 MAM 0.21 ± 0.03

JL-B-02 2.32 0.38 ± 0.06 34 15 1.20 ± 0.07 3.86 ± 0.14 0.813 ± 0.03 1.35 ± 0.04 MAM 0.28 ± 0.05

JL-C-01 0.75 5.98 ± 0.30 22 15 1.43 ± 0.07 7.83 ± 0.25 0.58 ± 0.03 1.47 ± 0.04 CAM 4.12 ± 0.24

JL-C-02 2.35 21.48 ± 3.21 25 18 2.54 ± 0.10 7.90 ± 0.25 0.475 ± 0.02 1.53 ± 0.04 MAM 14.08 ± 2.14
fr
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(below 250 cm), the middle unit was brownish-red sandy soil

(250-75cm), and the upper unit was brownish-yellow sandy soil

(0-75cm). JL-C-02 collected from the top of the middle unit was

OSL dated to 4.12 ± 0.24 ka (Figures 3, 6; Table 1). The JL-C-01

collected from the bottom of the lower unit (yellow-brownish sand)

was OSL dated to 14.08 ± 2.14 ka (Figures 3, 6; Table 1). This means

that the dune at the JL-C site was mainly formed between 14 ka and

4 ka.

4.3.2 The role of sea level rise and climate
change on the coastal dune formation

Previous studies show that coastal dune formation has been

linked to sea-level change (Tamura et al., 2011b; Zazo et al., 2008),

sand supply (Zheng et al., 2021), and climate change (Aagaard et al.,

2007; Hu et al., 2022). According to the dating results from the LA

site and JL site, the dune sediment mainly accumulated in periods

of >28-21 ka, 14-4 ka, and the last 3 ka (Figure 7E; Section 4.3.1).

Comparison of the three age periods with previous studies on

Hainan Island (Figure 7E) displayed the dune formation period

generally overlaps the periods of coastal dune development in

Hainan Island.

Figures 7C, E shows that the timing of the first dune formation

period (>28 - 21 ka) was apparently synchronous with the sea-level

depression period and the last glacial maximum (LGM) episode.

During the LGM period, the sea level of the north part of the SCS

dropped 150-200 m (Wu and Wang, 1997). The continental shelf in

the north part of the SCS (e.g. the continental shelf around Hainan

Island) was exposed as an inland area, which provides an abundant
Frontiers in Marine Science 08
aeolian sand source for the development of sand dunes. In addition,

the strong northeast winter wind owing to the stronger winter

monsoon (Figure 7D) provided a powerful driving force to

transport the rich sand sediment from the shelf to the coastal

land. Therefore, the accumulation of dune sands in the P1 period

has been associated with extremely dry and cold weather and

significant sea-level drop during the LGM period.

The timing of the second dune formation period (14-4 ka) falls

into the late Pleistocene/early-mid Holocene period. Figure 7C, E,

this episode corresponds to the period of rapid sea level rise period.

Previous studies have evidenced that rapid accumulation of coastal

dune sediment could occur in the period of the sea-level highstands

(Murray-Wallace et al., 2010; Tamura et al., 2011b; Zheng et al.,

2021). Because a warm and humid climate greatly increases soil

weathering and erosion, more sediment was delivered into the shore

areas by rivers during the sea-level rises, which provide sufficient

sources for coastal dune activities (Tamura et al., 2011b). However,

Zheng et al. (2021) indicated that coastal dune sand records of

Hainan Island in the early-mid Holocene were not continuous,

indicating that other factors (e.g. winter monsoon) may play an

important role in affecting coastal dune sand accumulation during

the second dune formation period. A comparison of Figures 7D, E

shows that the second dune formation period is generally in a

strong winter monsoon stage, although the winter monsoon

intensity is not as strong in the SCS as it is in the LGM period.

The northward of ITCZ (Figure 7B) in the period may strengthen

the intensity of the winter monsoon. The sand source of this second

period is the near-source sands transported by winter onshore
TABLE 2 Grain size data for the sediments in the LA site and JL site.

Profile Sample layer Mean
(mm)

S Kg SK <63
mm (%)

63-250
mm (%)

250-500
mm (%)

>500
mm (%)

LA-a

Grey yellow sand 353.13 1.36 2.28 1.25 7.71 21.26 32.01 39.01

Storm deposits 637.25 1.29 1.27 1.54 20.29 4.14 7.46 68.11

Brick red sand 482.97 1.41 1.92 1.34 6.69 10.73 28.84 53.47

LA-E
Grey yellow sand 486.33 1.54 2.34 1.77 4.70 11.45 27.67 56.18

Storm deposits 646.18 1.60 1.87 2.07 9.78 2.71 12.37 75.14

LA-M

Grey yellow sand 425.47 1.92 2.42 1.16 12.54 6.73 29.41 51.20

Reddish brown sand 547.93 1.23 2.57 0.98 5.74 6.18 20.03 68.05

Brick red sand 582.97 1.51 1.74 1.22 4.77 7.69 18.47 69.07

JL-A

Yellowish grey sand 353.51 0.68 0.99 0.09 0.00 24.15 52.36 23.49

Storm deposits 833.83 0.82 1.22 0.27 2.20 4.09 11.02 82.88

Grey sand 266.57 1.38 3.08 -0.44 12.29 28.19 52.69 7.46

JL-B
Yellowish grey sand 319.72 0.68 1.01 0.08 1.05 29.83 51.69 17.43

Grey sand 289.65 1.14 2.26 -0.32 7.85 28.95 50.34 12.86

JL-C

Brownish yellow sandy soil 281.51 1.35 2.65 -0.41 11.59 27.67 51.92 8.82

Brownish red sandy soil 278.46 1.79 2.88 -0.53 14.57 30.31 49.54 5.58

Yellow brown sand 364.77 1.46 2.13 -0.38 3.43 24.96 63.12 8.49
fron
S, sorting; Kg, kurtosis; SK, skewness.
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winds, in addition to tides and waves. Similar active dune activities

have been widely evidenced in areas at the same latitude (e.g. India,

Vietnam; Colin et al., 2002; Alappat et al., 2013; Tamura et al.,

2020). Therefore, the accumulation of dune sands in the P2 period

is possibility associated with the relatively stronger winter monsoon.

The color of the sand in this period was the deepest color, which

should be related to the warm and humid climate in this episode.

The dune formation in the P3 period (3.0 ka-present) coincided

with the late Holocene climate deterioration phase. This period

features a decreasing temperature, weakening summer winds, and a

decrease in humidity (Zhao et al., 2009), which reinforces the winter

wind forces. In addition, geochemical records from the continental

shelf of Hainan Island indicated human activities have greatly

increased since 4.0 ka (Xu et al., 2018). The increased human

activities could bring abundant sediments to the coast from the river

basin. Under the action of a dry climate, intensified EAWM (East
Frontiers in Marine Science 09
Asian winter monsoon), and increased human activities, the coastal

dune was well developed along the coast of Hainan Island over the

past 3 ka (Figure 7E). Interestingly, coastal sand dune activities were

also significantly strengthened along the coast of South China

(Zheng et al., 2021), Japan (Tamura et al., 2016), and Korea

(Kunz et al., 2010) during the late Holocene.

4.3.4 The role of storm events in the
southeastern coastal dune formation

It’s worth noting that the later stage of the third period

corresponds well to the period of intensified storm activity

(Figures 7A, E). In addition, huge storm deposits have

accumulated in the JL-A site over the past 300 years (Figure 6),

suggesting that storm activities may be responsible for the building

of the coastal dunes at southeastern Hainan Island. Previous studies

indicated that storm activities have been an important factor that
FIGURE 7

Comparison of the Age distribution of samples at the Hainan Island sites with paleoclimatic, sea level change proxies. (A) The storm records from
Xincun Lagoon in southeastern Hainan Island; (B) late Quaternary ITCZ proxy from the Cariaco Basin (Mertens et al., 2009); (C) Relative Sea level
derived from benthic foraminifera isotopic records (Waelbroeck et al., 2002); (D) winter monsoon variations recorded by the core MD05-2904 and
MD97-2151 in the northern SCS (Steinke et al., 2011; Yamamoto et al., 2013); (E) frequency of dune formation period at the Hainan Island based on
the kernel density estimate of ages of dune deposits. The age bar represents the dune age data from this study.
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influences coastal dune sediment accumulations in South China

(Hu et al., 2022), Australia (Tamura et al., 2018), and North

America (Harris and Ellis, 2021). In Hainan Island, sediment

records and historical documents show that storms have

frequently hit southeastern Hainan Island over the past few

thousand years (Zhou et al., 2019a; Zhou et al., 2019b), which are

not only generated from the western Pacific but also from the SCS.

However, there is a lack of understanding of the process and

mechanism of storms on the building of coastal dunes on

Hainan Island.

The aeolian deposits at the LA site were dominated by coarse

sand and very coarse sand, with a mean grain size at about 260–830

mm (Table 2). A small amount of gravel was also identified in the

dune deposits at the LA site (Section 4.2.1). Winter winds are

believed to be the primary factors responsible for the formation of

the coastal dune along Hainan Island (Zheng et al., 2021). However,

the winter wind does not normally have the ability to transport a

large amount of coarse sand to the top of the sand dune, because of

the weak power of non-storm winds on the coast of eastern Hainan

Island (Wu and Wu, 1995). Studies have shown that storm winds

(>27 m/s) and even non-storm winds are capable of transporting

coarse sand (Levin, 2011; Tamura et al., 2018). Observation records

from Lingshui City show that the maximum monthly wind speed

could reach 15 m/s to 28 m/s in the storm seasons (Zhou et al.,

2019), suggesting that strong onshore winds associated with storms

have the potential for transporting coarse grain deposits onshore in

the southeastern Hainan Island.

However, some storms may be dominated by offshore winds

(Nott et al., 2013), which have no possibility of transporting coarse

particles onshore. In addition, precipitation associated with storms

may wet the beaches, reducing the possibility of coarse sand being

transported onshore. In the front dune of the JL site, huge thick storm

deposits (5-7 m) with numerous current-generated horizontal planar

bedding developed in the upper part of the JL-A and JL-B profiles

over the past 300 years (Figures 3B, 6). Similarly, storm deposits with

numerous current-generated horizontal planar bedding were also

identified in the LA-E profile and other profiles on the LA site (Zhou

et al., 2019a) over the past 3000 years. This means that the repeated

storm wave runup should be the primary process responsible for

transporting the coarse-sand fractions at least in the JL-A site and

LA-E site. However, the coarse sand deposits on the top of the LA

dune field are >20 m asl, which means that storm wave run-up and

currents both found it hard to reach this position. It is possible that

part of the coarse sand fractions in the dune at the LA site were from

the contribution of storm winds. Therefore, we have reason to think

that storm wave runup and storm wind processes play a significant

role in building the sand dunes in southeastern Hainan Island, as

indicated by Tamura et al. (2018), especially sand dunes beyond the

reach of fair-weather swash limit.
5 Conclusions

This paper aims to examine periods of dune development on

southeastern Hainan Island using OSL dating data. The OSL ages
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result in this study have shown at least three periods of coastal

sand accumulation: >28-21 ka BP, 14-4 ka BP, and 3.0 ka -present,

which occurred during the LGM, late Pleistocene/early-mid

Holocene, and late Holocene period. The first dune

development in the P1 period (28-21 ka BP) was due to the

extremely dry and cold weather and significant sea-level drop

during the LGM period. The dune development in the P2 period

(14-4 ka BP) is mainly associated with the relatively stronger

winter monsoon. The strengthening of the winter monsoon due to

climatic deterioration played an important role in the formation

of the dune in the P3 period (3.0 ka-present). In addition, the grain

size data analysis indicated that storm wave runup and storm wind

processes also play a significant role in building the sand dunes in

southeastern Hainan Island, especially the dunes beyond the reach

of the fair-weather swash. This study further supported that

coastal dunes have great potential in responding to paleoclimate

changes, sea level rise, and storm activities. However, it remains to

be worked out as to what extent storminess has controlled the

dune formation in future work.
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