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Local urbanization impacts
sandy beach macrofauna
communities over time

Matheus Augusto*, Rayane R. S. Abude, Ricardo S. Cardoso
and Tatiana M. B. Cabrini

Laboratory of Marine Ecology, Department of Ecology and Marine Resources, Institute of
Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
Sandy beaches are ecologically important, physically dynamic, and

heterogeneous habitats intrinsically related to human culture. However, these

interactions present challenges for sandy beaches in the Anthropocene as

stressors from urbanization increase. This study investigated sandy beach

community responses to local urbanization in two periods. Beaches were

classified into three urbanization categories: conserved (C), modified (M), and

urbanized (U), and compared temporally (1997/1998 – first period; 2012 –

second period). We hypothesized that community structure descriptors (total

abundance, biomass, and richness) and bioindicator abundance (Emerita

brasiliensis and Atlantorchestoidea brasiliensis) decreased temporally and be

lower in urbanized beaches. The results partially corroborate the main

hypothesis since there were different temporal responses from biological

variables between each urbanization category (C, M, and U). The data

supported that community structure descriptors decreased as local

urbanization increased between categories (C, M, and U). Conserved beaches

(C) presented higher values for community descriptors, and populations of E.

brasiliensis and A. brasiliensiswere more abundant compared to other groups (M

and U). Modified beaches (M) presented resilience to local urbanization pressures

since they are recently urbanized habitats, and some beaches are inside

protected areas. The urbanized beaches (U) were impacted by the long-term

pressures of urbanization and recreation, and community descriptors and

bioindicators presented the lowest values in both periods. Species undergoing

direct development, such as A. brasiliensis, should preferably be used as

indicators of temporal changes due to local urbanization on sandy beaches,

rather than indirect developers like E. brasiliensis. Identifying suitable indicators

for long-term anthropogenic impacts from increasing urbanization is necessary

for protecting sandy beach ecology.
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1 Introduction

Sandy beaches are of great ecological importance, constituting

one-third of the world’s coastline (Luijendijk et al., 2018;

McLachlan and Defeo, 2018). Sandy beaches are physically

dynamic and heterogeneous habitats defined by the interactions

of tides and waves, have varying sand grain size, and shelter biota

that varies according to morphodynamic conditions (Defeo and

McLachlan, 2005). They provide ecosystem services by protecting

the coast, maintaining coastal functions such as erosion control, and

supporting human activities such as tourism and recreation

(Barbier et al., 2011). Sandy beaches are intrinsically related to

human culture and are the most explored ecosystem for recreational

activities, offering high socioeconomic value (Schlacher et al., 2007).

However, the complex interactions between ecological attributes

and human use present challenges for sandy beach management in

the Anthropocene (Orlando et al., 2020).

Urbanization refers to the physical transformation of natural

environments for human activities (Cabral and Cândido, 2019).

Currently, about 40% of the world’s population lives in coastal areas

(Martıńez et al., 2007), and as urban development accelerates, it

causes severe ecological and ecosystem management issues (Baird,

2009). Urbanization, climate change, and resource overuse are the

three major threats to coasts worldwide, leading to the

transformation of the natural landscape and causing several

ecological impacts (Defeo and Elliott, 2021). In the case of sandy

beach ecosystems, urbanization can alter these habitats at a local

scale (1-10 km) through coastal armoring, breakwaters, artificial

night lighting, or at larger scales (>10 km), such as the construction

of ports (Defeo et al., 2009; Becchi et al., 2014; Laurino et al., 2022).

At a local scale, direct anthropogenic pressures caused by human

activities on beaches tend to increase with efficient public

transportation and facilities to support recreation and tourism,

such as toilets, kiosks, and parking spots (McLachlan et al., 2013;

González and Holtmann-Ahumada, 2017).

Recognizing whether a beach is suitable for recreation or

conservation is essential for ensuring its ecosystem services and

prioritizing uses (McLachlan et al., 2013). Beach management

requires a holistic approach that considers the Littoral Active

Zone (LAZ) as an ecological and geomorphological unit that

summarizes dunes, the beach, and the surf zone to preserve

ecosystem resilience (Defeo et al., 2021a; Jorge-Romero et al.,

2022). Despite increasing anthropogenic pressures, coastal

management often neglects the ecological aspects of sandy

beaches and focuses on securing dune vegetation stability and

restoring physical attributes such as beach nourishment and

breakwaters (Schlacher et al., 2008; Jones et al., 2017). Human

occupancy often transforms the natural landscape of beaches and

reduces biodiversity by removing dunes and beach vegetation,

usually for coastal armoring or construction of beach facilities

(Peña-Alonso et al., 2019; Salgado et al., 2022). Exposure to off-

road motorized vehicles and the deposition of debris affects birds’

and turtles’ behavior (Schlacher et al., 2013; Fujisaki and Lamont,

2016). Urbanization and recreation also negatively influence

macrofaunal community densities and richness (Orlando et al.,

2020; Wu et al., 2020), and as human activities increase, sandy
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beach biota is subjected to increased trampling, improper solid

waste disposal and grooming (Afghan et al., 2020). Beach cleaning

has intensified to meet recreational demands, which contribute to

aesthetics but have negative ecological consequences for

communities (Zielinski et al., 2019), and mechanized cleaning

causes direct mortality and reduces species richness, abundance,

and biomass (Schooler et al., 2019).

Macrofaunal organisms play a crucial role in understanding

anthropogenic impacts. Crustaceans are commonly used as ecological

indicators on exposed sandy beaches because they are abundant,

sensitive to human activities, and can be monitored easily (Suciu

et al., 2018; Barboza et al., 2021). Talitrid amphipods with direct

development are considered reliable indicators of local urbanization

pressures such as trampling and mechanized cleaning (Costa et al.,

2020). Beaches with coastal armoring results in lower abundances of

talitrids than natural beaches (Sobocinski et al., 2010), and artificial

night lights affect their feeding behavior (Luarte et al., 2016). In

addition, hippid decapods are widely used in environmental pollution

studies due to their filter-feeding habit (Sauco et al., 2010; Donohoe

et al., 2021). Studies report their capacity to bioaccumulate metals

(Pérez, 1999; Cabrini et al., 2017) and microplastics (Horn et al., 2019),

and they are also sensitive to harmful algal blooms (Bretz et al., 2002).

The mole crab Emerita brasiliensis (Schmitt, 1935) and sandhopper

Atlantorchestoidea brasiliensis (Dana, 1853) are considered suitable

indicators of sandy beach health, and the combined use of these

organisms can be effective because of their different life-history traits

(Cardoso et al., 2016; Frota et al., 2019). E. brasiliensis is a eucarid

crustacean with an oceanic planktonic larval stage, whereas A.

brasiliensis is a peracarid crustacean that incubates its eggs in their

marsupium and hatches as pre-juveniles. They have distinct feeding

strategies and inhabit different beach zones. E. brasiliensis filters

phytoplankton in the swash zone and lives in the infralittoral zone,

whereas A. brasiliensis is detritivorous, feeds on wrack or other

biological deposits, and ranges from mesolittoral to supralittoral zone.

These organisms respond negatively to intensive recreational activities

leading to decreased abundance and even disappearance on heavily

urbanized beaches (Veloso et al., 2008; Cardoso et al., 2016).

Sandy beaches are ecosystems at risk and require more research

to fill information gaps which can ultimately be integrated into

beach management and conservation policies (Nel et al., 2014;

Lercari, 2023). To undertake comprehensive impact assessments, it

is essential to comprehend the resistance and resilience of beaches

to long-term perturbations and to identify effective ecological

indicators (Fanini et al., 2020). There have been recent efforts to

analyze the temporal dynamics of sandy beaches induced by

anthropogenic factors such as fisheries (Lercari et al., 2018),

artificial freshwater discharges (Lercari and Defeo, 1999; Jorge-

Romero et al., 2019), urbanization (Bessa et al., 2014), and coastal

squeeze (Luisa Martıńez et al., 2014), but there is still a gap in

temporal studies. Cumulative and long-lasting stressors can alter

these ecosystems, and identifying ecological indicators that respond

to those pressures can help improve sandy beach conservation. A

series of indices have been proposed as an alternative to estimate

anthropogenic pressures and assist in decision-making and public

policy (González and Holtmann-Ahumada, 2017). When integrated

with ecological indicators such as macrofaunal organisms, these
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metrics help assess the impact and provide new insights for

conservation (Costa et al., 2017; Laitano et al., 2019).

In this study, we investigated the structure of sandy beach

communities and their responses to anthropogenic pressures

during two different periods. Beaches were classified into three

urbanization categories (conserved, modified, and urbanized) and

compared temporally (1997 – first period; 2012 – second period).

We hypothesized that community structure descriptors (total

abundance, biomass, and richness) and bioindicator abundance

(Emerita brasiliensis and Atlantorchestoidea brasiliensis) decreased

temporally and be lower in urbanized beaches. The results partially

corroborate the main hypothesis since there were different temporal

responses from biological variables between each urbanization

category (C, M, and U).
2 Material and methods

2.1 Study area

Eighteen exposed sandy beaches were evaluated along the Rio de

Janeiro State in Southeast Brazil. All beaches were selected in the 1990s,

contemplating beaches with varied coastal development and socio-

economic activities, comprising 295 kilometers and covering a large

portion of the state’s coastal region. Our study replicated the same

design on the same previously selected beaches. In addition to this

limitation, the current comparison found the expected pattern of more

urbanized beaches in more urban areas of the State. Rio de Janeiro has

the highest population density (IBGE, 2010), the third-longest coastline

(IBGE, 2017), and is the leading tourist destination in Brazil (Ministério

do Turismo, 2018). In recent decades, urban development in the state

has accelerated to support population growth, recreational activities,

and tourism. From 1991 to 2010, the state of Rio de Janeiro’s

population grew by more than three million people, from 12,807,706
Frontiers in Marine Science 03
to 15,989,929 inhabitants (IBGE, 2017). In 2010, only 54.8% of the

population had access to basic sanitation, contributing to untreated

sewage disposal in the ocean (SNIS, 2022). Brazil is the 4th largest waste

producer globally, and Rio de Janeiro generates approximately 3.5

million metric tons of solid waste annually (Climate and Clean Air

Coalition, 2014; WWF, 2019). Coastal environments are widely

considered polluted, and the major coastal bays of the state are

eutrophic and abundant in multiple pollutants, such as Guanabara

Bay and Sepetiba Bay (Olivatto et al., 2019; de Souza et al., 2021; da

Silva et al., 2022). Rio de Janeiro has undergone massive coastal

modifications due to urbanization, especially in the last 20 years, as

previously less-developed zones started to attract real estate

investments because of their scenic beauty and large beach arcs

(Barickman, 2014). An important factor that intensified pressure in

the region was the expansion of urban mobility, as highway

construction started connecting more populated to less populated

zones and municipalities (Brandão, 2006; Pessanha, 2015). Coastal

erosion intensified in recently developed areas, mainly from the

urbanization of the waterfront with the construction of bike paths

and recreational structures, reaching the post-beach area (Sousa, 2011).

The urbanization process around the beaches was represented in

thematic maps (Figures S1 and S2) based on Geographic

Information Systems (GIS), using information about the number of

residents, irregular sanitary sewage, and road construction between

2000 and 2010 (Supplementary materials for more details on building

the maps).

The beaches under study were grouped into three categories based

on their level of urbanization, recreation, and conservation indices

(further details in Section 2.4.1). The three categories were subsequently

identified as follows: Conserved beaches includedMarambaia, Grumari,

Formosa, Massambaba, Carapebus, and Fora beaches. Modified

beaches included Barra da Tijuca, Foguete, Itaipu, Itaipuaçu, Jaconé,

Pecado, Peró, Tucuns, and Unamar. Urbanized beaches included

Copacabana, Ipanema, and São Conrado (Figure 1).
FIGURE 1

Map of the study area showing 18 sandy beaches along the Rio de Janeiro state coast. A-Carapebus, B- Pecado, C- Unamar, D- Formosa, E- Tucuns,
F- Peró, G- Foguete, H- Massambaba, I- Jaconé, J- Itaipuaçu, K- Itaipu, L- Fora, M- Copacabana, N- Ipanema, O- São Conrado, P- Barra da Tijuca, Q-
Grumari and R- Marambaia.
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Conserved beaches (C) are characterized by low levels of

urbanization and recreation, and their accessibility is limited. The

Marambaia and Fora beaches are located within military areas with

restricted access, where entry is only permitted with formal

authorization and exclusively for educational and research

activities. Grumari, Formosa, Massambaba, and Carapebus are

located within no-take protected areas (Category II of IUCN).

These beaches have low visitation rates due to physical limitations

such as trails, distance from urban centers, lack of public

transportation, and a low number of parking spaces. Except for

Fora, all these beaches have high levels of conserved vegetation.

Beach grooming is done manually when it occurs.

Modified beaches (M) are characterized by recently urbanized

habitats and show intermediate disturbance. They are in the areas of

Rio de Janeiro State that have been recently occupied, such as the

West Zone of the Capital and the Coastal Lowlands Region. These

areas have experienced a population doubling and intensification of

beach-and-sun tourism between the studied years. The intensity of

use and frequentation is high on holidays and weekends and less

intensive on weekdays. The infrastructure to support beachgoers is

limited, with a low number of parking spaces and kiosks. Some of

these beaches still have vegetation, but less than conserved beaches.

Jaconé, Pecado, Peró, Tucuns, and Unamar beaches are inside no-

take protected areas (Category II of IUCN).

Urbanized beaches (U) are in the most densely populated area of

the metropolitan region of Rio de Janeiro. The impacts in this group

have been accumulating since the 1920s, making it one of the first

urbanized regions of the state. Additionally, it has been a traditionally

important region for culture and tourism, receiving large events and

tourists year-round. These beaches are located near urban centers,

with efficient public transportation in the surrounding areas. The

number of users is high and frequent regardless of the day of the

week. Beach vegetation is sparse or absent, with buildings present on

the post-shore and high infrastructure for beachgoers, such as kiosks,

lifeguard stations, and parking spaces.
2.2 Sampling

Eighteen sandy beaches were sampled during the summer of

1997/1998 (first period) and again during the summer of 2012

(second period). Each beach was sampled once per period,

following the same methodology for all procedures to compare

possible changes in the community descriptors of macrofauna and

physical variables over 15 years. Samplings were carried out during

spring low tides, all during summer to reduce interannual biotic and

abiotic variability linked to the seasonal cycle (Defeo and

Rueda, 2002).

Biological samples were collected from six transects

perpendicular to the shoreline, spaced equally at each beach, and

each was divided into ten sampling units (N10–N1), totaling 60

samples per beach per period and 2,160 samples overall. N10

represents the highest level of a supralittoral location, and N1

represents the lowest level of an infralittoral location at the

waterline. Macrofauna communities were sampled using a 0.04

m² quadrat sampler to a depth of 25 cm and washed through a
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0.50 mm mesh. The collected materials were transported to the

laboratory for further analysis. Sediment samples were collected

with a 3.5 cm diameter corer to a depth of 15 cm at N2

(infralittoral), N6 (mediolittoral), and N10 (supralittoral) at all

transects of each sandy beach, totaling 18 samples per beach per

period and 648 samples overall. The beach face slope was

determined using the method described by Emery (1961) by

measuring the height difference between the supralittoral and

waterline along all six transects.
2.3 Laboratory procedures

The collected specimens were sorted, counted, and fixed in 70%

ethanol. The species were identified by experts from each

taxonomic group. To estimate biomass, the specimens were dried

at 70°C for 24 h and weighed on a balance with a precision of

0.001 g to obtain their dry weight values. The sediment samples

were also oven-dried at 70°C, and the sediment texture was assessed

using a series of sieves ranging in size from 2.5–4.0 F (Suguio,

1973), graded from boulders (> 256 mm) to ultra-clay (<

0.0020 mm). Sedimentary parameters, including asymmetry

(ranging from very negative to very positive) and kurtosis

(ranging from very platykurtic to extremely leptokurtic), were

estimated using the method described by Folk and Ward (1957).

Sediment analysis was performed on Microsoft Excel using the

GRADISTAT package (Blott and Pye, 2001).
2.4 Data analysis

2.4.1 Beach groups classification
We applied urbanization, recreation, and conservation indices

to estimate local urbanization at all sampled beaches during both

periods. For the urbanization index created by González et al.

(2014), we made some adaptations. We removed qualitative

indicators of human intervention for both periods, such as the

quality of the night sky and solid residues in the sand. The other

evaluated indicators were calculated based on information provided

by urban cleaning companies (beach cleaning), municipal laws

(vehicle traffic in the sand, including mechanized cleaning),

Google Earth, and available literature (Veloso and Cardoso, 2001;

Cardoso et al., 2003; Veloso et al., 2006) to qualitative indicators of

human intervention: proximity to urban centers, buildings in the

sand, and frequency of visitors. In addition, we used personal

communication from Cardoso R.S., the author of this work and

of the base article for comparing this study (Veloso et al., 2003),

carried out in the 90s.

The urbanization index (UI) was adapted from González et al.

(2014), and levels of urbanization were estimated using five

indicators: (1) proximity to urban centers, (2) presence of

buildings on the beach, (3) beach cleaning method, (4) frequency

of visitors, and (5) vehicle traffic on the beach. The conservation

index (CI) and recreation index (RI) were calculated according to

the methods of McLachlan et al. (2013). The CI indicators were

scored as follows: (1) the extent, nature, and condition of the dunes
frontiersin.org
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and their vegetation and their connection to the beach; (2) the

presence of rare, endangered, or iconic species that are particularly

susceptible to disturbance; and (3) the abundance and diversity of

intertidal benthic macrofauna. The indicators used for RI were: (1)

infrastructure, (2) safety and health, and (3) physical carrying

capacity. To calculate these indices, we extracted information

from available literature, Google Earth images, and data from the

Brazilian Institute of Geography and Statistics (IBGE).

The beaches were categorized according to the degree of

urbanization as determined by the conservation (CI),

urbanization (UI), and recreation (RI) indices ascertained for the

first and second periods. These three variables were subjected to a

Principal Component Analysis (PCA) in R using the “vegan”

package (Legendre and Legendre, 2012). The PCA divided the

beaches along axis 1, with 76.7% explanation, into urbanized

beaches on the positive side and conserved ones on the negative

side. Beaches associated with the CI (negative side) in both periods

(1997 and 2012) were classified as “conserved” (C). Beaches located

on the negative side (CI) in 1997 and on the positive side (UI and

RI) in 2012 were classified as “modified” (M). A third category was

created for beaches located on the positive side (UI and RI) in both

periods, categorized as “urbanized” (U) (see Figure S3).

2.4.2 Ecological and urbanization variables
relationships

The variations in species richness, total abundance, biomass,

and abundance of mole crabs and talitrids were investigated

between beaches at different categories of urbanization and

between two periods (1997/1998 and 2012) using Generalized

Linear Mixed Models (GLMM) implemented in R with the

“glmmTMB” package (Zuur et al., 2009). We validated the

models using graphical quantile analysis of the randomized

residuals using the “DHARMa” package (Dunn and Smyth, 1996;

Gelman and Hill, 2006). A Wald chi-square test (Type II) was

applied to each term and interaction to obtain the Analysis of

Deviance (ANODEV) table with the “car” package. The significance

of the interactions was tested using the analysis of contrasts with

Tukey’s test in the “lsmeans” package. The predicted values (± CI)

for each predictor variable were graphically displayed using the

“ggeffects” package.

The Generalized Additive Mixed Models (GAMM; R “mgcv”

package) were used to test the relationship between each response

variable (species richness, total abundance, biomass, abundance of

E. brasiliensis, and A. brasiliensis) with indices (CI, UI, RI) and

environmental variables (beach granulometry and slope) (Zuur

et al., 2009). A Negative Binomial distribution was used, except

for biomass, where a two-part zero-truncated model was applied:
Frontiers in Marine Science 05
Gamma distribution (link=log) to model values greater than zero

and binomial distribution (link=logit) to model zeros vs. non-zeros.

The predictor variables were smoothed using the cubic regression

spline* method, and the amount of smoothing was fixed for the

variables CI, UI, and RI (k = 3) and kept free for the variables

granulometry and beach slope, where optimal smoothing was

estimated by cross-validation (Zuur et al., 2009). We conducted

all analyses and plots in the R environment (R Core Team, 2021)

using the following packages: ‘HH’ (Heiberger and Holland, 2004),

‘vegan’ (Oksanen et al., 2016), ‘glmmTMB’ (Brooks et al., 2017),

‘mgcv’ (Wood, 2004), ‘DHARMa’ (Hartig, 2016), ‘car’ (Fox and

Weisberg, 2019), ‘lsmeans’ (Lenth, 2016), ‘ggplot2’ (Wickham,

2016), and ‘ggeffects’ (Lüdecke, 2018).
3 Results

The community structure descriptors, including species

richness, total abundance, biomass, and the abundance of Emerita

brasiliensis, decreased temporally, as shown in Table 1. However,

the abundance of Atlantorchestoidea brasiliensis did not differ

among beaches with different categories of urbanization and

periods, as shown in Table S5. Each urbanization category

showed different temporal responses for biological variables (C,

M, and U). The total community abundance, species richness,

biomass, and abundance of A. brasiliensis were higher in

conserved beaches and lower in urbanized beaches in both the

first and second periods (Figures 2A-C, E). The abundance of E.

brasiliensis was higher in conserved beaches and lower in modified

beaches, and this pattern was also repeated in the two periods

(Figure 2D). The dominant species of the conserved and modified

beaches changed compared to the first and second periods while

remaining the same in urbanized beaches.

Conserved beaches (C) showed increased richness and

decreased total abundance, biomass, and abundance of E.

brasiliensis between the two periods (Figure 2). This group had

the highest values for all variables in both the first period (1997/

1998) and the second period (2012) compared to the other groups

(M and U). On conserved beaches, the dominant species were E.

brasiliensis in 1997 and A. brasiliensis in 2012. The density of the

isopod Excirolana braziliensis (Richardson, 1912) increased

between the two periods and surpassed that of E. brasiliensis in

2012 (Table S6).

Modified beaches (M) exhibited an increase in richness, total

abundance, and biomass and a reduction in the abundance of E.

brasiliensis. This group presented intermediate values for the

variables, except for E. brasiliensis abundance, which was lower
TABLE 1 Significance values obtained from contrast analysis (Tukey test) of the interaction period vs. degree of urbanization.

Period Impact Richness Abundance Biomass E. brasiliensis

1997 - 2012 C – M 0.6345 0.0006 0.0033 0.0001

1997 - 2012 C – U < 0.0001 0.0591 0.0488 0.0288

1997 - 2012 M – U 0.0001 < 0.0001 0.8785 0.3078
Significant values are in bold.
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than the other two groups (C and U). The species with the highest

density in 1997/1998 in this group was Excirolana braziliensis,

whereas, in 2012, A. brasiliensis presented the highest density.

In urbanized beaches (U), all variables except for biomass

decreased. During both periods, urbanized beaches showed lower

richness, total abundance, and biomass than conserved (C) and

modified beaches (M). The dominant species were E. brasiliensis

and Phaleria testacea (Say, 1824), and the densities of both species

were lower in 2012.

The variables in this study showed similar relationships with

each predictor variable, except for the relationship between total

biomass and UI (Figure 3). The increase in the CI was related to

increased species richness and abundance of E. brasiliensis. Four of

the response variables also showed an increase with UI, except for

total biomass, which decreased with increases in urbanization to a

value where it appeared to reach stabilization (UI ≈ 10). The total

abundance, biomass, and abundance of A. brasiliensis showed a

decrease in RI values greater than six. Except for total biomass, all

variables showed a bimodal relationship with beach granulometry

and slope, with two maximum peaks for granulometry values equal

to 0.4 and 1.0 and slope values equal to 0.08 and 0.14. Biomass

values equal to zero were recorded on five beaches that showed no

relationship with the covariates evaluated.

Crustaceans were the most abundant group in both periods,

with the hippid decapod E. brasiliensis being the most

representative in 1997 and the talitrid amphipod A. brasiliensis in

2012. E. brasiliensis densities varied from 8547.80 to 361.63 ind/m²

between the periods, while A. brasiliensis varied from 460.30 to

957.98 ind/m². The cirolanid isopod Excirolana braziliensis was the

third (1997/1998) and second (2012) most abundant species,

increasing from 398.50 to 600.91 ind/m². The bivalve Donax

hanleyanus (MolluscaBase, 2023) was the most common and
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abundant mollusk in both periods, with densities ranging from

74.00 to 78.36 ind/m². Among polychaetes, the spionid genusDispio

(Hartman, 1951) showed higher density (132.80 ind/m²) in 1997/

1998, despite occurring in only two sites. Hemipodia californiensis

(Hartman, 1951) is a widely distributed polychaete, and its densities

varied from 52.20 to 23.90 ind/m² between the periods. In 2012,

Orbinia riseri (Pettibone, 1957) was the most abundant, with 46.42

ind/m². The only sampled insect species was the tenebrionid beetle

P. testacea, which ranged from 124.20 to 53.08 ind/m² between the

periods and occurred in almost all sampled beaches. A complete list

of species densities is shown in Table S6.
4 Discussion

The results partially support the main hypothesis since there

were different responses from biological variables between each

urbanization category (C, M, and U). The data supported that

community structure descriptors (species richness, total abundance,

and biomass) decreased as urbanization increased from conserved

to urbanized beaches. Between the periods, there was a reduction of

community structure descriptors and abundance of E. brasiliensis.

Despite the study covering an extensive spatial area, there was a lack

of temporal replication to conclude that recorded temporal

variations were solely due to increases in local urbanization.

While there was a decline in E. brasiliensis abundance in all

categories comparing the first and second periods, the abundance

of A. brasiliensis responded to urbanization spatially, increasing

from more to less urbanized categories. The observed patterns,

where urbanized beaches presented lower values for all community

structure descriptors and non-occurrence of A. brasiliensis, while

conserved beaches presented the highest values in the two different
B C

D E

A

FIGURE 2

Model prediction for the mean (± CI) between urbanization degree and periods for: (A) species richness, (B) total abundance, (C) total biomass,
(D) abundance of Emerita brasiliensis, and (E) abundance of Atlantorchestoidea brasiliensis.
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periods, show evidence of urbanization effects on sandy beach

ecosystems. However, caution should be exercised when

interpreting the effects of local urbanization on temporal variations.

It was expected that conserved beaches (C) would act as a

control group, but instead, most biological variables decreased

except for species richness. Although local urbanization pressures

and recreational activities are considerably lower in this group, they

are still susceptible to impacts, such as those derived from marine

pollution. But they still maintained higher values for community

descriptors, and populations of E. brasiliensis and A. brasiliensis

were more abundant compared to other groups (M and U). Many

coastal habitats around the study area are eutrophic and are daily

impacted by domestic and industrial sewage disposal (Fistarol et al.,

2015; Castelo et al., 2021). Chemical pollutants are also present, and

there is a report of metal bioaccumulation by macrofauna of sandy

beaches in the study area (Cabrini et al., 2017). Solid waste,

including microplastics, is a frequent issue on beaches (Carvalho

and Baptista-Neto, 2016; Iannilli et al., 2018; da Silva et al., 2022).

Accessibility is a major driver of the volume and type of solid waste
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accumulation on beaches, but even those with restricted access can

present high densities (Abude et al., 2021). Trampling is a major

impact on benthic fauna, especially in recreational areas with high

numbers of users (Schlacher et al., 2012; Machado et al., 2017), and

is lower in conserved beaches due to access restrictions in military

areas and physical limitations of protected areas. Manual cleaning is

performed on most conserved beaches and is less harmful to

benthic fauna than mechanized cleaning (Zielinski et al., 2019).

The modified beaches (M) seem to present resilience to the

estimated pressures as they have intermediate levels of disturbance

and are recently urbanized habitats. Some beaches in this group

were included inside new no-take protected areas (Category II of

IUCN) between the periods, which contributed to reducing the

pressures of local urbanization, especially by protecting dunes and

vegetation (Rio de Janeiro, 2011). All community descriptors

increased in this group between the periods, and only the

abundance of E. brasiliensis declined. The peracarid crustaceans

A. brasiliensis and Excirolana braziliensis increased between years,

contributing to increased community descriptors (total abundance
FIGURE 3

Smoothed curves and linear relations (partial for CI or UI) of the variables species richness, total abundance, total biomass, Emerita brasiliensis
abundance, and Atlantorchestoidea brasiliensis abundance, with the predictors conservation index (CI), urbanization index (UI), recreation index (RI),
granulometry and beach slope.
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and biomass). High abundances of A. brasiliensis could be

attributed to the conserved vegetation in some of these beaches

since beaches that present shoreline armoring has a lower

abundance of talitrids (Sobocinski et al., 2010; Dugan et al.,

2008). Increases in A. brasiliensis demographic parameters, such

as density, size, and biomass, are all correlated with beach vegetal

availability (Weber et al., 2019). Also, visitation in these habitats is

not as constant as in urbanized beaches and tends to increase only

on weekends and holidays. Talitrids are widely used as indicators of

human trampling, but their populations can recover after periods of

reduced activities (Ugolini et al., 2008; Veloso et al., 2008, Veloso

et al., 2009). Compared to other crustaceans, Excirolana braziliensis

is more tolerant to environmental stress and remains abundant in

moderately urbanized habitats (Veloso et al., 2011; Suciu

et al., 2018).

The urbanized beaches (U) are the most impacted and least

conserved group, and community descriptors and bioindicators

present the lowest values in both periods. They are in the most

densely populated region of the capital and have a long history of

urbanization and recreation impacting these sandy beach habitats

(Cardoso et al., 2016). Shoreline modifications on these beaches

started around the 1920s, and beach-going by locals has been a

cultural habit ever since (Barickman, 2014). Beach nourishment, a

widely adopted engineering intervention to extend beach width, was

already performed in Copacabana and Ipanema beaches around the

70s and 80s and causes ecological damage to beach fauna (Schlacher

et al., 2012; de Schipper et al., 2021). Anthropogenic stressors are

highly associated with human activity intensity, as shown by Covid-

19 anthropause (Soto et al., 2021; Ben-Haddad et al., 2022; Costa

et al., 2022; Neves et al., 2022), and those beaches are daily used by

locals and tourists for recreational purposes.

The absence of A. brasiliensis in urbanized beaches (U) in both

periods is noteworthy, as talitrids are considered reliable indicators

of urbanization, particularly trampling and mechanized cleaning

(Cardoso et al., 2016; Costa et al., 2020). Other local urbanization

factors, such as artificial lighting and coastal armoring, reportedly

have a more detrimental effect on supralittoral organisms like

sandhoppers (Devon-Lynn et al., 2021; Jaramillo et al., 2021).

Deposited biological material from the sea and land is a

determinant factor in maintaining populations of supralittoral

detritivores and is removed by beach cleaning (Hyndes et al.,

2022), which is mechanized and frequent in urbanized beaches.

The non-occurrence of talitrids has been previously reported in

highly impacted environments along an urbanization gradient

(Fanini et al., 2005; Veloso et al., 2006; Veloso et al., 2008;

Cardoso et al., 2016). It is important to consider the sampling

design when using sandhoppers for impact assessments (Costa and

Zalmon, 2019a) and a more consistent species-oriented sampling

design is needed to confirm local extirpation. However, the long-

term high levels of urbanization probably affected A. brasiliensis’

capacity to sustain resident populations on urbanized beaches.

The abundance and occurrence of Emerita brasiliensis declined

in all beach categories (C, M, and U). It is hypothesized that mole

crab populations are defined by source-sink dynamics, in which

some beaches act as a “source” of larval supply and others as “sinks”,

receiving more individuals that it generates, and that coastal
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development could disrupt metapopulation dynamics by

impacting populations of “source” beaches (Celentano et al., 2009;

Costa et al., 2022). An overall decline in E. brasiliensis abundance,

even in conserved beaches, could be related to this conjecture.

Despite the widely studied benthic phase of the species, the larval

dynamics are poorly understood. E. brasiliensis exhibits great

phenotypic plasticity and can inhabit beaches with contrasting

morphodynamics in high densities (Defeo et al., 2001; Defeo and

Cardoso, 2002). They may present fluctuations due to recruitment

periods, but reproduction in subtropical environments is

continuous, and peaks are registered in warmer seasons (Veloso

and Cardoso, 1999; Cardoso et al., 2003; Petracco et al., 2003). Mole

crabs are filter feeders living in the swash zone and could be more

susceptible to impacts beyond direct human pressure than

supralittoral species. This genus plays an important role as a

bioindicator of chemical and organic pollution on sandy beaches.

Mole crabs are negatively affected by urban sewage effluents (Boere

et al., 2011), accumulate high concentrations of algal toxins (Ferdin

et al., 2002; Powell et al., 2002), and heavy metals (Cabrini et al.,

2017). The Emerita genus (Stimpson 1857) can also accumulate

microplastics (Horn et al., 2019). The response of E. brasiliensis

could be derived not only from local pressures from recreation and

urbanization but also from large-scale factors (e.g., marine

pollution) that were not captured by the indices.

The indices (CI, UI, and RI) are efficient tools for rapidly

estimating local human modification parameters on beaches and

can assist policymakers in prioritizing the use of space and decision-

making (McLachlan et al., 2013; González and Holtmann-

Ahumada, 2017). The indices provided a scenario of increasing

urban development around sandy beaches in the study area, where

most sites changed from conserved to urbanized status, classified

here as “modified.” Various studies have found relationships

between the indices and ecological data when integrated into

sandy beach ecology. For example, Cardoso et al. (2016) showed

that E. brasiliensis and A. brasiliensis abundances can be predicted

by the conservation and urbanization indices and are positively

associated with conservation and negatively associated with

urbanization. Morphological traits like fluctuating asymmetry of

both species seem to be related to conservation levels estimated by

the CI, as beaches with the highest conservation levels showed low

asymmetry in Frota et al. (2019). Regarding other sandy beach

species, the high levels of UI are related to a lower abundance of

beetles like tenebrionid Phaleria maculata (Kulzer, 1959) on the

Chilean coast (González et al., 2014) and cicindelid Cylindera nivea

(Kirby, 1818) (Costa and Zalmon, 2019b). Laitano et al. (2019)

applied the UI and found that beach urbanization negatively

affected the abundance of recruits and juveniles of clam

Amarilladesma mactroides (Reeve, 1854). Despite their efficiency,

these indices only assess local factors, and other metrics need to be

integrated into sandy beach impact evaluations.

Sandy beaches are not closed systems; several impacts that may

originate in the ocean or by large-scale urban modification

influence this ecosystem, and therefore, other unmeasured

impacts may have influenced the results. Given the age of the

ecological data from the 90s, complementary information such as

the physical and chemical properties of water was not found in the
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available databases. Therefore, it was not possible to make

inferences about the effects of climate change on the study area,

such as increases in sea surface temperature, increases in the

frequency of extreme climatic events, or changes in marine

current patterns. Populations distributions can be affected by

warmer waters, as the tropicalization phenomenon registered in

Uruguayan beach communities, although its effects are still briefly

studied (Defeo, 2003; Schoeman et al., 2014). The Brazil Current is

intensifying and shifting southwards during the past decades in

response to changes in near-surface wind patterns, leading to

intense ocean warming along its path (Franco et al., 2020).

Assessing anthropogenic impacts via suitable indicators is a

major topic within sandy beach research (Fanini et al., 2020) and

may serve as useful resources for managers. However, research on

conservation and management practices is less prevalent (Nel et al.,

2014). Lercari (2023) highlights that sandy beaches still do not

receive the same scientific attention as other coastal environments;

however, scientific studies are growing moderately, and human

impacts derived from urbanization are a primary research field.

Nevertheless, few studies address the temporal dimension (medium

or long-term) in sandy beach habitats, and even fewer include

cumulative impacts from urbanization on communities. Although

the present study is not a long or medium-term assessment to

comprehend a temporal trend, and the aim is to compare two

distinct points in time, even evaluations like this are scarce. Bessa

et al. (2014) suggested that the talitrid amphipod Talitrus saltator

(Montagu, 1808) and isopod Tylos europaeus (Arcangeli, 1938)

were potential indicators of medium-term human pressures on the

Portugal coast. In southern California (USA), a historical data

survey showed that intertidal isopods Tylos punctatus (Holmes &

Gay, 1909) and Alloniscus perconvexus (Dana, 1853) were

extirpated from numerous locations, and populations persist

primarily on non-urbanized sites (Hubbard et al., 2014). Also, on

the Californian coast, local-scale urbanization processes were the

primary drivers of change in beach ecosystems, and wrack-

associated species richness declined over time at impacted

beaches (e.g., beach nourishment and grooming) (Schooler et al.,

2017). This shows that sandy beach populations can be disrupted by

urbanization over time and corroborates the absence of A.

brasiliensis in urbanized beaches in both periods of the current

study. A. brasiliensis can be a potential indicator of long-term local

urban pressures on sandy beach habitats.

Different community and population responses must be

considered when assessing the impacts and challenges of

conservation policymaking. Marine connectivity is often

disregarded when creating and managing protected areas (Balbar

and Metaxas, 2019). Currently, the scenario in Rio de Janeiro

consists of a few pristine beaches inside protected areas with good

levels of conservation (Categories I and II of the IUCN) and large

areas with high urbanization and recreation. Many studied beaches

have been classified as protected areas since 1997; however, many

are of sustainable use and lack management plans, although

Brazilian legislation determines that they must be elaborated

within five years from the date of the creation of the protected

area (BRASIL, 2000). Often, beaches inside protected areas are

attractive for their scenic beauty and are unmanaged for purposes
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beyond recreation and tourism. Even beaches in the urbanized

category (U) are protected areas for sustainable use (RIO DE

JANEIRO, 1988), despite not conserving their biodiversity. The

conservation target of 10% for coastal and marine systems proposed

by the Convention on Biological Diversity can be considered low for

conserving beaches and their biota, and coastal reserve networks do

not necessarily confer conservation benefits to sandy beaches

because the LAZ can often be neglected (Harris et al., 2014a;

Harris et al., 2014b). This scenario repeats itself on many coasts

subject to increasing urbanization, use of resources, and climate

change effects (Defeo and Elliott, 2021). The status of sandy beaches

in Rio de Janeiro reflects others worldwide: poor management,

increasing urbanization, and impacted biodiversity.
5 Conclusions

Our results support that local urbanization impacts sandy beach

ecosystems over time, and long-term monitoring is necessary to

distinguish community and population responses better. The

decline of E. brasiliensis was not entirely explained by local

urbanization pressures, as there are other factors, natural or

human-induced, that could be influencing the abundance of this

species. Thus, species with direct development, such as A.

brasiliensis, stand out as potential indicators of changes caused by

local urbanization on sandy beaches. Simple metrics such as indices

are low-cost tools for quick assessments of impacts and are easily

integrated into ecological information. However, they do not

preclude the need for more robust surveys that provide a holistic

picture of the changes caused by urbanization. Urbanization is a

complex phenomenon that alters coastal systems, with many

consequences that are still poorly understood. There are

possibilities for conservation in Rio de Janeiro since there are still

preserved beaches with low levels of human intervention. Managing

these ecosystems requires an effective protected area network and

not only a few conserved beaches in remote areas of the state. It

remains to be seen whether biodiversity will endure until

conservation measures are efficiently implemented.
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Martıńez, M. L., Intralawan, A., Vázquez, G., Pérez–Maqueo, O., Sutton, P., and
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