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Underwater images play a crucial role in various fields, including oceanographic

engineering, marine exploitation, and marine environmental protection. However,

the quality of underwater images is often severely degraded due to the complexities

of the underwater environment and equipment limitations. This degradation hinders

advancements in relevant research. Consequently, underwater image restoration

has gained significant attention as a research area.With the growing interest in deep-

sea exploration, deep-sea image restoration has emerged as a new focus, presenting

unique challenges. This paper aims to conduct a systematic review of underwater

image restoration technology, bridging the gap between shallow-sea and deep-sea

image restoration fields through experimental analysis. This paper first categorizes

shallow-sea image restoration methods into three types: physical model-based

methods, prior-based methods, and deep learning-based methods that integrate

physical models. The core concepts and characteristics of representative methods

are analyzed. The research status and primary challenges in deep-sea image

restoration are then summarized, including color cast and blur caused by

underwater environmental characteristics, as well as insufficient and uneven

lighting caused by artificial light sources. Potential solutions are explored, such as

applying general shallow-sea restoration methods to address color cast and blur,

and leveraging techniques from related fields like exposure image correction and

low-light image enhancement to tackle lighting issues. Comprehensive experiments

are conducted to examine the feasibility of shallow-sea image restoration methods

and related image enhancement techniques for deep-sea image restoration. The

experimental results provide valuable insights into existing methods for addressing

the challenges of deep-sea image restoration. An in-depth discussion is presented,

suggesting several future development directions in deep-sea image restoration.

Threemain points emerged from the research findings: i) Existing shallow-sea image

restoration methods are insufficient to address the degradation issues in deep-sea

environments, such as low-light and uneven illumination. ii) Combining imaging

physical models with deep learning to restore deep-sea image quality may

potentially yield desirable results. iii) The application potential of unsupervised and

zero-shot learning methods in deep-sea image restoration warrants further

investigation, given their ability to work with limited training data.

KEYWORDS

shallow-sea image restoration, deep-sea image restoration, image formation, physical
model, prior, deep learning
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1 Background

The ocean contains many unknown organisms and vast energy

sources, which play an important role in sustaining life on earth.

The exploitation of marine resources, the development of the

marine economy, and the strengthening of the marine industry

have become integral components of countries’ strategic planning

and progress. Underwater image processing is essential for ocean

exploration; however, the complexity of the marine environment

often leads to severely degraded image quality. The differing rates of

light attenuation at various wavelengths in the ocean cause images

to predominantly appear blue–green. In addition, microorganisms

and suspended particles in the water absorb most of the light energy

and deflect its direction, resulting in low-contrast and blurred

images. These factors significantly impact the efficacy of many

underwater vision systems. Image restoration is a technique that

involves reversing the imaging process used to produce low-quality

images. Underwater image restoration technology aims to enhance

image visibility, eliminate color casts, and stretch contrast to

effectively improve the visual quality of input images, thereby

increasing the efficiency of underwater operations. Furthermore,

the restored images highlight scenes and objects, thus serving as a

preprocessing step in underwater image research. This can facilitate

advanced tasks, such as target detection, recognition, and

classification, and ultimately improve the observation and

processing of underwater information.

In contrast to images taken on land, images taken by

underwater imaging systems often suffer from low contrast, loss

of detail, color distortion, low light or non-uniform illumination,
Frontiers in Marine Science 02
and reduced visual ranges as a result of the influence of complex

underwater imaging environments and lighting environments. The

degradation of underwater images has caused great inconvenience

to practical applications and further research. The principle of

underwater optical imaging can be seen in Figure 1. The

attenuation of light under water is primarily caused by absorption

and scattering effects, leading to degraded image quality such as

reduced contrast and blurriness. In addition, different wavelengths

of light have varying rates of attenuation when traveling

underwater, which results in color distortion in the images. In

clear water, red light is the first to disappear, at a depth of 5 meters,

followed by orange light at 10 meters. Blue light, with the shortest

visible wavelength, can travel the farthest in water, which causes

underwater images to have an undesirable blue–green hue. The

presence of small particles, plankton, and dissolved organic matter

in the water frequently causes significant noise issues in underwater

imaging and exacerbates the impact of backscattering.

The deep sea, broadly defined as the depth of the ocean where

natural light does not penetrate (NOAA, 2022), is characterized by

extreme conditions such as low temperatures, darkness, and high

pressure, making exploration difficult (Paulus, 2021). Remote-

operated vehicles (ROVs) equipped with underwater optical

photography technology become an indispensable means of deep-

sea exploration. However, images captured in the depths of the dark

ocean using artificial light sources are subject to a combination of

light attenuation, scattering interference, and uneven illumination,

resulting in images with strong halo effects that are less clear than

those taken in shallower waters. Therefore, improving the quality of

deep-sea images and extracting more useful information from them
FIGURE 1

Schematic diagram of underwater optical imaging.
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is vital to promote deep-sea exploration and to discover new deep-

sea phenomena.

In the research transition from shallow-sea to deep-sea image

restoration methods, the core issue is the composition of the light

source in the underwater imaging process. Although natural

light alone or in combination with artificial light can serve as the

light source in shallow-sea imaging, artificial light sources are

essential in deep-sea imaging because of the absence of natural

light. Artificial light sources have different characteristics from

natural light and can result in non-uniform lighting, creating

bright spots in the middle of the light source and dark spots

around the edges of deep-sea images. Furthermore, inherent

image degradation problems arise because of the absorption and

scattering of light source propagation in artificial light sources.

Numerous studies have been developed to improve the quality

of underwater images (Ancuti et al., 2018; Anwar and Li, 2020;

Wang et al., 2022). A majority focused on designing direct image

enhancement techniques or networks without taking the principles

of underwater imaging into account. Others concentrated on

developing underwater image restoration techniques that reverse

the underwater imaging process to recover the original image. This

study focuses on underwater image restoration rather than

enhancement for two reasons. First, non-physical model-based

underwater image enhancement methods can enhance the visual

quality of images to some degree but do not consider the unique

optical characteristics of underwater imaging, resulting in color

distortions, artifacts, and increased noise. Second, the effectiveness

of deep learning-based underwater image enhancement techniques

depends heavily on the quality of the training data used. However,

obtaining suitable datasets, particularly for deep-sea environments,

remains a significant challenge owing to their scarcity. Although

various reviews of underwater image enhancement (Wang et al.,

2019b; Anwar and Li, 2020; Fayaz et al., 2021) exist, there is still a

lack of systematic overview to bridge the gap between shallow-sea

studies and deep-sea studies.

After a systematic review, this research paper summarizes the

challenges and advanced solutions for shallow-sea image restoration to

provide a reliable reference for researchers in the related fields. The

study then shifts its focus to deep-sea image restoration, summarizing

the difficulties faced in this field, examining the connections and

differences between shallow-sea and deep-sea image restoration

research, exploring fields, such as exposure and low-light image

enhancement, and summarizing feasible methods for deep-sea image

recovery. The contributions of this study are as follows.
Fron
(1) This study categorizes recent methods for restoring

shallow-sea images into three groups, physical model-

based methods, prior-based methods, and deep learning-

based methods, which integrate physical models. It offers an

in-depth analysis of the fundamental concepts and essential

features of these techniques, and provide a comprehensive

overview of their classification.

(2) This study provides an overview of the latest research

advancements, challenges, and promising research

directions in deep-sea image restoration. Considering two

causes of the degradation of deep-sea images, the deep-sea
tiers in Marine Science 03
environment and artificial light sources, this study reviews

the related research for potential solutions to these

problems. Techniques for shallow-sea image restoration

provide valuable insights for addressing degradation

issues arising from underwater environments, such as

color cast and blur. The degradation problem caused by

artificial light sources has been approached with solutions

such as layer decomposition and the integration of deep

learning and physical models.

(3) Experiments have been carried out extensively to assess the

effectiveness of shallow-sea image restoration, low-light

image enhancement, and exposure correction techniques

in handling deep-sea images. The findings reveal that,

although shallow-sea images have improved in color

correction to some extent, the issue of image light sources

has become more pronounced, and some prior techniques

have not been effective in deep-sea environments. On the

other hand, low-light image enhancement and exposure

correction can improve uniform illumination and increase

brightness; however, they also come with drawbacks such as

worsening color cast. Using the results of the analysis, this

study discusses the key scientific challenges that need to be

addressed in the field of underwater image restoration,

from shallow-sea to deep-sea image restoration, and

provides insight into potential future research directions.
2 Shallow-sea image
restoration methods

In general, restoration techniques model the degradation and

apply an inverse process to recover the original image. Therefore,

research on underwater image restoration focuses initially on the

development of a physical model that conforms to the principle of

underwater image formation. Although a more comprehensive

imaging model can be obtained by taking into account various

factors that influence the imaging process, a simpler model can

often be applied to a wider range of scenarios. Underwater image

restoration is based on prior knowledge from degradation

principles or statistical data.

In this section, underwater image restorationmethods are classified

into three categories. The first category focuses on building a physical

model that is aligned with the principle of underwater image

formation. The second category utilizes prior knowledge from

degradation principles or statistical data to make more accurate

estimates of unknowns in the imaging model. The third category is a

combination of an underwater imaging physical model and a deep

learning approach for underwater image restoration.
2.1 Physical model-based shallow-sea
image restoration methods

Currently, the image formation models (IFMs) employed in the

field of underwater image restoration are one of four types: the
frontiersin.org
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atmospheric light scattering (Koschmieder) model (Koschmieder,

1924), the simplified underwater formation model, the revised

underwater formation model, of which the Akkaynak–Treibitz

model (Akkaynak et al., 2017) is the most widely used, and the

Retinex model.
     

   
2.1.1 Koschmieder model
The Koschmieder model is an imaging model that accurately

explains the principle of image degradation caused by

atmospheric conditions through physical analysis (Koschmieder,

1924). As a result, it has been applied to various fields such as

underwater image restoration, restoration of foggy images, and

low-light image enhancement. The Koschmieder model can be

described as:

I(x)   =   J(x)t(x)   +  A 1   −   t(x)ð Þ :  (1)

t(x)   =   exp −bd(x)ð Þ :   (2)

In the Koschmieder model, I and J represent the degraded and

undegraded underwater images captured by the camera,

respectively, A denotes the background light, and t denotes

the transmittance.

Lu et al. (2015) developed a simplified underwater imaging

model that takes into account the combined effects of both natural

and artificial light sources. They used an energy attenuation model

to describe the lighting, and the model can be formulated as

follows:

Ec
W(x)   =   Ec

L(x)   +   E
c
A(x), c ∈ R,G,Bf g :   (3)

The Ec
W (x), Ec

L(x), and Ec
A(x) illuminances represent the total

illuminance, natural light source, and artificial light source,

respectively. By incorporating the Koschmieder model, a new

imaging model formula has been derived:

Ic(x)   =   (Ec
A(x)   ·  Nrer(c)

D(x)   +   Ec
L(x)   ·  Nrer(c)

d(x)) ·   rc(x)
� �

         

 �   tc(x)   +   1  −   tc(x)ð ÞAc, c ∈ R,G,Bf g :                                            
(4)

The Koschmieder model is a useful tool for accurately

describing the physical degradation of images and has been

widely applied in various fields, including low-light image

enhancement, image dehazing, and underwater image restoration.

However, the model has some limitations. Specifically, it considers

only the effects of absorption and scattering on the imaging process,

while ignoring other factors that can lead to significant image

degradation, such as the absorption of different wavelengths of

light by water.
2.1.2 Simplified underwater image
formation model

Many physical model-based methods in underwater image

restoration rely on simplified models and their derivatives. In

accordance with the principle of underwater imaging, light is

affected by absorption and scattering in water, resulting in the

degradation of underwater images such as blue-green cast and blur.
Frontiers in Marine Science 04
                 

           

The formation of an underwater image is often considered a linear

combination of direct transmission Ed , backscattering Eb, and

forward scattering components   Ef , as described below:

Et   =   Ed   +   Eb   +   Ef :  (5)

In underwater image restoration research, the direct

transmission component and backscattering component are

typically considered the key parts, whereas the forward scattering

component is usually difficult to obtain and has a relatively minor

impact on the formation of underwater images, and, thus, is often

neglected. A simplified underwater image formation model (IFM)

(Narasimhan and Nayar, 2000; Fattal, 2008; Narasimhan and

Nayar, 2008) is used to mathematically simulate the underwater

degradation process, which can be expressed as:

Ic(x)   =   Jc(x)tc(x)   +  Ac 1  −   tc(x)ð Þ, c∈ R,G,Bf g, (6)

where I represents the underwater degraded image, J represents

the undegraded image captured by the camera, A represents the

background light, c represents the red, green, and blue (RGB) color

channel, and t represents the transmittance according to the light

attenuation law, which can be further expressed as the attenuation

index (Zhao et al., 2015):

tc(x)   =   exp −bcd(x)ð Þ, (7)

where d represents the water depth and b is the attenuation

coefficient. The mathematical expression of the IFM is very similar

to that of the Koschmieder model. Even so, we still consider the IFM

an independent part for two reasons: (1) the Koschmieder model is

an “accurate” description of the imaging process in the atmosphere,

whereas the IFM is a “simulation” of the underwater imaging

process under the analysis of the underwater environment and

certain assumptions; and (2) research based on the Koschmieder

model is often used to develop a new physical model of underwater

imaging, whereas research based on the IFM is used to estimate the

transmission map and background light more accurately under

specific prior conditions in order to obtain a restored image with

enhanced quality.

Not all underwater scenes can be effectively modeled using the

simplified underwater IFM. To address the issue of water types and

artificial light source interference in underwater images, Chiang and

Chen (2012) considered the difference between the attenuation of

different light wavelength and adjusted the normalized residual

energy ratio Nrer based on that of Ocean Type I (extremely clear

waters) as follows:

Nrer(l)   =  

0:8 – 0:85    if l   =   650 – 750  mm   (R),

0:93 – 0:97 if l   =   490 – 550  mm   (G),

0:95 – 0:99 if l   =   400 – 490  mm ðB),

8>><
>>: (8)

where l is the wavelength. In underwater scenes, there is a

relationship between the transmittance and the normalized residual

energy ratio:

tc(x)   =   Nrer(c), c ∈ R,G,Bf g : (9)
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Then, the underwater imaging model considering the artificial

light source, blur, and wavelength attenuation can be expressed as:

Ic(x) = (EA
c (x) · Nrer(c)

D(x) + EL
C · Nrer(c)d(x)) · rc(x)

� �
· Nrer(c)d(x) + (1 − Nrer(c)d(x)) :Ac, c

∈ R,G,Bf g (10)

Simplified underwater IFMs are widely used in shallow-sea

image restoration research and have achieved satisfactory results.

However, they have significant limitations in deep-sea image

restoration research. The simplified underwater IFM attributes

the degradation of underwater images to three factors: the

absorption and scattering characteristics of water, the distance

between the target and the camera, and the geometric angle

between the light source, the camera, and the target. It is an

approximate model derived by reverse-deriving the degradation

process through computer simulation of the underwater imaging

process, neglecting the forward scattering component. In the deep-

sea environment, the forward scattering component is a crucial

factor that cannot be ignored, and the composition of the imaging

light source differs significantly from that in the shallow-sea

environment. Therefore, computer simulations based on

shallow-sea imaging environments cannot accurately describe

the degradation of images in deep-ocean environments.

Moreover, the simplified models used in the field of underwater

image restoration are based on the assumption that the light sources

is parallel natural light, such as sunlight. Although a few models

consider the presence of artificial light sources during the imaging

process, they are often considered auxiliary light sources with

negligible effects on imaging. However, in the deep-sea

environment, without natural light, an artificial light source with

a bright center and dark surroundings becomes the only light source

for imaging, resulting in an inaccurate description of the

degradation process of deep-sea images by underwater imaging

models. Furthermore, the deep-sea environment is different from

the shallow-sea environment, and the absorption and scattering of

light in deep-sea environments differ from those in general shallow-

water environments. Therefore, simplified underwater imaging

models are not suitable for deep-sea image enhancement

and restoration.
2.1.3 Akkaynak–Treibitz model
The Akkaynak–Treibitz model is proposed as an alternative to

the IFM model currently used in underwater image restoration.

Akkaynak et al. (2017) conducted in situ experiments in the Red

Sea and the Mediterranean Sea, and found that attenuation

coefficients of light depend on the imaging range and object

reflectivity. The study also quantified the error arising from

neglecting such dependencies. Building on these findings,

Akkaynak and Treibitz (2018) proposed a revised underwater

physical imaging model, as expressed in Equation 11. In the

revised model, the attenuation coefficients of the direct

transmission component and the backscattering component are
Frontiers in Marine Science 05
different, and the relationship between the distance between the

camera and the target and the direct transmission component is

mainly investigated:

Ic(x)   =   Jc(x)e−b
D
c (vD)z   +  Ac(1  −   e−b

B
c (vB)z), c ∈ R,G,Bf g, (11)

where vD and vBare both vectors and vD  = fz, r, E, Sc, b 0g and

vB   =  fE, Sc, b, b 0g , z represents the distance between the camera

and the target, r represents the reflectivity, E is the irradiance, Sc is

the camera response function, b 0  is the light scattering coefficient,

and b is the physical scattering attenuation coefficient of the

water body.

Subsequently, Akkaynak and Treibitz identified a functional

dependence between the direct transmission attenuation coefficient

bD
c and the camera–target distance z , as described in Equation 12.

They proposed the “sea-thru” underwater image restoration

method (Akkaynak and Treibitz, 2019) based on this relationship,

along with a practical approach for estimating the parameters of the

corrected model:

bD
c (z)   =   a  �   exp (b  �   z)   +   c  �   exp (d  �   z), (12)

where a and c are coefficients related to the type of water body

and their values can be calculated based on the relevant data

measured on site, and d is the depth of the water.

The Akkaynak–Treibitz model can be regarded as an

enhancement of the simplified underwater IFM through

optimization. This entails introducing non-uniform attenuation

coefficients for the direct transmission component and

backscattering transmission component and establishing distinct

correlations between the two-component attenuation coefficient

and the camera–target distances. Although the Akkaynak–Treibitz

model has been further confirmed by many scholars in the field of

shallow-sea image restoration and has led to the development of

effective shallow-sea image restoration methods, it is still an

approximate model simulating the imaging process of shallow-

sea degradation.

2.1.4 Retinex model
The Retinex theory (Land and McCann, 1971; Land, 1977) is an

effective method for addressing complex lighting issues in images. It

can balance dynamic range compression, edge enhancement, and

color preservation in image processing. Many researchers have

applied it to the fields of underwater image enhancement and

restoration. The implementation of Retinex requires certain

assumptions, such as that the color of objects as seen by the

human eye is the result of the object’s reflection of light under

different conditions, and that all colors in nature are composed of

fixed wavelengths of the three primary colors, red, green, and blue.

Meanwhile, the color of objects in the real world depends solely on

the object’s reflection properties and is not affected by the non-

uniformity of lighting, resulting in color constancy.

Based on the Retinex theory, the Retinex model (Land and

McCann, 1971; Land, 1977) is represented by the following

equation:

S(x)   =   L(x)   ·  R(x), (13)
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where L(x) represents the illumination component, background

information, or global information, R(x) represents the reflectance

component or the attributes of the photographed object, S(x)

represents the observed image, xrepresents the pixel, and the

symbol “ · } denotes pixel multiplication.

The Retinex model has achieved good results in the fields of

underwater image enhancement and low-light image enhancement.

Kimmel et al. (2003) first proposed an optimized algorithm for the

Retinex model based on a variational framework, which has

inspired the development of methods based on a variational

framework to address the problem of underwater image

degradation. Zhuang et al. (2021) proposed a Bayesian

optimization algorithm for a single-frame underwater imaging

model based on multiorder gradient priors for reflectance and

illuminance enhancement, without the need for additional prior

knowledge of underwater imaging. Later, Zhuang et al. (2022),

proposed a modified variational model with different reflectance

and illumination priors that are independent of prior knowledge of

underwater imaging.

Based on the Retinex theory, Zhang and Peng (2018) proposed

to use the global background light color as the light source color to

restore the underwater image color, and proposed an imaging

model that considered both the underwater imaging degradation

principle and the light source characteristics, as follows:

Ic(x)   =   LcMc(x)tc(x)   +   Lc 1  −   tc(x)ð Þ, c ∈ R,G,Bf g, (14)

where L is the light source color andM is the surface reflectance.

The Retinex model differs significantly from the three physical

imaging models mentioned earlier. Most shallow-sea image

restoration methods that utilize the Retinex model achieve

accurate estimation of both the illumination and reflection

components through different mathematical derivations. Such

methods have the advantage of being faster, but often require

additional prior knowledge of underwater imaging and thus are

subject to the limitations of prior knowledge. Therefore, the Retinex

shallow-sea image restoration method without additional

prior knowledge cannot guarantee good results in deep-sea

image restoration.

To sum up, the physical imaging model applied in shallow-sea

image restoration lacks generalizability in deep-sea image

restoration. Therefore, it is necessary and feasible to construct

deep-sea imaging physics based on the environmental

characteristics of the deep sea and the light source characteristics

of deep-sea imaging combined with deep-sea-collected images.
2.2 Prior-based shallow-sea image
restoration methods

Based on prior knowledge, the unknown quantities in the

physical model, transmission map and background light, are

estimated more accurately.

He et al. (2011) introduced the dark channel prior (DCP)

method for dehazing natural land images by leveraging the fog

imaging model. They creatively solved the problem of dehazing

natural land images by estimating background light and
Frontiers in Marine Science 06
transmission maps. The DCP method is based on a statistical

prior known as the dark channel, which is derived from the

observation that, in most outdoor haze-free images, pixels in non-

sky regions have at least one color channel with very low luminance

values. The dark channel is defined as follows:

Jdark(x) = m in
c∈ r,g,bf g

m in
y∈W(�)

(Jc(y))

� �
: (15)

Based on this statistical prior, the estimation of ambient light

was suggested by selecting the brightest points in the top 0.1% of the

dark channel of the observed image, and the transmission map

could be calculated using the following formula:

~t(x)   =   1   −  wm in
c

m in
y∈W(x)

(
Ic(y)
Ac )

� �
, (16)

where the variable w(0   <  w   ≤   1) is used to make the

restored image more realistic. A value of 0.95 is typically

employed for w .
Although the DCPmethod is not effective when applied directly

to underwater images, it has inspired many other underwater image

restoration methods (Hautière et al., 2008; Carlevaris-Bianco et al.,

2010). The underwater dark channel prior (UDCP) method

accounts for the fact that water absorbs different wavelengths of

light differently, with the transmission distance of red light being

shorter. Drews et al. (2016) found that, although the DCP method

fails in the red channel of underwater images, the blue and green

channels are still suitable for the DCP method. Consequently, they

applied the DCP method to the blue-green channel of a degraded

underwater image, resulting in significant improvement in the

restored image. Galdran et al. (2015) have proposed the red

channel prior (RCP) method, as shown in Equation 17, which

restores the color of shortwave-related underwater images based on

the red wavelength with the fastest attenuation. These methods can

be considered variants of the DCP method:

JRED(x)   =  min m in
y∈W(x)

(1  −   JR(y)), m in
y∈W(x)

(JG(y)), m in
y∈W(x)

(JB(y))

� �
:

(17)

As the RCP method is effective in restoring artificially

illuminated areas of underwater images, Zhou et al. (2021a)

combined the RCP method with a quadratic guidance filter to

refine the transmission map in underwater image restoration.

Chiang and Chen (2012) corrected the color of underwater

images by compensating for the attenuation of different colors of

light along the propagation path and used the DCP method to

achieve defogging. Peng et al. (2018) proposed the generalized dark

channel prior (GDCP) method, which estimates ambient light

through depth-dependent color changes, and calculates the scene

transmission through the difference between the observed value and

the estimated value. This method applies to a wide range of

scenarios. Li et al. (2016b) proposed a new underwater dark

channel prior model that combines the grayscale world

assumption to achieve blue-green channel dehazing and red

channel color correction, and used an adaptive exposure map to

adjust the color of the image. Gao et al. (2016) proposed the bright
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channel prior (BCP) method, which is suitable for underwater

images and can restore underwater images by estimating

background light and transmission map through the bright

channel, drawing on prior knowledge of the dark channel.

In contrast to the DCP method, the maximum intensity prior

(MIP) method (Carlevaris-Bianco et al., 2010) uses the attenuation

difference between the three color channels of an underwater

image to estimate the depth of the scene and restore the image.

The MIP method involves comparing the maximum intensity of

the red channel with the maximum intensity of the green and blue

channels on a small image patch. It then calculates the difference

between the maximum intensity of the red channel and the

maximum intensity of the green and blue channels using the

following formula:

D(x) = max
x∈W ,c∈R

Ic(x) − max
x∈W ,c∈ B,Gf g

Ic(x) : (18)

Here, the transmission at the point x is estimated by the

following formula:

~t(x) = D(x) + 1 −max
x

D(x)

� �
: (19)

Wang et al. (2017) proposed the maximum attenuation

identification (MAI) method, which is based on a simple prior

knowledge of underwater imaging: that the intensity of light decays

as an exponential function of distance. They rewrote the simplified

underwater imaging model as follows:

I(x)   =   J(x)x(x)   +  A 1   −   x(x)ð Þ, (20)

and, further, estimated the attenuation x as:

x ! 1  −  
1  −  maxy∈W(x) IR(y)ð Þ

1  −  AR(x) : (21)

Peng et al. (2015) observed that in underwater images the scenes

that are farther away from the camera appear more blurred. Based

on this observation, they proposed a blur prior (BP) to estimate the

distance between the scene point and the camera in order to obtain

the depth map of the underwater image and then restore the

degraded image. This method is effective under different lighting

conditions. Peng and Cosman (2017) later proposed a new method

called image blurriness and light absorption (IBLA), which takes

into account the absorption characteristics of underwater light and

further optimizes the estimation of the depth map and background

light. They proposed a new hypothesis that scene points that retain

more red light in the red channel map are closer to the camera,

which is used to estimate the depth map edR, as expressed in the

following formula:

edR   =   1  −   Fs(R), (22)

where Fs is a stretching function:

Fs(V)   =   V  −   min (V)
max (V)  −   min (V) , (23)

where V is a vector, which can represent the red channel R, the

MIP, and the BP. The final depth map of IBLA is obtained by

combining the three estimated depth maps.
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The principle of the minimum information loss prior (MILP)

states that the underwater imaging model can be mapped from the

transmission map to the undegraded image; however, the input

value range is ½0 – 255� and its effective mapping range is ½a – b�. Li
et al. (2016a) proposed an effective underwater image dehazing

algorithm that combines the MILP to restore the visibility, color,

and natural appearance of underwater images. They also proposed a

simple but effective contrast ratio enhancement algorithm based on

the histogram prior, which improves the contrast and brightness of

underwater images.

Song et al. (2018) proposed the underwater light attenuation

prior (ULAP) method based on the observation of a large number of

underwater images. The calculation of the depth map using the

ULAP method is as follows:

d(x)   =  m0   +   m1m(x)   +  m2v(x) : (24)

In this formula, m represents the maximum value of the blue-

green channel intensity and v represents the intensity value of the

red channel.

Inspired by the color-line algorithm for land image dehazing

(Fattal, 2014), Berman et al. (2016) found that by clustering the

pixels of haze-free color images using k-means, each color

cluster in the RGB space was distributed along a straight line,

which they called the haze line. They used this discovery to

achieve image depth map estimation and haze-free image

restoration. Later, Menaker et al. (2017) introduced the haze

line into the field of underwater image restoration and restored

the image by combining the blue-to-green and blue-to-red

channel attenuation ratio and the extracted parameters in the

existing water-type library. They also chose the best-restored

image based on the grayscale world assumption. Berman et al.

(2020) further optimized the method by automatically selecting

the best-restored image based on the color distribution of the

underwater image. Bekerman et al. (2020) proposed a robust

underwater image restoration algorithm that estimates

attenuation from image color distribution and estimates veiling

light from scene objects based on the underwater

optical characteristics.

Zhou et al. (2021b) proposed an underwater background light

estimation model based on flatness, hue, and brightness feature

priors, which adaptively selects the most obvious features according

to the input image to obtain more accurate background light and

transmission map estimation. This method is inspired by the

underwater scene prior.

Underwater image restoration methods that combine multiple

prior advantages also continue to be developed (Zhao et al., 2015; Li

et al., 2016b; Peng and Cosman, 2017). For instance, Zhang and

Peng (2018) used two kinds of priors, MIP and UDCP, and

saliency-guided multi-feature fusion to restore salient areas of

underwater images. Zhou et al. (2021c) also developed a new

method for underwater depth estimation that combines the

advantages of the revised physical model of underwater imaging

with priors and includes image segmentation and smoothing. In

Table 1, a summary of the prior-based shallow-sea image

restoration methods is provided.
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Currently, there are two types of prior knowledge used in the field

of shallow-sea image restoration: objective principles under the

environmental conditions of shallow-sea imaging, and general

statistical phenomena in shallow-sea images. However, the

applicability of these priors in deep-sea conditions needs to be

verified. In addition, the prior knowledge used in shallow-sea image
Frontiers in Marine Science 08
restoration should be optimized for deep-sea imaging conditions.

Another approach is to extract objective principles and common

phenomena from the specific imaging environment and images of the

deep sea and use these to inform the development of a joint prior

method that combines the advantages of different prior methods to

achieve the most accurate parameter estimation for deep-sea images.
TABLE 1 A summary of prior-based methods for shallow-sea image restoration.

Physical
model Characteristic Year Methods Priori principle

Koschmieder
model

Physically accurate models; the model is simple; and
the model has a wide range of applications

2010

MIP
(Carlevaris-
Bianco et al.,
2010)

The difference in attenuation between the RGB color channels of
an underwater image

2015
RCP (Galdran
et al., 2015)

Red channel correction for underwater based on the DCP

2016

UDCP (Drews
et al., 2016)

Underwater DCP using G-B channels for transmission estimation

BCP (Gao
et al., 2016)

Bright channel prior based on the DCP

2017
MAI (Wang
et al., 2017)

The difference in attenuation between the RGB color channels of
an underwater image

2018
ULAP (Song
et al., 2018)

The difference between blue-green light attenuation and the
attenuation of red light underwater

2020

Berman’s
(Berman et al.,
2020)

Haze line prior

Bekerman’s
(Bekerman
et al., 2020)

Image color distribution

Image
formation
model

Approximate simulation of underwater imaging
process; the model is relatively simple; and it is for
underwater imaging only

2015
BP (Peng
et al., 2015)

Scenes farther from the camera tend to be blurrier

2016

Li’s (Li et al.,
2016b)

Blue-green channels dehazing and red channel correction based on
DCP

Li_HDP (Li
et al., 2016a)

Histogram distribution prior

2017
IBLA (Peng
and Cosman,
2017)

Scenes farther from the camera tend to be blurrier; scene points
that retain more red light in the red channel map are closer to the
camera

2018
GDCP (Peng
et al., 2018)

Generalization of DCP

2020
Hou’s (Hou
et al., 2020b)

Establish an underwater total variation model based on UDCP, in
which UDCP is used to estimate the transmission map

2021

Zhou’s (Zhou
et al., 2021a)

Secondary-guided transmission map optimization based on DCP

Zhou and
Wang’s (Zhou
et al., 2021b)

Based on flatness, hue, and lightness feature priors

Revised
formation
model

Optimization of underwater imaging models; more
parameters involved in the model; and generally
applicable to different underwater scenes

2019

Sea-thru
(Akkaynak
and Treibitz,
2019)

Estimates backscatter using the underwater derivation method of
the DCP method, and uses the spatially varying illuminant to
obtain the range-dependent attenuation coefficients
DCP, Dark Channel Prior; MIP, Maximum Intensity Prior; RCP, Red Channel Prior; UDCP, Underwater Dark Channel Prior; MAI, Maximum Attenuation Identification; ULAP, Underwater
Light Attenuation Prior; BP, Blur Prior; Li_HDP, Li’method based on Histogram Distribution Prior; IBLA, underwater image restoration based on Image Blurriness and Light Absorption; GDCP,
Generalization of the Dark Channel Prior.
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2.3 Deep learning-based shallow
-sea image restoration combined
with physical models

Deep learning has gained popularity in underwater image

restoration and has shown promising results in recent years.

Anwar and Li (2020) have classified deep learning networks into

five categories, namely, encoder–decoder networks, modular design

networks, multibranch designs, depth-guided networks, and dual-

generator generative adversarial networks (GANs), and provided

detailed introductions to these networks. Although most deep

learning networks prioritize directly generating visually appealing

images, a few seek to recover more realistic images by leveraging the

knowledge of the image degradation process, which may overcome

the lack of ground-truth underwater images. Depth-guided

networks, for instance, consider the relationship between depth

and the estimation of transmission ratio and background light in

the underwater imaging model, making it a valuable technique for

shallow-sea image restoration. Eigen et al. (2014) applied neural

networks to depth estimation, and researchers have subsequently

combined depth prediction with the underwater IFM to achieve

significant advancements in underwater image restoration (Hou

et al., 2020a). In addition to these methods, there are other ways to

restore images by integrating physical imaging models with deep

learning networks. This section aims to investigate various

approaches that combine deep learning techniques with physical

imaging models, such as the Koschmieder model, the IFM, and the

Akkaynak–Treibitz model, for the restoration of shallow-

sea images.

2.3.1 Koschmieder model-based approach
Kar et al. (2021) proposed a multidomain image restoration

method based on the Koschmieder model and zero-shot learning.

In this approach, the network is trained using the degraded image

and the degraded image generated by the Koschmieder model, and

then the learned mapping is used to transfer between the

undegraded image and the degraded image to obtain the restored

image. The network estimates the unknown parameters of

background light and transmission map in the Koschmieder

model separately. The projection estimation network is

implemented using multiscale feature extraction and feature

selection of color channels, as illustrated in Figure 2C. When

applied to the field of underwater image restoration, this method

requires compensation for the red channel, which is performed as

follows:

CF(x)   =   (mIG  −  mIR)�IR(x)IG(x) : (25)

IR   =   IR   +  CF : (26)
2.3.2 IFM-based approach
Lu et al. (2018) were among the first to use deep learning

technology to tackle the problem of underwater image depth

estimation, proposing a method based on optical cameras and

deep convolutional neural networks for real-world underwater
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images. Ding et al. (Ding et al., 2017) used a convolutional neural

network to estimate a depth map from a white balance-corrected

image, which was then directly converted into a transmission map.

Cao et al. (2018) proposed two network models, one for estimating

the background light and the other for estimating depth. In the

depth estimation network, two depth networks were overlaid to

preserve both global features and local details, and the rough depth

map was connected to the first layer of the refining network to

preserve more detailed information. Pan et al. (2018) improved the

contrast of underwater images using white balance and DehazeNet

(Cai et al., 2016). They fused the two using a Laplacian pyramid and

applied an edge enhancement algorithm to the fused image.

DehazeNet estimated the transmission map and obtained the

contrast-enhanced image based on the IFM. As shown in

Figure 2A, Yan and Zhou (2020) creatively employed an imaging

model as a constraint for network training, using the underwater

image imaging model as a feedback controller for a GAN network to

ensure that the estimation results were more realistic and consistent

with the real image. In addition, a domain adaptation mechanism

was introduced in the network to eliminate the domain difference

between synthetic and real images.

2.3.3 Akkaynak–Treibitz model-based approach
The Akkaynak–Treibitz model integrates with deep learning

methods in two ways. One is by generating synthetic image data for

deep learning network training; the other is by guiding the deep

learning network to estimate the physical model parameters to

restore underwater images. As shown in Figure 2B, Liu et al. (2021)

estimated the parameters of the revised underwater imaging

physical model through an advanced global–local feature fusion

network and restored the image under the guidance of the

Akkaynak–Treibitz model. Desai et al. (2021) took advantage of

the underwater parameter sensitivity of the Akkaynak–Treibitz

model to propose reliable estimation methods for the relevant

parameters. They used the reference image and its depth map as

input to synthesize the underwater dataset and then used the

synthetic dataset to train a conditional GAN network for

underwater image restoration. Han et al. (2022) synthesized the

reference images in the real underwater Heron Island coral reef

dataset (HICRD) based on the new attenuation coefficient and

background light estimation method. They proposed a network that

uses a conditional GAN network and contrastive learning to

improve the mutual information between the original image and

the restored image. Lu et al. (2021) used an encoder network to

extract features for the background light, backscattered

transmission map, and direct transmission map based on the

revised underwater IFM. Three independent decoder networks

estimated these three components simultaneously. A scene

attention module was designed in the network to refine the

results. Finally, the estimated value was brought into the IFM to

obtain the underwater restored image.

In the field of shallow-sea image restoration, combining

physical models and deep learning methods has shown great

potential and achieved remarkable results. Therefore, it is

reasonable to explore the effectiveness of this approach in deep-

sea image restoration as well. However, the shortage of deep-sea
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image data and the absence of reliable reference images have posed

a challenge for traditional deep learning methods. Combining

physical models with deep learning can reduce reliance on

reference data to some extent. On the one hand, using a proper

physical model to simulate the degradation process of deep-sea

images we can construct deep-sea image datasets based on a large

number of land images. On the other hand, physical models can

serve as a constraint for the deep learning network to enable fast

training with limited data. Alternatively, physical models can be

integrated with deep-sea images to transform the image restoration

process into a parameter estimation or linear solution problem,

which can be solved more easily. Furthermore, exploring
Frontiers in Marine Science 10
unsupervised deep learning methods, such as zero-shot learning

in the field of deep-sea image restoration, is also promising. These

methods could potentially improve the quality of deep-sea image

restoration without relying on large numbers of labeled data.
3 Deep-sea image
restoration methods

The exploration from shallow-sea to deep-sea environments

presents significant challenges for imaging and observation owing

to the absence of light in deeper waters. Artificial light sources must
A

B

C

FIGURE 2

Shallow-sea image restoration methods based on the fusion of deep learning and physical models. (A) The deep learning network is based on the
image formation model (IFM) (Yan and Zhou, 2020). (B) The deep learning network is based on the Akkaynak–Treibitz model (Liu et al., 2021).
(C) The deep learning network is based on the Koschmieder model (Kar et al., 2021).
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be used for imaging but result in image degradation such as low

light and non-uniform illumination. Current research on

illumination problems in underwater imaging is limited. Figure 3

demonstrates a transition from shallow-sea to deep-sea image

restoration, highlighting other relevant approaches to exposure

and low-light enhancement to address the problems caused by

artificial light sources.

In this research paper, the current methods for deep-sea image

restoration are divided into two categories. The first category

includes general methods that can be utilized to tackle specific

problems in deep-sea images and the second category consists of

methods designed specifically for deep-sea images.
3.1 General image restoration models
applied to deep-sea images

A general image restoration method can be applied to the field

of deep-sea image restoration by taking into account the light

source problem during the imaging process or by generalizing the

method used to solve degradation problems in shallow-sea images.

This can help to mitigate the degradation caused by light source

issues in deep-sea images to some extent.

The specific degradation issue in deep-sea images, as

distinguished from that in shallow-sea images, lies in the use of

artificial light sources. Therefore, studies that target lighting effects,

such as vignetting, halo, and uneven illumination and exposure, can

achieve good results in deep-sea image restoration. The general

image restoration methods that have strong generalization

capabilities can be used to address specific degradation issues

present in deep-sea images by considering the light source

problem in the imaging process. Researchers, such as Wen et al.

(2013), have achieved good results in restoring deep-sea images

using the underwater optical imaging model and the underwater

dark channel estimation method. Lu et al. (2016) proposed a

solution to the halo problem caused by artificial light sources,

rather than the more general problems of deep sea image

restoration such as color correction and brightness distribution,

or outside the shallow-water image restoration process, to address

degradation caused by light sources. Lu et al. (2015) considered a

scenario where both ambient light and artificial light sources exist in

enhancing shallow-water images and proposed an ambient light

estimation algorithm based on color lines, a local adaptive filtering
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algorithm to enhance images, and correction of color bias based on

spectral features, followed by illumination compensation for dark

regions of the image to achieve global contrast enhancement of

underwater images. Li’s method (Li et al., 2020) took into account

the improper installation of underwater light sources, lighting

unevenness caused by environmental factors, and local

overexposure, and proposed an adaptive filter correction to

lighting and combined image segmentation and an image

enhancement exponential metric to improve the adaptiveness of

filter parameters.

In shallow-sea image restoration, the imaging models and prior

knowledge used remain valid even when lighting conditions change.

Such methods often have advantages in deep-sea image restoration.

Wavelength compensation and image dehazing (WCID) proposed

by Chiang and Chen (2012) determines the influence of artificial

light sources on the imaging process by comparing the separated

foreground and background intensity and compensates for the

difference in light attenuation caused by artificial light sources.

Color restoration is then done based on the residual energy ratio of

different color channels and the scene depth combined with the

corresponding attenuation. Li et al. (2018b) proposed a layer-wise

transmission fusion method and a color-line background light

estimation method to improve the illumination problem of

single-input images by removing scattering. Deng’s method

(Deng et al., 2019) considered attenuation under different lighting

conditions based on a new scene depth estimation. The background

light is estimated based on the grayscale opening and scene depth

estimation to avoid pixels in white objects and artificial lighting

areas being mistakenly estimated as background light, and the

defogged image can be obtained based on the estimated

background light and transmission map. Although DCP and MIP

are often ineffective owing to underwater illumination conditions,

the IBLA method (Peng and Cosman, 2017) estimates the scene

depth based on image blurriness and light absorption, which is

more suitable for different lighting conditions. The GDCP method

(Peng et al., 2018) estimates the background light based on the color

change-dependent scene depth estimation and estimates the scene

transmission from the difference between the observed intensity

and the estimated intensity, which is suitable for image restoration

under various special environment lighting and turbid media

conditions. The RCP method (Galdran et al., 2015) focuses on the

problem of light spots in images caused by artificial light sources

rather than the low-illumination problem of deep-sea images.
FIGURE 3

Relevant research directions to deep-sea image restoration.
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However, despite their ability to generalize, the methods that are

primarily designed for shallow-sea image restoration may not fully take

into account the unique differences and lighting conditions present in

deep-sea environments. Although these methods can still be applied to

deep-sea image restoration, they may require further optimization to

fully address the specific challenges of this environment.
3.2 Specially-designed models for deep-
sea image restoration

Considering deep-sea image restoration based on the knowledge

of shallow-sea imaging is a solid starting point, but the methods

developed for shallow-sea image restorationmay not fully address the

unique and complex challenges of deep-sea imaging. Therefore, it is

important to research new image restoration methods specifically

tailored for deep-sea environments. For example, Wen et al. (2013)

proposed a new underwater imaging model and transmittance

estimation method for extreme underwater environments such as

deep-sea and turbid waters. This model draws inspiration from the

fog image imaging model (Narasimhan and Nayar, 2000;

Narasimhan and Nayar, 2003; Fattal, 2008; Tan, 2008), but takes

into account the additional effects of underwater absorption and

scattering on imaging. The new imaging model is described as:

Ic(x)   =   Jc(x)   ·   tcb (x)   +  A
c   ·   ta (x); c ∈ R,G,Bf g, (27)

where tcb represents the proportion of scene radiation that

reaches the camera directly, and ta represents the sum of the

effects of underwater absorption and scattering.

Liu et al. (2019) addressed the issue of regional color shift caused by

the use of colored or uneven artificial light sources in deep-sea imaging

by focusing on the illumination characteristics of deep-sea images and

incorporating them into a simplified underwater imaging model. They

proposed a frequency-domain-based hue estimation method to correct

global color shift and combined it with scattering correction to improve

pixel-level color shift and contrast. Subsequently, Liu et al. (2022)

utilized the underwater simplified IFM and illumination parameters to

simulate imaging principles under different lighting conditions and

synthesized the first underwater uneven illumination dataset. They

then used this dataset to train a proposedmultiresolution image feature

reconstruction convolutional neural network for deep-sea

image enhancement.

The field of deep-sea image restoration is of great research value

and significance as it allows for the full utilization of information in

deep-sea images, which is beneficial for further deep-sea

exploration tasks. However, in comparison to shallow-sea image

restoration, research in this field is lacking. The complex deep-sea

imaging environment and the unique characteristics of deep-sea

images urgently require further study.
3.3 Analysis of deep-sea image
restoration problems

Degradation problems in deep-sea image restoration can be

divided into two categories: one is the color shift, low contrast, and
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blur caused by underwater characteristics; the other is low light,

non-uniform illumination, and noise caused by artificial light

sources. The restoration of underwater images has been analyzed

in detail in Section 2. To address the degradation problem caused by

artificial light-assisted imaging, Cao et al. (2020) proposed

NUICNet, a fully connected network suitable for deep-sea images

with an illumination correction loss. NUICNet views the

underwater uneven illumination image as the product of the

additive combination of the ideal image and the illumination

layer and solves the problem with two modules: feature fusion

and illumination layer separation. The feature extraction module

combines the input image with parameters trained on the

benchmark dataset (ImageNet; Deng et al., 2009) as hypercolumn

features; the illumination layer separation module outputs the ideal

image and illumination layer through an end-to-end network using

the hypercolumn features as input.

Nevertheless, many deep learning-based image enhancement

methods are supervised, requiring a large number of paired training

data that consist of high-quality ground-truth images with diverse

content. Currently, there is a dearth of deep-sea image data and no

established deep-sea benchmark dataset with reference images. The

problem of degradation induced by artificial light sources in deep-

sea images could be tackled by drawing inspiration from research in

related fields, such as exposure image correction and low-light

image enhancement. Shallow-sea image enhancement methods

based on deep learning would also be beneficial for restoring

deep-sea images or serve as a valuable reference, given the success

of these methods in eliminating various degradations of shallow-

sea images.

3.3.1 Exposure image correction
At present, exposure errors remain a primary concern in

camera imaging. These errors can be divided into two categories:

overexposure, where certain areas in the image appear too bright

and washed out, and underexposure, where certain areas appear too

dark. Both types of exposure problems can occur in the same image,

and they are common issues in deep-sea images. Therefore, research

in the field of exposure can be leveraged to inspire the development

of methods for deep-sea image restoration.

Wang et al. (2019a) proposed a network that employs local and

global feature encoders to learn the mapping from underexposed

images to illumination maps in order to achieve well-exposed

images based on the Retinex model. Instead of directly learning

the mapping from underexposure to the corrected image, this

network learns the mapping from the illumination layer to the

corrected image in order to preserve global features, such as color

distribution, average brightness, and scene category, as well as local

features, such as contrast, sharp details, intensity, shadow, and

highlights. The network is constructed with dual modules for local

and global feature extraction and smooths the output illumination

map to obtain a high-precision illumination map. Figure 4A

illustrates the network structure and implementation process of

the method.

To address the issue of uneven exposure in deep-sea images,

several methods have been proposed. Yu et al. (2018) presented a

method that uses image segmentation to determine local exposure
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and apply it to the entire image. The resulting image is a fusion of

images with different exposure levels to achieve a corrected image.

Zhang et al., (2019a) considered both overexposure and

underexposure in images and proposed a dual-illumination

estimation network, which uses guidance to fuse corrected images

with the input image to obtain a well-exposed image. Afifi et al.

(2021) tackled the same problem by breaking down exposure

correction into the two sub-problems of detail enhancement and

color enhancement and proposed a coarse-to-fine deep network,
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which was trained on a constructed paired dataset and successfully

solved the sub-problems.

The study of exposure correction in images, particularly those

with multiple exposures, holds valuable insights for addressing the

degradation caused by artificial light sources in deep-sea images. As

data collection in the field of exposure research is relatively

straightforward, there is an abundance of reliable paired training

datasets. However, the differences between these datasets and those

of the deep-sea environment make it necessary to adapt exposure
A

B

D

C

FIGURE 4

Representative deep learning network models. (A) The deep learning network of Wang’s method (Wang et al., 2019a). (B) The deep learning network
of Zero-DCE (Guo et al., 2020). (C) The deep learning network of EnLightenGAN (Jiang et al., 2021). (D) The deep learning network of Jin’s method
(Jin et al., 2022).
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correction methods to the unique characteristics of the deep sea and

reduce their dependence on training data.

3.3.2 Low-light image enhancement
Research on low-light image enhancement can provide valuable

insights for deep-sea image restoration, as the deep sea is also

considered a low-light environment. In low-light conditions, images

captured by cameras often have issues such as loss of detail, reduced

contrast, poor visibility, and noise.

For low-light image enhancement, Lore et al. (2017) proposed a

method that utilizes stacked sparse denoising autoencoders to learn

latent features in low-light images and to obtain an output image

with minimal noise and optimized contrast. Guo et al. (2017)

proposed a new low-light image restoration method based on the

Retinex model, which initializes an illumination map by selecting

the maximum value in the pixel channel and refining it with the

structure prior, ultimately producing an illumination-corrected

image based on the refined illumination map. Li et al. (2018a)

proposed a four-layer fully convolutional neural network, in which

the first two layers focus on high-light areas, the third layer focuses

on low-light areas, and the last layer is used to reconstruct the

illumination map. The gamma-corrected illumination map and the

original image are combined using the Retinex model to produce a

well-exposed image. Fu et al. (2016) proposed a weighted

variational model for estimating reflection and illumination maps

from input images. This model can suppress noise and estimate

more detailed reflection maps than the traditional Retinex model.

Guo et al. (2020) took into consideration low light and uneven

illumination caused by different illumination conditions and

proposed the zero-deep curve estimation (Zero-DCE) network, as

shown in Figure 4B. This network does not rely on paired data and

transforms image enhancement into a curve estimation problem,

iteratively finding the best-fitting curve pair and adjusting the

original image pixel by pixel to achieve image illumination

correction. A lightweight network of Zero-DCE is named Zero-

DCE++ (Li et al., 2021b).

Jiang et al. (2021) introduced unpaired training into the field of

low-light image enhancement for the first time. The network adopts

a PatchGAN-based global–local double discriminator structure to

solve the problem of overexposure and underexposure

simultaneously. In addition, the network incorporates a self-

attention mechanism known as U-Net (Ronneberger et al., 2015)

to improve the visual effect of brightness correction in regions of

varying illumination. The network details are shown in Figure 4C.

For night image enhancement, Jin et al. (2022) performed layer

decomposition using three independent unsupervised networks.

They used the light effect layer to guide the light suppression

module, reducing the influence of light effects and enhancing the

dark areas. The detailed network structure is shown in Figure 4D.

In addition, Zhang et al., (2019b) proposed a KinD network to

decouple the original image space into illumination components

and reflection components and take images with different exposure

levels as inputs for their proposed model. The illumination

adjustment module in the model can adjust the illumination level

according to specific needs. Later, Zhang et al. (2021) further

optimized the low-light image enhancement effect by introducing
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a multiscale brightness attention module and abandoning the U-

Net network model structure of the reflectance restoration module

in the KinD network, resulting in the KinD++ network.

Research on low-light image enhancement has shown

promising results in brightness correction and noise suppression

through the use of the Retinex layer decomposition method.

However, to apply this method to deep-sea image restoration, it is

necessary to take into account the unique characteristics of the

deep-sea environment and reduce reliance on training data.
3.4 Deep learning-based methods design

Deep learning-based methods are becoming mainstream in

shallow-sea image quality improvement research, but their

reliance on training data needs careful consideration when they

are designed for deep-sea images. The following potential solutions

are considered.

First, some well-trained, supervised deep learning models have

demonstrated good generalization and robustness to effectively

solve challenging underwater image quality enhancement

problems, such as Ucolor (Li et al., 2021a) and U-shape (Peng

et al., 2023). Ucolor is a multicolor space deep network model that

uses the transmission map estimation output by GDCP to guide

network model training, offering advantages that combine

traditional and deep learning methods for richer image feature

extraction. U-shape is based on the transformer network and is

strengthened by a self-attention mechanism and a multicolor space

loss function designed according to the human vision principle.

This kind of supervised model could serve as a fundamental model

for deep-sea image restoration.

Second, semisupervised and unsupervised learning methods are

less dependent on data and are better suited to the current situation

in which reliable reference data cannot be obtained. For instance,

Semi-UIR (Huang et al., 2023), a semisupervised underwater image

restoration method based on the mean teacher approach,

incorporates unpaired data into the model training process and

introduces pseudo-reference images and contrastive regularization

to counteract network overfitting. The unsupervised method UDnet

(Saleh et al., 2022) requires only degraded images, with a reference

image generated by a conditional variational autoencoder with

probabilistic adaptive instance normalization and a multicolor

space stretching module.

Other semi-supervised and unsupervised learning methods

based on GANs or zero-shot learning can help deep-sea image

quality enhancement network design. The combination of imaging

models and GANs, as shown in Figure 2, has produced promising

results in enhancing underwater image quality. However, when

integrating the Retinex model into deep learning methods for low-

illumination image enhancement, several limitations must be

considered. The ideal assumption used in Retinex-based low-light

image enhancement methods, that reflectivity is the final

enhancement result, may still impact the final outcome. In

addition, despite the use of the Retinex theory, deep networks

may still be at risk of overfitting (Li et al., 2021b). Similar

considerations should be taken into account for deep learning-
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based restoration methods that integrate physical models, including

the fusion strategy, the assumptions of the physical model, and the

need to prevent overfitting. Refer to Table 2 for a detailed

examination of some representative network models. It is worth

considering whether or not supervised shallow-sea image

enhancement networks, such as Ucolor and U-shape, known for

their robustness, can achieve ideal results in deep-sea image

enhancement. The impact of deep networks on different levels of

data dependency will also be analyzed in the next section.
4 Experiment analysis

In order to extend the application of underwater image restoration

to the deep sea, this section uses both the shallow-sea image dataset

and the deep-sea underwater image dataset to conduct subjective and

objective evaluations. The results of the experiments will be analyzed

and summarized to highlight the strengths and weaknesses of each

prior-based method in deep-sea image restoration. In addition, visual

examples of some classic and advanced deep-sea image enhancement,

low-light image enhancement, exposure image correction, and

shallow-sea image enhancement methods will be applied to the

OceanDark dataset to further investigate reliable techniques for

deep-sea image restoration.
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4.1 Experiment setup

In order to reflect the advantages and characteristics of eachmethod,

all the experiment methods adopted in this research paper are based on

the open-source code from the original studies and are tested using the

Linux+ NVIDIA RTX 3090 GPU experimental environment.

The experiment datasets used are the real shallow-sea

underwater image enhancement benchmark dataset (UIEB) (Li

et al., 2019) and the deep-sea underwater image dataset

OceanDark (Porto Marques et al., 2019). Detailed information on

the datasets can be found in Table 3. In the comparison experiment,

the underwater image colorfulness measure (UIQM) (Panetta et al.,

2016), underwater color image quality evaluation (UCIQE) (Yang

and Sowmya, 2015), and the blind/reference less image spatial

quality evaluator (BRISQUE) (Mittal et al., 2012) were selected as

three no-reference underwater image quality evaluation indicators

to quantitatively evaluate the enhancement effects of different

methods on deep-sea degraded images.

The experimental methods used in this study include a selection

of prior-based shallow-sea image restoration methods, including

DCP (Kaiming He et al., 2011), MIP (Carlevaris-Bianco et al., 2010),

IBLA (Peng and Cosman, 2017), ULAP (Song et al., 2018), UDCP

(Drews et al., 2016), GDCP (Peng et al., 2018), and (Li et al., 2016a).

The aim is to assess the applicability of these methods in the deep-
TABLE 2 A summary of representative deep learning-based methods incorporated with physical models.

Method Learning
type*

Model-based Layer
decomposition Loss function

Retinex UIFM Others

Wang’s (Wang et al.,
2019a)

S √ Reconstruction loss; smoothness loss; color loss

Zero-DCE (Guo et al.,
2020)

Z
Spatial consistency loss; exposure control loss; color constancy loss;
illumination loss

EnlightenGAN (Jiang
et al., 2021)

U
Global self-feature preserving loss; local self-feature preserving loss;
global generator loss; local generator loss

Jin’s (Jin et al., 2022) U √ √
Initial loss; gradient exclusion loss; color constancy loss;
reconstruction loss

Yan and Zhou’s (Yan
and Zhou, 2020)

S √ Adversarial loss; cycle loss; pixel loss; coral loss

IPMGAN (Liu et al.,
2021)

S √ GAN loss; L1 distance loss; SSIM loss

Kar’s (Kar et al., 2021) Z √
Transmission relation loss; light similarity loss; saturated pixel loss;
gray-world assumption loss; total variation loss
*S, supervised learning; U, unsupervised learning; UIFM, underwater imaging formation model; Z, zero-shot learning.
The "√" indicates the model type and layer decomposition applied by this method.
TABLE 3 Datasets information.

Dataset Year Image
category Characteristics

UIEB 2019
Shallow-
sea images

Real-world underwater dataset, containing 890 images with reference images and 183 images without reference images. The
imaging light sources consist of full natural light, full artificial light source, and a combination of half natural and half artificial
light.

OceanDark 2019
Deep-sea
images

Real-world underwater dataset, 183 deep-sea images without reference images; artificial light source.
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sea environment and analyze their advantages and limitations. In

addition, the experiments were also conducted with a variety of

low-light image enhancement methods, such as low-light image

enhancement (LIME) (Guo et al., 2017), joint enhancement and

denoising (JED) (Ren et al., 2018), LightenNet (Li et al., 2018a),

KinD (Zhang et al., 2019b), Wang’s method (Wang et al., 2019c),

Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al., 2021c), the

robust Retinex decomposition network (RRDNet) (Zhu et al.,

2020) and KinD++ (Zhang et al., 2021), nighttime image

enhancement methods, such as Jin’s method (Jin et al., 2022);

and underwater low-light and poor visibility methods, such as

L2uwe (Marques and Branzan Albu, 2020), MLLE (Zhang et al.,

2022), and hyper-laplacian reflectance priors (HLRP) (Zhuang

et al., 2022). A set of deep learning-based methods that have

shown excellent performance in shallow-sea image enhancement

were also employed. They are divided into the supervised methods

Ucolor (Li et al., 2021a) and U-shape (Peng et al., 2023), the

semisupervised method Semi-UIR (Huang et al., 2023), and the

unsupervised methods UDnet (Saleh et al., 2022) and Kar’s

method (Kar et al., 2021). These methods aim to assist the

design of new deep-sea image degradation problems. The

significance of the image enhancement scheme was analyzed,

with advantages and limitations in enhancing deep-sea images

discussed. In total, 25 methods were compared and analyzed to

determine their effectiveness in enhancing deep-sea images by

addressing issues related to underwater light absorption and

scattering, low light caused by artificial light sources, and

uneven illumination.
4.2 Experiment results

4.2.1 Results of prior-based underwater
image restoration

Deep-sea images and shallow-sea images share a common

problem: color shift and blur that are caused by underwater light

absorption and reflection. Thus, a natural consideration is whether

or not we can apply shallow-sea image restoration methods to deep-

sea images to deal with the color shift and blur problem. However,
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there are objective differences between deep and shallow sea

environments. To verify this, experiments were conducted with

prior-based shallow-sea image restoration methods using both

UIEB and OceanDark datasets.

Based on the objective evaluation results in Tables 4, 5, the

shallow-sea image restoration methods showed improvements in

both UIQM (Panetta et al., 2016) and UCIQE (Yang and Sowmya,

2015) metrics for the UIEB and the OceanDark deep-sea dataset

compared with the scores of “raw” images. UIQM is a combination

of colorfulness, sharpness, and contrast, and UCIQE is also a linear

combination of image characteristics such as chroma, saturation,

and contrast. UIQM and UCIQE may assign high ratings to images

with severely degraded naturalness (e.g., the ULAP-enhanced

images score higher). In contrast, BRISQUE based on natural

scene statistics is more suitable to evaluate the quality of

enhanced deep-sea images, and the lower the score, the better.

Comparing the metric values in Table 5 with those in Table 4, it can

be concluded that these shallow-sea image restoration methods

perform worse on OceanDark than on UIEB. This proves that deep-

sea images suffer from more severe degradation than shallow-

sea images.

To analyze the challenges encountered when applying shallow-

sea image restoration methods to deep-sea image restoration, the

visual effects of the different methods are shown in Figure 5. The

DCP method produces deep-sea images with a more severe blue-

green tint than other methods and fails to restore images with white

targets. The deep-sea images restored using the MIP method have

more bright and dark areas. Both IBLA and ULAP can effectively

enhance contrast, but they each introduce false colors and are more

sensitive to degradation caused by artificial light sources, resulting

in over-dark and bright areas with a significant loss of image details.

Although both GDCP and UDCP are based on the underwater

DCP, they produce conflicting results in the restoration of deep-sea

images. UDCP causes an overall decrease in image brightness,

whereas GDCP overexposes deep-sea images. Li’s method, based

on minimum information loss and histogram prior, has achieved

the best visual effect in terms of color correction and texture detail

preservation, but it makes bright areas too bright and introduces

obvious blocky artifacts.
frontiersin.org
TABLE 4 Objective evaluations of classic shallow-sea image restoration methods on UIEB dataset.

Raw DCP MIP IBLA ULAP UDCP GDCP Li’s

BRISQUE 25.36 25.61 27.36 24.78 25.40 24.64 25.06 32.90

UIQM 1.854 3.208 3.053 3.239 3.630 3.623 2.147 4.418

UCIQE 0.5006 0.5279 0.5454 0.5638 0.5767 0.5720 0.6015 0.6742
The best-performing results are indicated in bold font.
TABLE 5 Objective evaluations of classic shallow-sea image restoration methods on OceanDark dataset.

Raw DCP MIP IBLA ULAP UDCP GDCP Li’s

BRISQUE 32.59 31.29 32.32 35.88 31.64 32.59 29.74 28.42

UIQM 1.652 2.077 2.269 1.995 2.462 2.151 1.686 2.587

UCIQE 0.5448 0.5653 0.6291 0.5813 0.6328 0.5626 0.5639 0.5813
The best-performing results are indicated in bold font.
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Following the above analysis, it is clear, both subjectively and

objectively, that the priori-based methods designed for shallow-

sea images have a certain level of effectiveness; however, they cannot

be directly applied to deep-sea image restoration.

4.2.2 Results of the methods for complex
environmental problems

A further problem of deep-sea images is low light and uneven

illumination caused by artificial light sources. As discussed in

Section 3.3, the methods that are purposely designed for image

exposure correction and low-light image enhancement might be

useful in improving the quality of deep-sea images. To verify this

idea, we performed a group of experiments and demonstrated their

results using various deep-sea images.

Considering that there are few methods specifically designed for

deep-sea images, we selected and compared 14 methods that might

be effective in addressing some problems caused by the deep-sea

environment. Listed in Table 6, these methods were originally

developed for various fields, such as underwater images (e.g.,

L2uwe, MLLE, HLRP), low-light images [e.g., LIME, JED,

LightenNet, KinD, KinD++, RRDNet, Wang’s method (Wang

et al., 2019c), Kar’s method (Kar et al., 2021)], night images [e.g.,

Jin’s method (Jin et al., 2022)], and over/underexposed images (e.g.,

Zero-DCE, Zero-DCE++).

The advantages and limitations of these methods for deep-sea

image restoration are analyzed in Table 7 and Figure 6, providing a

reference for research in deep-sea image restoration. It is important

to note that the comparisons of these methods are based on their

effectiveness in deep-sea image restoration and may not reflect their

overall performance in their respective fields of origin.
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With regard to color correction, Figure 6A demonstrates that

the methods specifically designed for underwater image

enhancement, such as MLLE and HLRP, perform better than

those from other fields. Meanwhile, the methods from the low-

light and exposure correction field, such as RRDNet, often lack a

color correction process and may even introduce new color casts

when addressing degradation caused by artificial light sources.

When it comes to illumination correction, low-light image

enhancement methods, such as LIME, Zero-DCE, Zero-DCE++,

KinD, and KinD++, achieve good results, but have limitations in

preserving details, correcting color cast, and reducing artifacts in

deep-sea images. This highlights the need for further research that

incorporates deep-sea characteristics to find solutions.

In terms of handling sudden changes in pixel values, such as the

red beam in Figure 7B, methods such as HLRP and L2uwe are more

effective. However, HLRP leads to overexposure in the center of the

light source instead of darkening the light source area, and L2uwe

results in a contrast that is too high in the processed deep-sea image.

As shown in Figures 6C, D, in extreme examples of deep-sea images

neither low-light enhancement nor underwater image enhancement

methods have achieved satisfactory results. The severe lack of

illumination and the overexposure of foreground targets in deep-

sea images requires further research.

According to the objective evaluation results shown in Table 7,

underwater image enhancement methods show increases in both

UIQM and UCIQE, whereas the low-light image enhancement and

nighttime image enhancement methods have led to decreases in

these twometrics. This is because UIQM and UCIQE place a greater

weight on color measurement, which is not required for low-light

image enhancement and nighttime image enhancement as they do
A B D E F GC

FIGURE 5

(A–G) represent column numbers. The visual effect of different prior-based methods on the OceanDark dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1163831
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1163831
not aim to correct color deviation caused by underwater light

absorption. When compared with “raw” images, most image

enhancement methods across various fields did not show

significant improvements on the BRISQUE index. This indicates
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that, no matter the method of shallow-sea image restoration—low-

light image enhancement, night image enhancement, or exposure

image correction—they all have limitations in deep-sea image

enhancement. On the BRISQUE index, however, the MLLE
TABLE 7 Objective evaluations of image enhancement methods in various fields on the OceanDark dataset.

BRISQUE UIQM UCIQE

Raw 32.59 1.652 0.5448

L2uwe 31.36 3.390 0.5661

MLLE 25.77 3.166 0.5733

HLRP 41.24 1.967 0.5837

LIME 24.36 1.395 0.5265

Wang’s 30.80 1.051 0.5295

JED 35.50 0.790 0.5092

LightenNet 28.40 1.187 0.5191

RRDNet 29.06 1.532 0.5517

Zero-DCE 34.40 1.182 0.4624

Zero-DCE++ 32.34 2.663 0.4816

KinD 32.68 1.428 0.4968

KinD++ 33.31 1.283 0.5001

Jin’s 54.70 1.216 0.5342

Kar’s 34.19 4.399 0.6259

Ucolor 25.82 4.059 0.5231

U-shape 6.988 3.749 0.5407

UDnet 30.98 3.523 0.5348

Semi-UIR 20.86 4.050 0.5879
front
The best-performing results are indicated in bold font.
TABLE 6 The methods for complex environmental problems.

Method Year Application scenes Imaging model Deep learning based

LIME 2017 Low light Retinex

JED 2018 Low light Retinex decomposition

LightenNet 2018 Low light Retinex √

KinD 2019 low light Retinex decomposition √

Wang’s 2019 Low light Absorption light scattering model

Zero-DCE 2020 Low light, exposure \ √

RRDNet 2020 Low light Retinex decomposition √

L2 uwe 2022 Underwater low light \

KinD++ 2021 Low light Retinex decomposition √

Kar’s 2021 Low light, underwater, haze Koschmieder √

ZeroDCE++ 2021 Low light, exposure \ √

MLLE 2022 Underwater low visibility \

HLRP 2022 Underwater low visibility Retinex variational correction

Jin’s 2022 Night image Retinex layer decomposition √
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method for underwater improvement showed promising results.

This is because the technique produces an improved image that is

more realistic in terms of both color and content.

4.2.3 Results of deep learning-based underwater
image enhancement

In this section, we aim to explore the potential effectiveness of

the robust shallow-sea image enhancement method in addressing

the degradation of deep-sea images and the influence of various

data dependencies on deep learning image enhancement. The

OceanDark dataset is used to experiment with supervised deep

learning methods, including Ucolor and U-shape methods, the

semisupervised learning method Semi-UIR, and the unsupervised

deep learning method UDnet and Kar’s method. The objective

evaluation results with UIQM, UCIQE, and BRISQUE are listed

in Table 7.

The visual results, as illustrated in Figure 6, indicate that deep

learning-based shallow-sea image enhancement methods, with the

exception of Kar’s method, exhibit superior visual outcomes in

deep-sea image color correction and the retention of underwater

environmental details. Notably, the supervised model Ucolor

demonstrates distinct advantages in color correction, also

evidenced by its UIQM score in Table 7. Furthermore, the U-

shape method produces remarkably robust results using the

BRISQUE indicator. Compared with the unsupervised methods,

the supervised deep learning approach for enhancing shallow-sea

images has produced more competitive visual results, but problems

remain with low light and uneven illumination created by artificial

light sources, and lower lighting may decrease color correction
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accuracy. Kar’s method performed well using the UIQM and

UICQE indicators. This is because the technique accounts for

how underwater images degrade, producing a restored image with

more details preserved.

In terms of implementation efficiency, it is important to note

that the running time of the various deep learning methods is not

always long. As shown in Table 8, methods such as KinD, Zero-

DCE, Zero-DCE++, and Jin’s method have relatively shorter

running times, making them more suitable for real-time

applications. Shallow-sea image restoration methods that utilize

deep learning techniques. These methods do not provide a

processing time advantage due to the inherent complexity

involved in transforming from image to image. However, KinD

and KinD++ address the complexity of the image problem by

dividing it into two simpler sub-problems. Similarly, Zero-DCE

and Zero-DCE++ tackle the problem by estimating curves from

the image. As a result, these methods effectively reduce the

time cost.
5 Conclusion

This study provides an overview of the current state of research

on underwater image restoration, focusing on research gaps

between shallow-sea image restoration and deep-sea image

restoration. It identifies the causes of degradation in underwater

images, classifies and examines existing restoration methods, and

evaluates their strengths and weaknesses. By comparing the results

of classic shallow-sea image restoration techniques applied to both
Input

DCP

MIP
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ULAP

UDCP

GDCP

Li’s
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FIGURE 6

(A–G) represent column numbers. The visual effect of different deep learning-based methods on the OceanDark dataset.
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TABLE 8 Runtime of deep learning-based methods.

Method KinD Zero-DCE RRDNet KinD++ Zero-DCE++ Jin’s Kar’s* Ucolor U-shape UDnet Semi-UIR

Elapsed time/ms 6.36 1.09 85.64 37.90 4.17 4.86 163299.01 34779.23 419.7 704.04 238.22
F
rontiers in Marine
 Science
 20
 fr
*The run time of Kar’s method is based on 1000 iterations in order to ensure the quality of image restoration.
A

B

D

C

FIGURE 7

(A–D) different degradation types in the deep-sea environment. Comparison results of experiments in the OceanDark dataset.
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shallow-sea and deep-sea datasets, and the results of the latest

methods for underwater image enhancement, exposure correction,

and low-light enhancement using the deep-sea dataset, this study

concludes that existing methods in the related fields are insufficient

to address the deep-sea image degradation problem. Following an

analysis of the similarities and differences between shallow-sea and

deep-sea image degradation and the experimental results, we

suggest the following research directions to guide future research

on underwater image restoration.
Fron
(1) Combining an underwater formation physical model with

deep learning techniques has great potential in the domain

of deep-sea image restoration. The combination aims to

retain two advantages: producing more realistic and

naturally restored images and improving the robustness

and adaptability of the methods. However, two major

challenges must be addressed. (i) The physical model for

the deep-sea environment is not well studied. In particular,

the existing underwater imaging model cannot accurately

express the deep-sea lighting conditions, resulting in a

significant reduction of visual areas; and (ii) different

underwater scenarios and types of degraded images

require high adaptability of the models to meet the

demands of practical applications.

(2) Given the current scarcity of deep-sea image datasets,

future research in deep-sea image restoration should

explore the potential application of unsupervised learning

and zero-shot learning. However, the relationship between

these learning strategies and deep-sea image restoration is

not well understood, and further research is needed to

evaluate the effectiveness of unsupervised learning and

zero-shot learning in deep-sea image restoration.

(3) To be applicable in real-world environments, methods for

deep-sea image restoration should be optimized for real-

time performance. However, most existing methods for

underwater image restoration require significant

processing time. Inspired by the application fields and

requirements of low-light image enhancement, improving

the real-time performance of deep learning-based

underwater image restoration methods can simplify

complex image processing procedures, such as estimating

curve parameters (Guo et al., 2020) or splitting into

multiple sub-problems that are easier to handle (Zhang

et al., 2019b).

(4) The establishment of an underwater image quality

evaluation system is important. There is a lack of publicly

available datasets that can support training deep learning-

based deep-sea image restoration methods, and the

evaluation systems are not optimal. This hinders the

progression of research in this field and the selection of

appropriate methods for practical applications.

(5) Aside from what has been mentioned in this research

paper, there are more issues related to deep-sea images that

are rarely studied. When collecting deep-sea images, the

landing of equipment on the seabed can cause an influx of
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seabed dust, microorganisms, and suspended particles,

which often lasts for a long time (even hours) and leads

to red-yellowish and blurry images. Developing solutions to

address this problem is crucial for practical applications.

Although much of the research in underwater image

restoration focuses on single images, the practical

application of underwater images also extends to videos.

However, there is a lack of attention given to the restoration

of underwater videos. This research gap needs to be

addressed, as underwater videos play a significant role in

practical applications. Urgent attention is needed to address

processing efficiency and frame-to-frame consistency in

underwater video restoration.
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