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Introduction: Climate change is reshaping the geographical distribution of species

across the globe. In marine ecosystems, climate change creates novel challenges to

an environment impacted by numerous anthropogenic stressors. Forecasting shifts

in species distribution, including the expansion of non-indigenous species under

climate change scenarios, is a management challenge for today’s world.

Methods:We applied Bayesian Additive Regression Tree (BART)models to investigate

the environmental factors modulating the occurrence and habitat preferences of the

Atlantic blue crab Callinectes sapidus Rathbun, 1896 in native and non-native areas.

With BARTmodels, we also aimed to predict its current and future distributions under

two climate change scenarios (RCPs 4.5 and 8.5). BARTmodels were performed using

global occurrences of the Atlantic blue crab – recorded from 1830 to 2022 – and

several environmental covariates (i.e., water temperature, salinity, current velocity, and

rugosity). Model accuracywas assessedwith the AreaUnder theCurve (AUC) and True

Skill Statistics (TSS) criteria. Cross-validation experiments were made to balance

accuracy prediction and uncertainty model prediction intervals.

Results and discussion: AUC and TSS values indicated that data validation was

successful for the BART model. Water temperature was the most critical variable

affecting the presence probability of the Atlantic blue crab. The BART model

predicts asymmetric distribution range shifts on both sides of the Atlantic Ocean.

The non-native populations will experience broader shifts in their distribution

range than in the native range, and the RCP 8.5 scenario model outputs predict a

wider distribution range by the end of the century. Overall, we anticipate

significant ecological changes in native and non-native areas. The range

expansion in native areas is often equivalent to the ecological shifts induced by

invasive species, so lessons learned by ecologists and managers in non-native

areas will provide actionable insights to managers in native areas.

KEYWORDS

Atlantic blue crab, invasive species, species distribution modeling, Atlantic Ocean,
global warming
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1 Introduction

The abundance and distribution of marine species changed

quickly throughout the 20th century due to multiple anthropogenic

stressors, including habitat modification and destruction,

overexploitation, pollution, and the introduction of non-

indigenous species (Halpern et al., 2015; Corrales et al., 2018). In

the 21st century, global climate steers species distribution in

terrestrial and aquatic ecosystems has become more evident

(Poloczanska et al., 2013; Molinos et al., 2015; Pecl et al., 2016;

Molinos, 2020). For some species, their distribution range

contracted (e.g., alpine trees (Engler et al., 2011; Charbonnel

et al., 2016), others were extirpated (e.g., Bay checkerspot

butterfly Euphydryas editha bayensis) (Sternitsky, 1937), southern

sea lions Otaria flavescens (Shaw, 1800), mountain wildflower

Androsace septentrionalis Linnaeus 1753)) (McLaughlin et al.,

2002; Baylis et al., 2015; Panetta et al., 2018), while many others

experienced a degradation of their conservation status because they

now live under sub-optimal temperature conditions that disrupt

fitness, reproduction, survival, or established biotic interactions

(e.g., white-beaked dolphin Lagenorhynchus albirostris (Gray,

1846), reef-buiding coral Diploastrea heliopore (Lamarck, 1816),

golden kelp Laminaria ochroleuca Bachelot Pylaie 1824, brook trout

Salvelinus fontinalis (Mitchill, 1814), and Chinese giant salamander

Andrias davidianus (Blanchard, 1871) – Elliott and Simmonds,

2007; Cantin et al., 2010; Warren et al., 2012; Blois et al., 2013;

Franco et al., 2018; Zhang et al., 2020). The poleward expansion and

tropicalization of temperate regions is another phenomenon

indicative of the global changes we are witnessing in terrestrial

and aquatic ecosystems, from terrestrial plants to invertebrates, but

also reptiles, fish, and mammals in multiple regions across the globe

(Zeidberg and Robison, 2007; Azzurro et al., 2011; Encarnação et al.,

2019; Pinsky et al., 2020; Osland et al., 2021).

The continuous change of world ecosystems due to global

climate change, in tandem with other anthropogenic impacts,

reshapes communities while opening the door to non-indigenous

species to settle or become invasive (Willis et al., 2010; King et al.,

2021; Wang et al., 2021). The factors involved in the expansion of

non-indigenous species go beyond habitat suitability since biotic

resistance and stochastic events may play a significant part in

halting or slowing colonization and invasiveness (Brown and

Barney, 2021). The Atlantic blue crab Callinectes sapidus

Rathbun, 1896 is native to the western Atlantic Ocean, from the

coasts of Massachusetts (United States) to central Argentina

(Mancinelli et al., 2021). In Europe, it has become one of the

fastest-spreading marine invasive species (Mancinelli et al., 2017;

Mancinelli et al., 2021; Fuentes et al., 2019; Encarnação et al., 2021a;

Encarnação et al., 2022), the reason why it is on the list of the 100

worst invasive species in the Mediterranean Sea (Streftaris and

Zenetos, 2006). The oldest records in Europe date from 1900 in the

Bay of Biscay (Atlantic Ocean), 1935 in Greece (Mediterranean

Sea), 1951 in the Baltic Sea, and 1967 in the Black Sea and Portugal

(Atlantic Ocean) (Nehring, 2011; Encarnação et al., 2022). On the

western coast of Portugal, the 15 scattered records reported between

1967 and 2019 suggest that the species had not established a viable

population (Encarnação et al., 2022), but this changed in 2016 after
Frontiers in Marine Science 02
the first specimens were found in southern Portugal (Morais et al.,

2019; Vasconcelos et al., 2019). Soon after, the Atlantic blue crab

rapidly colonized the entire southern coast and adjacent estuarine

ecosystems (Encarnação et al., 2021a) and then expanded into the

west coast to locations where previous introductions have failed

(Encarnação et al., 2022).

In the native range, the Atlantic blue crab stocks are

overexploited along the northwest Atlantic coast (Aguilar et al.,

2008; Semmler et al., 2021), while biotic interactions with the

invasive European green crab Carcinus maenas (Linnaeus, 1758)

exert additional pressure, mainly to juveniles (MacDonald et al.,

2007). Nevertheless, at higher abundances, the Atlantic blue crab

may be able to limit the invasion of the European green crab in

North America (DeRivera et al., 2005). In Europe, and particularly

in the Gulf of Cadiz, the native European green crab does not seem

to represent a threat to the Atlantic blue crab because it has become

a successful invader in locations where native crabs are abundant

(Rodrıǵuez et al., 1997; Oliveira et al., 2000; Sprung, 2001;

Encarnação et al., 2013; Morais et al., 2019; González-Ortegón

et al., 2022). The Atlantic blue crab has also become a profitable

fishery in local fishing communities in Portugal, Spain, Greece,

Turkey, and Tunisia (Nehring, 2011; Mancinelli et al., 2017;

Vasconcelos et al., 2019; Encarnação et al., 2021a; Clavero

et al., 2022).

Predicting changes in the distribution of a species in native and

non-native regions has conservation as a common goal. Predicting

where and when a species will expand/contract its distribution, or

become more or less abundant, adds valuable information about

species under fishery management, like the Atlantic blue crab in the

native range. The prediction of species distribution allows for the

prioritization of conservation resources and increases fishers’

preparedness for changes in fisheries. Failure to do so may result

in the collapse of regional fisheries, as happened with the Atlantic

cod Gadus morhua (Linnaeus, 1758) in the Gulf of Maine (North

America) (Pershing et al., 2015). The poleward range shifts of other

commercially important marine species have been documented for

the common snook Centropomus undecimalis (Bloch, 1792) in

North America and predicted for others, such as the dolphinfish

Coryphaena hippurus Linnaeus, 1758 (Salvadeo et al., 2020;

Purtlebaugh et al., 2020). Fishing communities must then adapt

to changes in species distribution, either by following the fishery or

focusing on new resources in their fishing grounds (Rogers et al.,

2019; Paukert et al., 2021; Galappaththi et al., 2022). In non-native

areas, predicting the invasion pathway of a species is one of the most

valuable tools for improving its management and minimizing/

mitigating future impacts (Barbet-Massin et al., 2018; Liu et al.,

2020; Lyons et al., 2020). The commercial exploitation of invasive

species has been used as a mitigation measure when eradication

measures are unfeasible (e.g., lionfish Pterois miles (Bennett, 1828)

in the Caribean Sea (Barbour et al., 2011; Morris et al., 2011) and

Mediterranean Sea (Ulman et al., 2022), weakfish Cynoscion regalis

in estuaries of central Portugal (Cerveira et al., 2021), the Atlantic

blue crab in the Mediterranean Sea (Mancinelli et al., 2017).

Thus, our objective was to investigate the environmental factors

modulating the occurrence and habitat preferences of the Atlantic

blue crab in native and non-native areas using Bayesian Additive
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Regression Trees (BART model), as well as predict the current and

future distribution of the species under two climate change scenarios:

RCPs 4.5 and 8.5. We hypothesize that 1) water temperature will be

closely related to the distribution of the Atlantic blue crab in native

and non-native habitats and 2) rising ocean temperature will reshape

the current distribution. To test our hypotheses, we used Species

Distribution Modeling (SDM) because it allows for addressing issues

in conservation planning (Franklin, 2013; Villero et al., 2017),

evolution (Pinsky et al., 2020), biogeography (Torn et al., 2020;

Pickens et al., 2021), invasiveness potential of non-native species

(Jiménez-Valverde et al., 2011; Mainali et al., 2015), and even

inferring the impacts of climate change on species distribution

(Lezama-Ochoa et al., 2016; Zhang et al., 2019; Guerra et al., 2021).

We chose BARTs because it is a flexible SDM tool offering a wide

range of options to extract relationships between species and abiotic

conditions, elucidating the roles of predictive variables in determining

species distributions, environmental condition preferences (two-

dimensional range of environmental conditions where the species

showed the highest probabilities of presence), posterior distributions

on predictions as a measure of uncertainty, and optimal spatial

locations for species expansion or invasion (Chipman et al., 2010;

Carlson, 2020; Carlson et al., 2022). With this information, we also

aim to contribute to more efficiently managing this commercially

valuable species in the native and non-native ranges.
2 Materials and methods

2.1 Species data

The use of Species Distribution Models (SDMs) to predict

current and future distribution ranges of marine organisms has

increased substantially since the mid-2010s (Robinson et al.,

2017; Guerra et al., 2021; Hernández-Ucera et al., 2021;

Pickens et al., 2021). SDMs rely on the relationship between a

species’ georeferenced record (e.g., presence/absence data) and

environmental variables to predict the probability of being found

elsewhere (Robinson et al., 2017). So, we downloaded global spatial

occurrences data for the Atlantic blue crab from 1830 to 2020 (data

made available by Mancinelli et al. (2021) – https://doi.org/10.6084/

m9.figshare.12896309). These authors compiled data from multiple

databases/sources of published and unpublished records: Global

Biodiversity Information System (GBIF, www.gbif.org), Ocean

Biogeographic Information System (OBIS, www.obis.org),

Biodiversity Information Serving Our Nation (BISON, https://

bison.usgs.gov), iNaturalist (www.inaturalist.org). Additional

records made between 2019 and March 2022 were retrieved from

GBIF, scientific literature (Encarnação et al., 2021a; Chaouti et al.,

2022; Encarnação et al., 2022; Encarnação et al., 2023), and

unpublished records submitted to our citizen science campaign

New Marine Species of the Algarve (NEMA – Novas Espećies

Marinhas do Algarve, www.NEMAlgarve.com). The datasets were

merged, and then the duplicates, doubtful identifications, and

mismatched geographic coordinates (i.e., coordinates outside the

marine environment) were removed. In the end, we were left with

27,664 valid records for subsequent analyses (Figure 1).
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We used spatial filtering to reduce overfitting and improve

model quality (Boria et al., 2014; Tourne et al., 2019) and kept one

record per grid cell (spatial resolution of 0.083° × 0.083°) to reduce

record clustering, which often results from sampling bias (Boria

et al., 2014; Sillero and Barbosa, 2021). Thus, we were left with 2130

presence points to use in model training.
2.2 Environmental predictor variables

The environmental predictor variables, i.e., the covariates, were

selected based on data availability and their physiological and

ecological importance to marine species. So, we included water

temperature (°C), salinity, current velocity (m.s-1), and depth (m)

as covariates. The first three variables were downloaded as mean for

the surface marine realm and the latter as mean depth. We used

depth to estimate rugosity, an index often used to predict species

distribution and suitable habitats, as well as an indicator of hard-

bottom habitat (seafloor heterogeneity) (Dunn and Halpin, 2009;

McArthur et al., 2010; Fonseca et al., 2017; Guerra et al., 2021). The

rugosity index was derived from the depth layer using the ‘Terrain

Ruggedness Index’ of the raster package in the R software (R Core

Team, 2021). The rugosity index was calculated as the mean of

absolute differences between a cell’s value and its eight surrounding

cells. Low rugosity values indicate unconsolidated substrate (i.e., mud

and sand), whereas high rugosity values are associated with rocky

substrates (Riley et al., 1999; Fonseca et al., 2017). All covariate layers

were downloaded from the public database Bio-Oracle v2.0 which

provides environmental variables under current conditions (2000-

2014) and projections for the 2040s (2040-2049) and 2090s (2090-

2099), considering the concentration of greenhouse gas emissions in

the Representative Concentration Pathway (RCP) trajectories of

climate change adopted by the IPCC (Intergovernmental Panel on

Climate Change) (Tyberghein et al., 2012; Assis et al., 2018). We used
FIGURE 1

Location of the 2130 Atlantic blue crab Callinectes sapidus Rathbun,
1896 presence points used for Bayesian Additive Regression Tree
modeling. Dotted lines represent the maximum depth of 200 m.
The red dots represent the records collected in the non-native area,
while the green dots represent the records collected in native area.
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the moderate (RCP 4.5) and the most pessimistic trajectory

projections (RCP 8.5) to predict areas of occurrence of the Atlantic

blue crab for the 2040s (mid-term) and 2090s (long-term)

(Supplementary Table 1; Supplementary Figure 1).

Pearson’s correlation coefficient (r) and Variation Inflation

Factor (VIF) were applied to detect correlation and collinearity

between covariates by using the R packages corrplot and usdm,

respectively (Zuur et al., 2010; Naimi et al., 2014; Wei and Simko,

2021). The lowest and highest correlation recorded were 0.18 and

0.39, respectively (Supplementary Figure 2). VIF values were lower

than 2, ranging from 1.13 to 1.28 (Supplementary Table 2).

Therefore, no significant correlations and collinearity were

detected, and no covariate was excluded before data modeling.

The Bio-ORACLE dataset was retrieved on March 19, 2022, from

the Bio-ORACLE’s website (Bio-ORACLE, 2022).
2.3 BART modeling

Bayesian Additive Regression Trees (BARTs) were performed

to predict the probability of the Atlantic blue crab’s presence as a

function of a set of environmental covariates. BART is a Bayesian

approach to non-parametric function estimation with the ability to

capture complex interactions and nonlinear relationships among

predictors. This is accomplished by using a sum-of-trees framework

(Chipman et al., 2010). BART model can be expressed as:

Y = f (x) =o
m

j=1
g(x;Tj,Mj) + ϵ

where Y is the n� 1 vector of response variable, x is the n� p

design matrix (predictors); m represents the distinct regression

trees, each composed of a tree structure T , and parameters of the

terminal nodes (leaves), as an ensemble (T1,M1), …, (Tm,Mm),

denoted by M; g(x) is each prediction of a set of n trees; and ϵ =

n� 1 is vector noise, representing independent mean-zero normal

error with variance s. A set of posterior draws f (x) of sum-of-trees

functions, generated by the Markov Chain Monte Carlo process,

create the posterior probability for P(f =y) = P(trees=data). For

binary response Y , like absence (0) presence (1) data, BART uses

a logit link: P(Y = 1=x) = F(f (x)), where F denotes the standard

normal cumulative distribution function. A complete description of

BART models can be found in Chipman et al. (2010).

The absence data were randomly generated using the function

‘randomPoints()’ (R package dismo), as pseudo-absences. The total

number of pseudo-absences was the same as the number of

presences, considering known species distribution and the

statistical modeling approach, as recommended by Babet-Massin

et al. (2012) for tree-based models (Supplementary Figure 3). Then,

both presence and absence data were merged into the BART model.

BART was performed with the R package embarcadero, an SDM

wrapper for the dbarts package (Chipman et al., 2010; Carlson,

2020; Dorie, 2022). The BART model was performed with all

covariates (current scenario from both native and non-native

areas), followed by an automated variable selection procedure
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using the ‘step.model()’ function. This model was trained on

current data and fitted 100 times for six different settings of

ensemble size (n= 10, 20, 50, 100, 150, and 200 trees) using the

‘bart()’ function (Carlson et al., 2022). This procedure was

conducted to select the model with the most informative

covariates and the lowest average model root mean square error

(RMSE). Then, the final model was performed with 200 trees, 1000

posterior draws with a burn-in of 100 draws, and values for

hyperparameters of power equal to 2.0 and base equal to 0.95 for

tree regularization prior, as recommended by Chipman et al. (2010).

The final BART model was used to pedict the probability of

occurrence in future scenarios using the function ‘predict()’.
2.4 Model validation and evaluation

The three hyperparameters, which govern priors on Tj, Mj, and

s, were tuned in for a full cross-validation experiment to balance

accuracy prediction and uncertainty model prediction intervals.

The ‘retune()’ function was used to run the experiment across the k

hyperprior (values of 1, 2, and 3), power parameter (1.5, 1.6, 1.7, 1.8,

1.9, and 2.0), and the base parameter (0.75, 0.80, 0.85, 0.90, and

0.95). Model accuracy was assessed by using the Area Under the

Curve (AUC) of the Receiver Operational Characteristic (ROC)

approach and True Skill Statistics (TSS), which considered

commission (false positives: type I error) and omission errors

(false negatives: type II error) (Allouche et al., 2006). Both AUC

and TSS methods measure the ability of the model to correctly

discriminate presence and absence data; however, TSS also accounts

for both model’s sensitivity (i.e., the proportion of presences

accurately predicted) and specificity (i.e., the proportion of

absences accurately predicted). AUC values between 0.5 and 0.7

indicate poor prediction, from 0.7 to 0.8 is an acceptable prediction,

from 0.8 to 0.9 is excellent, and greater than 0.9 is outstanding

(Hosmer and Lemeshow, 2000). TSS is defined as ‘sensitivity +

specificity - 1’ and ranges from -1 to +1, where +1 indicates perfect

agreement and values of zero or less indicate a performance no

better than random (Allouche et al., 2006).

The raster maps of the predicted posterior mean, first (0.025),

and third (0.975) probability quantiles were generated from the

BART model. Spatial uncertainty was calculated by mapping the

differences between the two quantile rasters that generate a credible

interval width (Carlson, 2020). Future layers of the predicted values

were subtracted from the current predicted layer to obtain habitat

change trends. The distribution shifting map under each climate

change scenario was generated with positive, zero, and negative grid

values that represent habitat range expansion, no change, and

habitat range retraction, respectively.

All raster layers had a spatial resolution of 0.083° × 0.083° cell

size (approximately 9.2 km at the equator) and were cropped to

depths up to 200 m in the coastal zone of the Atlantic Ocean,

encompassing the depth range of the Atlantic blue crab. This

species occupies shallow estuarine and coastal waters, down to

100 m depth in offshore habitats (Hill et al., 1989; WoRMS, 2022).

However, the maximum depth of the calibration area also
frontiersin.org
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considered that the species may shift its distribution towards deeper

waters under climate change scenarios (Dulvy et al., 2008; Hastings

et al., 2020). All statistical analyses were performed using R (version

4.0.0) (R Core Team, 2021). All maps were created using the QGIS

Geographic Information System, version 3.24 (Open-Source

Geospatial Foundation Project, http://qgis.osgeo.org).
3 Results

3.1 Presence probability and covariates

In general, the TSS (0.69) and training AUC (0.92) values

indicated that the BART models performed very well on data

validation with cut-off thresholds of 0.54 (Supplementary

Figure 4). The final BART model included temperature as the

most informative variable with the highest average importance

value, followed by salinity and current velocity (Supplementary

Figure 5A). (Supplementary Figure 6) On the other hand, rugosity

was dropped during the covariates selection process due to the

lowest RMSE value (~0.3315) (Supplementary Figure 5B).

The relationship between the probability of presence and

temperature showed that the Atlantic blue crab occurred in areas

with water temperatures higher than 10°C, with a high probability

of being found in marine habitats between ~20 and 25°C

(Figure 2A). The species also occurred in a wide range of salinity,

but its presence probability decreased in waters with values higher

than 31 (Figure 2B). The probability of presence decreased with

increasing current velocity since over 70% of occurrences happened

in calm waters (Figure 2C). The relationships between temperature

– the most important covariate – and other covariates revealed the

two-dimensional range of environmental conditions where the

species showed the highest presence probabilities (Figure 3).

Generally, high presence probabilities were associated with

temperatures between ~20 to 25 °C, salinity between 25 and 32

(Figure 3A), and current velocity slower than 0.20 m.s-1 (Figure 3B).
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3.2 Prediction maps, climate change
scenarios, and uncertainty

The BART model for current conditions identified areas of

importance for the Atlantic blue crab. The highest presence

probabilities were found in the Gulf of Mexico, the southeast

coast of the United States, and along the southeast Brazilian coast

to the Rio de la Plata estuary (Uruguay and Argentina) in the native

area, and in the Mediterranean Sea and off the Mauritanian coast in

non-native areas. Sites with a medium to high presence probability

were also identified in native and non-native habitats (Figure 4A).

For both climate change scenarios, the distribution shifts of the

Atlantic blue crab will be less pronounced in native than in non-

native areas. Overall, changes in habitat suitability (retraction or

expansion) affect the probability presence under the extreme RCP

8.5 in a higher degree scenario than in the moderate RCP 4.5

scenario. Habitat changes in the 2090s were greater than in the

2040s as well. For both scenarios, the model predicted pronounced

habitat retraction in the Gulf of Mexico and expansion from the

Caribbean Sea to the northern Brazilian coast and eastern Canada

(Figures 4B, C). In the non-native area, and particularly by the end

of the century, extensive habitat expansion is predicted to occur from

the coast of Mauritania to Morocco and from southern Portugal

towards northern Atlantic regions, including the North and Baltic

Seas, as well as a retraction in the western areas of the Mediterranean

basin and expansion in the easternMediterranean basin, including the

Baltic Sea (Figures 4D, E) (Supplementary Figure 7).

The spatial analysis, which considered the temperature effect as

an indicator of thermal habitat suitability on the predicted

probability of the Atlantic blue crab over time (current, the 2040s,

and the 2090s), also disclosed that temperature plays a decisive role

in the spread of the species along the south and north Atlantic

Ocean, and Mediterranean Sea (Figures 5A–E). Additionally,

thermal habitat suitability showed a similar pattern for the 2040s

and 2090s in the native range, while in the non-native range, it

increased drastically in the 2090s (Figures 4D, E).
FIGURE 2

Smoothed fits of covariates modeling the spatial distribution of the Atlantic blue crab Callinectes sapidus Rathbun, 1896 for temperature (A), salinity
(B), and current velocity (C). Gray shading indicates a 95% credible interval from the posterior distribution of the current scenario BART model.
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Model uncertainty also varied over time and between native and

non-native habitats. Uncertainty was higher in the 2090s for both

RCP 4.5 and 8.5 scenarios, and it was generally associated with

deeper waters. In the native range, uncertainty predictions were

higher in areas located in the Caribbean Sea (e.g., coasts of

Honduras, Nicaragua, and Costa Rica), northern Brazil, and

eastern Canada. In the non-native range, the highest uncertainties

areas were mainly found in western Africa (Guinea-Bisau,

Cameron), Morocco, and the Baltic Sea (Figure 6). The 2.5% and

97.5% predicted intervals of distribution probability used to

estimate uncertainty across models and climate change scenarios

are shown in Figure 6.
4 Discussion

4.1 Advantages and limitations
of BART models

This study shows that BARTs amplify our understanding of

how environmental factors affect the occurrence and habitat

preferences of the Atlantic blue crab in native and non-native

areas. Equally important, BARTs projected the species

distribution under two climate change scenarios, and showcases

the applicability of a high-performance machine learning algorithm

to study the distribution of an aquatic species.

Our results about the current and future distributions of the

Atlantic blue crab were based on the assumption of changes in
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thermal boundaries. However, other factors affect species

distribution, including biotic interactions, adaptative genetic drift,

evolutionary changes, migration and dispersal, and anthropogenic

stressors (e.g., fishing pressure, species introductions) (Hines et al.,

2010; Gamliel et al., 2020; Pinsky et al., 2020; Seaborn et al., 2020;

Encarnação et al., 2021a; Mancinelli et al., 2021). Therefore, as

modeling and computing capabilities improve the inclusion of such

data in future studies will improve prediction accuracy and reduce

uncertainty. Yet, current results already provide timely information

to managers to elaborate data-driven management policies.

We must also stress that we used environmental data

representing the realized niche in the native range and that

recently introduced non-indigenous species are often in non-

equilibrium with the dynamics of the ecosystem. Invasive ecology

theory reports numerous situations when non-indigenous species

became invasive and then saw the population numbers collapse

(Hui and Richardson, 2017). Therefore, projections about non-

indigenous species distribution shifts must always be cautious

because of a mosaic of introduction timelines along the non-

native area (Hui, 2022). This is the case of the Atlantic blue crab,

first reported in Europe in 1900 and with dissimilar invasion

timelines between the North Sea, the eastern Atlantic coasts, and

the Mediterranean Sea (Welk, 2004; Gallien et al., 2012; Pili et al.,

2020; Freeman et al., 2022). Conscious of this limitation, we cannot

guarantee that the niche-environment equilibrium assumption of

SDM models have always been met.

We opted to analyze the distribution range shifts of the Atlantic

blue crab at an ocean scale. At such scale, we are unable to capture the
FIGURE 3

Two-dimensional partial dependence plots for the Atlantic blue crab Callinectes sapidus Rathbun, 1896 distribution model. The contour plots show
the relationship between temperature and the other covariates in predicting the species distribution, namely salinity (A), and current velocity (B). The
contour lines represent the posterior median of the f(x) draws.
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fine spatial resolution required to evaluate the expansion or retreat

into and from estuarine ecosystems, and even freshwater ecosystems

further inland, despite their importance for the species (Mangum and

Amende, 1972; Taylor and Fehon, 2021; Scalici et al., 2022). Another

factor precluding us from a finer resolution is the poor global

database of environmental information covering inland ecosystems,

despite the inclusion of data from several large estuarine ecosystems
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in the Bio-ORACLE database (e.g., Black Bay, Corpus Christi Bay,

Chesapeake, Bay, Mississippi Sound estuary, and Lake Borgner in the

US, Rio de La Plata in Uruguay and Argentina, Términos Lagoon in

Mexico, and Maracaibo Lake in Venezuela) (Tyberghein et al., 2012;

Assis et al., 2018). Therefore, the absence of environmental

information on inland ecosystems in the raster layers does not

invalidate the main results and conclusions of our study.
FIGURE 4

Predicted distribution of the Atlantic blue crab Callinectes sapidus Rathbun, 1896 (1832-2022) for posterior predictive mean for the BART model in
the current scenario (A) and habitat range changes for the RCP 4.5 2050 (B), RCP 8.5 2050 (C), RCP 4.5 2100 (D) and RCP 8.5 2100 (E) scenarios.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1158206
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Costa et al. 10.3389/fmars.2023.1158206
4.2 Model performance and effect
of covariate

Overall, the BART model performed very well and the robust

results illustrated the significance of climate change on the

distribution shifts of an aquatic species. Both the AUC (0.92) and

TSS (0.62) derived from the BART model achieved excellent

performance, showing a high degree of discrimination between the
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sites where the Atlantic blue crab was present and those where it was

absent. In addition, TSS values indicated the models’ high ability to

correctly predict true negative (specificity) and true positive rates

(sensitivity). The high performance of machine learning techniques

has been reported for other tree-based models used to predict the

distribution of other marine species (e.g., boosted regression trees,

random forest) (Pittman and Brown, 2011; Mainali et al., 2015;

Hernández-Ucera et al., 2021; Rahmanian et al., 2022).
FIGURE 5

Partial spatial dependence plots for the Atlantic blue crab Callinectes sapidus Rathbun, 1896 showing the average contribution of temperature to the
BART model predictions: current scenario (A), RCP 4.5 2050 (B), RCP 8.5 2050 (C), RCP 4.5 2100 (D), and RCP 8.5 2100 (E).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1158206
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Costa et al. 10.3389/fmars.2023.1158206
The distribution of marine species can be influenced by several

environmental predictors. However, only four to five variables can

accurately predict the current and future distributions of marine

species (Lezama-Ochoa et al., 2016; Zhang et al., 2019; Guerra et al.,

2021; Hernández-Ucera et al., 2021). Temperature, salinity, current

velocity, primary productivity, and seafloor parameters (e.g., slope,

roughness, rugosity) are amongst the most informative predictors

used in species distribution models in marine ecosystems
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(Bosch et al., 2018; Guerra et al., 2021; Pickens et al., 2021).

Water temperature was the most informative environmental

variable in controlling the potential distribution of the Atlantic

blue crab, which aligns with the species’ temperature-dependent

trait (Brylawski and Miller, 2006; Hines, 2007; Hines et al., 2010;

Azra et al., 2020; Rogers et al., 2022). The life history traits of the

Atlantic blue crab vary latitudinally because temperature strongly

affects growth, molting, reproduction (e.g., maturation, fecundity,
FIGURE 6

Prediction of the Atlantic blue crab Callinectes sapidus Rathbun, 1896 distribution between 1832 and 2022 (A–C) and under the influence of RCP 4.5
2050 (D–F), RCP 4.5 2100 (G–I), RCP 8.5 2050 (J–L), and RCP 8.5 2100 (M–O). The uncertainty areas are shown in the left column, the 2.5%
quantile in the center column, and the 97.5% quantile in the right column.
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larval development time, frequency of spawning), and settlement.

The drastic decrease in the species occurrence probability below 10°

C and above 25°C in the BART model coincides with the species’

optimal water temperature range. Indeed, the Atlantic blue crab

enters a period of dormancy in waters below 10°C (Brylawski and

Miller, 2006; Hines et al., 2010), and their mean thermal preference

for the Gulf of Mexico population ranges from 26 to 33°C with an

optimum temperature at 24°C (Garcı ́a-Rueda et al., 2021;

Marchessaux et al., 2022). Yet, we should always be aware that

local adaptations reshape populations’ optimal temperature range.

Like many decapod species, the Atlantic blue crab requires

various environmental conditions during its life cycle, which

coincides with different habitat use strategies (Harris, 1979; Hines

et al., 2010). For instance, the growth phase occurs in low-salinity

estuarine waters, while ovigerous females migrate toward higher-

salinity waters to release the eggs (Hines, 2003; Hines, 2007). The

occurrence probability was closely related to temperature but also

influenced by the other environmental predictors considered in this

study. Thus, the variability in occurrence probabilities (between

25% and 80%) concerning salinity may be explained by the species’

migratory behavior during which they inhabit ecosystems with

striking different water characteristics. Our analysis also shows

that the highest occurrence probabilities were registered in calm

water areas. Although the BART model did not indicate rugosity as

an informative critical variable, these calm waters may be showing

unconsolidated substrate. The Atlantic blue crab prefers nearshore

aquatic submerged vegetation beds, also making use of unvegetated

sandy and muddy bottoms for shelter, refuge from predators, and

feeding grounds (Wilson et al., 1990; Hines et al., 2010).
4.3 Current distribution

The current prediction for the Atlantic blue crab distribution in

the native range indicated three zones with the highest occurrence

probabilities that match with areas with a high concentration of

observations (Figure 1). These zones consist of diverse habitats,

including bays, estuaries, coastal lagoons, tidal marshes, shallow

inshore waters with soft bottoms, rocky bottoms, and mangrove

wetlands (Miloslavich et al., 2011; Love et al., 2013; NMFS, 2015).

The abundance in the Gulf of Mexico is considerably higher in salt

marshes than in open waters (Minello et al., 2008), similar to

observations on the Virginia coast, United States, where they are

associated with seagrass meadows, salt marshes, channels, and

oceanic inlets (Cheng et al., 2022). Therefore, vegetation zones

likely enhance habitat suitability for the Atlantic blue crab because it

provides refuge from predators and a bounty of food.

Our BART model also predicted high presence probabilities for

true absence areas off the coasts of west France, Mauritania, Senegal,

Gambia, and South Africa. The environmental conditions in these

areas, with bays, salt marshes, mangroves, estuaries, and lagoons,

seem suitable for the Atlantic blue crab despite the absence of

records. These results should be evaluated with caution due to the

lack of comprehensive studies in these regions while underscoring
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the high invasion probability of these areas under the current

climate scenario.

Invasion success is often dictated by propagule pressure (Holle

and Simberloff, 2005) to circumvent or minimize biological

resistance (Brown and Barney, 2021). On the northwestern coast

of Africa, propagule pressure is increasing from northern

populations along the Atlantic coast of Morocco (Chaouti et al.,

2022; Chairi and González-Ortegón, 2022). Our present-day habitat

suitability predictions already identified the coast of Mauritania

with a high presence probability, meaning that the species may

colonize this area in the upcoming years. This prediction is of

particular concern for the Banc d’Arguin National Park in

Mauritania, a highly productive ecosystem, the largest marine

protected area in western Africa, and a UNESCO World Heritage

Site (Trégarot et al., 2020). At these latitudes, non-i Atlantic blue

crab populations may compete with three native congeners

Callinectes amnicola (de Rochebrune, 1883), Callinectes

marginatus (A. Milne-Edwards, 1861), and Callinectes pallidus

(Rochebrune, 1883) (Manning and Holthuis, 1981).
4.4 Future distribution and climate change

The shifts in aquatic species distribution due to climate change

are multidirectional, either towards the poles or the equator or

between shallower and deeper waters (Dulvy et al., 2008; Hastings

et al., 2020). The Atlantic blue crab distribution is limited by cold

water at higher latitudes (Molina et al., 2021), yet climate change

will expand its distribution polewards to escape warmer waters at

lower latitudes (Azra et al., 2020; Hastings et al., 2020). Our data

shows that the temperature-driven expansion/contraction of the

species distribution will vary between native and non-native areas as

a function of climate change scenarios.

The asymmetric nature of the future distribution on both sides of

the Atlantic Ocean owes to the populations’ intrinsic status, native or

non-native. In native habitats – especially in the Gulf of Mexico, the

Caribbean Sea, and off South America – and under the RCP 4.5 and

8.5 scenarios, our models predicted an expansion towards the equator

(e.g., Caribbean Sea, and from the coasts of Trinidad and Tobago to

the North of Brazil. The population retraction predicted in the Gulf of

Mexico may be associated with water temperatures above 30°C,

disrupting the species’ metabolism when it reaches the upper

thermal tolerance limits (Marchessaux et al., 2022). The poleward

expansion will be more significant later in the century and

particularly in eastern Canada, as supported by recent observations

in the Gulf of Maine (Johnson, 2015). In non-native ecosystems, the

most significant distribution shifts are expected to occur in the 2090s

under the RCP 8.5 scenario. The species will be widespread along

most of the Mediterranean Sea, between Mauritania and the Bay of

Biscay, the North Sea, and even reaching the Baltic Sea. Indeed, there

have been sporadic records between the Bay of Biscay and the North

Sea (Cabal et al., 2006; Nehring, 2011; Mancinelli et al., 2021) and

some already identified established populations off Belgium and the

Netherlands since the 1990s (Nehring, 2011). The coastal areas in the
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North Sea and Baltic Sea are geographically attractive with their

numerous estuaries and salt marsh areas, which may favor a steep

increase in abundance when coupled with more amenable sea

temperatures (Dijkema, 1990).

The environmental selection for traits that enhance

reproduction and survival under climate change scenarios may

benefit species’ range expansion (Finch et al., 2021). For the

Atlantic blue crab, we expect that two mechanistic phenomena

will act in tandem to favor the poleward-expansion along the

eastern Canadian waters and northern European seas by the end

of the 21st century. First, the poleward-increased water temperature

is conducive to a fundamental niche expansion. Second, decreasing

water temperature-induced mortality during winter allows

consolidation of the expansion obtained during warmer months

(Molina et al., 2021). Additionally, its plasticity to adjust the

reproductive strategy and behavior according to temperature

changes allows the Atlantic blue crab to tolerate, adapt, or move

to deal with environmental shifts in native and non-native habitats.

The expansion of another invasive species to northern

European estuaries will disturb ecosystems that already endure

significant anthropogenic impacts (e.g., excessive nutrient load,

habitat degradation, river flow regularization, urbanization)

(Damme et al., 2005; Nehring, 2006; Courrat et al., 2009; Dauvin

et al., 2009). The range expansion of the Atlantic blue crab in the

native area will set new ecological dynamics often equivalent to a

biological invasion process (Tulis et al., 2023).

Overall, environmental and fishery managers should be

proactively vigilant because the expansion of the Atlantic blue

crab in native and non-native areas will likely shift ecological

dynamics and increase ecological stress. Managers from the native

area will undoubtedly obtain precious insights from lessons learned

in the non-native area. Finally, managers should promote or

sponsor citizen science campaigns, not only because of their

significant role in reporting the distribution of non-indigenous

species and tracking their expansion (Encarnação et al., 2021b)

but also because they generate data with great value to improve

model validation and applicability (Matutini et al., 2021).
5 Conclusions

This study anticipates that climate change will lead the Atlantic

blue crab to expand their distribution in native and non-native

areas. An asymmetric range expansion will occur on both sides of

the Atlantic Ocean, with temperature playing a decisive role in

setting such asymmetry. In native habitats and considering the RCP

4.5 and 8.5 scenarios, we predict an expansion toward the equator

and deeper areas during the 2040s. A poleward range expansion will

be particularly noticeable by the end of the 21st century off eastern

Canada. In non-native ecosystems and considering the RCP 8.5

scenario, the most significant distribution shifts will occur in the

2090s when the species become common even in the North Sea. The
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range expansion of native species is often equivalent to the

dynamics and impacts of invasive species, so lessons learned by

ecologists and environmental managers about the invasive Atlantic

blue crab will provide precious insights to colleagues in the

native areas.
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