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Mixing induced by oceanic mesoscale eddies can affect tracer distributions in the

ocean and thus modulate the evolution of the physical and biochemical marine

system. In the context of global warming, regionally different trends in eddy

mixing could exist. Motivated by this hypothesis, we quantified the trend in

surface eddy diffusivity, a metric widely used to quantify the eddy mixing rate, in

the global ocean using satellite altimetry data. The global average of the particle-

based eddy diffusivity increases by 284.1 m2s−1 per decade during the period of

1994-2017, or 3.7% per decade relative to its climatological mean value. In 54% of

the global ocean, eddy diffusivity shows an increasing trend. The diffusivity trend

can be decomposed into two components: one related to changes in eddy

mixing length and the other related to eddy velocity magnitude. In 73% of the

global ocean, changes in eddy mixing length account for more than 50% of the

diffusivity trend. The suppressed mixing length theory (SMLT) is employed to

interpret the trend in eddy mixing length. SMLT well captures the sign of the

trend in two of the representative regions. Among all the parameters (e.g., eddy

size, phase speed) inherent in SMLT, the eddy velocity magnitude plays a

dominant role in determining the trend in the SMLT-based eddy mixing length.

Diagnosing the geostrophic eddy kinetic energy budget reveals that the

dominant mechanism for the trend in eddy velocity magnitude is the pressure

work induced by ageostrophic flows. Our results suggest that a time-dependent

eddy parameterization scheme should be employed in non-eddy-resolving

models to account for the trend in eddy mixing.

KEYWORDS

oceanic mesoscale eddies, trend, eddy diffusivity, eddy mixing length, eddy
velocity magnitude
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1 Introduction

Mesoscale eddies, ubiquitous in the global ocean, contain about

90% of the ocean’s kinetic energy (Ferrari andWunsch, 2009). Eddy

mixing influences the distribution of heat, salinity, and nutrients,

and thus play an important role in modulating the variability of

the climate system and marine ecosystem (Stammer, 1998;

Gnanadesikan et al., 2015). The effect of eddy mixing is often

parameterized in non-eddy-resolving climate models. Reasonable

choice of eddy parameterization schemes is crucial for the realism of

model simulation (Fox-Kemper et al., 2019). When implementing

eddy parameterization schemes, a steady eddy diffusivity coefficient

is often used (Gent and Mcwilliams, 1990; Griffies, 1998;

Abernathey et al., 2011; Sun et al., 2021). However, in the context

of global warming, significant trends have been found in ocean

temperature and salinity, sea level, upper-ocean stratification, eddy

kinetic energy (EKE) and ocean circulation (Church et al., 2011; Du

et al., 2015; Hogg et al., 2015; Nan et al., 2015; Steinkamp and

Gruber, 2015; Beal and Elipot, 2016; Landschützer et al., 2016;

Patara et al., 2016; Syst et al., 2018; Yamaguchi and Suga, 2019;

Johnson and Lyman, 2020; Martıńez-Moreno et al., 2021; Beech

et al., 2022; Lee et al., 2022; Peng et al., 2022; Risaro et al., 2022). It

remains unclear whether a trend in oceanic mesoscale eddy mixing

exists in the context of this climate change. Failure to consider this

potential trend in eddy diffusivity may increase the uncertainty of

climate simulations. Because climate model results are sensitive to

the choice of eddy diffusivity (Danabasoglu and Marshall, 2007;

Gnanadesikan et al., 2015). Therefore, this study aims to estimate

and interpret the long-term trend of global surface cross-stream

eddy diffusivities, which represent eddy mixing rate in the cross-

mean flow direction.

Previous studies have shown that eddy diffusivity has significant

spatiotemporal variability (e.g., Abernathey and Marshall, 2013;

Chen et al., 2014b; Griesel et al., 2014; Busecke et al., 2017; Bolton

et al., 2019; Guan et al., 2022). For example, Busecke and

Abernathey (2019) found eddy mixing is linked with large-scale

climate variability (e.g., El Niño-Southern Oscillation). However,

few studies have provided quantitative estimates of the long-term

changes in global surface cross-stream diffusivity. On the other

hand, much evidence exists about the long-term trend in EKE and

ocean circulation (Hogg et al., 2015; Beal and Elipot, 2016; Patara

et al., 2016; Hu et al., 2020; Martıńez-Moreno et al., 2021; Beech

et al., 2022; Peng et al., 2022). Based on the mixing length theory

and the suppressed mixing length theory (SMLT), both EKE and

ocean circulation influence eddy diffusivity. Therefore, we propose

that eddy diffusivity also has a significant trend in the global ocean.

Specifically, the mixing length theory indicates that the eddy

diffusivity is proportional to the product of eddy mixing length

and eddy velocity magnitude (Taylor, 1915). Based on SMLT from

Ferrari and Nikurashin (2010), cross-stream eddy mixing length is

linked with eddy and mean flow properties (e.g., eddy size, phase

speed, and eddy velocity magnitude).

To verify our hypothesis that eddy diffusivity has a significant

trend in the global ocean, we need to estimate the global trend in

surface eddy mixing. Specifically, using the Lagrangian particle
Frontiers in Marine Science 02
approach, we first estimate the cross-stream eddy diffusivities in

each year from the altimeter data. Then we estimate the trend in

eddy diffusivity using the Theil-Sen estimator method (Theil, 1950;

Sen, 1968). The Lagrangian particle method has been demonstrated

to be effective in providing realistic and converged eddy diffusivity

(e.g., Lumpkin and Elipot, 2010; Rypina et al., 2012; Chen et al.,

2014b; Chen et al., 2017; Guan et al., 2022). We chose to use

altimeter data because it has been proven effective in capturing the

trends in ocean state (e.g., Lee et al., 2022; Peng et al., 2022).

Besides estimating mixing trends, we also aim to discuss the

underlying mechanism of the trend in eddy mixing. This effort may

shed light on the development of the long-term mixing trend

parameterization. Using a trend decomposition method from Guo

et al. (2022), we decompose the diffusivity trend into two

components: One related to eddy velocity magnitude, and the

other related to eddy mixing length. This decomposition can help

quantify the respective contribution of eddy velocity magnitude and

eddy mixing length to the diffusivity trend. We then discuss the

mechanism modulating the trends in eddy velocity magnitude and

eddy mixing length. For the former, we employ a novel budget of

geostrophic kinetic energy. For the latter, we test the validity of

SMLT in representing the trend of cross-stream eddy mixing

lengths (Ferrari and Nikurashin, 2010). SMLT is capable of

capturing the sign of eddy mixing trend in only two of the total

five regions we consider. The origin of the trend in SMLT-based

eddy mixing length is also discussed through trend decomposition.

To summarize, we aim to estimate the trend in global surface

eddy diffusivity and explore the underlying mechanisms. This paper

is organized as follows. Section 2 describes the dataset and presents

the method for mixing and trend estimation. In section 3, we

describe the trends in global surface cross-stream eddy diffusivity

from both the global and regional perspectives. The respective

contribution of eddy mixing length and eddy velocity magnitude

to the mixing trend is quantified. Sections 4 and 5 aim to interpret

the trend in eddy mixing length using SMLT. Section 4 introduces

the decomposition method of the SMLT-based eddy mixing lengths,

whose corresponding result is presented in section 5. Section 6

discusses the underlying mechanism of the trend in eddy velocity

magnitude. Section 7 is a summary.
2 Data and method

2.1 Data

2.1.1 AVISO data and numerical particles
For diffusivity estimation, we use the geostrophic velocity data

from the Archival Verification and Interpretation of Satellite

Oceanographic Data (AVISO, http://www.aviso.altimetry.fr/) of

the French National Space Agency. The daily velocity fields we

use have a spatial resolution of 0.25° and span the time period 1994-

2017. This dataset has been successfully applied in previous studies

about eddy diffusivity and eddy/mean flow parameters (e.g.,

Abernathey and Marshall, 2013; Hogg et al., 2015; Bolton et al.,

2019; Martıńez-Moreno et al., 2021).
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Following a series of previous work, we use the Lagrangian particle

approach to estimate the Lagrangian eddy diffusivity in each year

(Sallee et al., 2011; Chen and Waterman, 2017; Guan et al., 2022). An

offline advection approach is used to obtain the particle trajectories

covering the entire globe during 1994-2017. Taking the year 1996 as an

example, we deployed virtual numerical particles offline in the global

region with a resolution of 0.2°. These particles were advected by the

AVISO geostrophic velocity field during 1996 based on the fourth-

order Runge-Kutta method. The daily particle position and velocity

information is recorded. Particles that were deployed at or advected to

the land points were set to be NaN. As an example, Figure 1A shows

sample particle trajectories, which were randomly selected, in the global

ocean during 1996. Only 0.23% of the total number of particle

trajectories are shown to make these tracks visible.
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2.1.2 OSCAR data
Based on the mixing length theory, the diffusivity trend inferred

from the AVISO geostrophic velocity field is linked with the trend

of geostrophic eddy velocity magnitude urms (Taylor, 1915). Here

urms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u

0 2
g + v

0 2
g

q
=

ffiffiffiffiffiffiffiffiffiffiffi
2EKE

p
, (1)

where :0 is the deviation of the daily geostrophic velocity from

the annual mean, and the subscript g represents the geostrophic

flow. To interpret the trend of urms, we diagnose the geostrophic

EKE budget for each year (for details of the budgetequation, see

Supplementary Material 2). Considering that the ocean system is

nonlinear, and geostrophic motions are coupled with ageostrophic
A

B

C

FIGURE 1

(A) Sample particle trajectories released on the first day of 1996. Only 0.23% of particle trajectories are randomly selected here to make these tracks
visible. (B) The distribution of the centroid for each adaptive bin (black dots) in the region located at 30°N-45°N 120°E-180° of 1996. The color
indicates the number of pseudo-trajectories in each adaptive bin. (C) Histogram of the number of pseudo-trajectories within each adaptive bin in
panel B (gray bars) and that in each 1°×1° geographic bin (blue bars). The blue lines indicate the numbers 800 and 1200.
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ones, the information about both geostrophic and ageostrophic

velocities is needed to diagnose the geostrophic EKE budget.

To obtain the ageostrophic velocity field, we chose to use the

widely used surface velocity product: the Ocean Surface Current

Analyses Real-time dataset (OSCAR). For details of OSCAR, see

Bonjean and Lagerloef (2002) and Dohan (2017). The area covered

by OSCAR has expanded from the equatorial region (Lagerloef et

al., 1999) to the entire globe, providing daily surface currents

velocity on a global 0.25°× 0.25° grid. Consistent with AVISO, we

chooseto use the OSCAR data during the period 1994-2017.

The surface total velocity from OSCAR is calculated from a

simplified physical model,

fk � Uo = −
1
r
∇ p +

1
r
∂ t
∂ z

, (2)

where f is Coriolis parameter, Uo = uoi + voj, representing total

velocity from OSCAR, r is the sea surface density, p is the sea

surface pressure, and t is the surface wind stress. Satellite-observed

datasets including sea surface height gradients, ocean vector winds

and sea surface temperature gradients were used to produce the

OSCAR dataset. Equation (2) shows that this model contains

geostrophic, Ekman, and thermal wind dynamics.

Subtracting the AVISO geostrophic velocity from OSCAR total

velocity (Uo) leads to the ageostrophic velocity. The physical model

[Equation (2)] indicates that the ageostrophic flow inferred from

OSCAR mainly contains the Ekman flow. Considering that this

model is linear and does not capture nonlinear dynamics, other

components (e.g., submesoscale ageostrophic motions) are not well

captured by OSCAR. Nonetheless, much evidence has

demonstrated that this dataset is useful for studies about

mesoscale eddies and the EKE budget. For example, using

OSCAR data, Chen et al. (2018) studied the spatial distribution

and seasonal variability of EKE in the Bay of Bengal region.

Piontkovski et al. (2019) investigated the interannual variability of

the occurrence of mesoscale eddies in the western Arabian Sea. In

addition, although surface drifter data may provide more realistic

total velocity fields, its non-uniform spatiotemporal distribution

make it challenging to diagnose the EKE budget at drifter points (Yu
Frontiers in Marine Science 04
et al., 2019). Therefore, we use the OSCAR dataset to infer the

ageostrophic velocity.
2.2 Method

2.2.1 Mixing estimation method
Following a series of previous studies (e.g., Chen et al., 2014b;

Chen et al., 2017; Guan et al., 2022), we estimate the cross-stream

eddy diffusivity using a Lagrangian autocorrelation function based

on particle trajectories. This approach is generally termed as the

Lagrangian particle method and have been proven effective for

converged diffusivity estimates (Davis, 1987; Davis, 1991; LaCasce

and Bower, 2000; Zhurbas and Oh, 2004; Lumpkin and Elipot, 2010;

Rypina et al., 2012; Chen et al., 2014b; Chen et al., 2017; Guan et al.,

2022). The diagnostic formula for cross-stream (i.e., cross-mean

flow) eddy diffusivity is

k⊥,particle(x) = lim
t!∞

k⊥(x, t) ≈

Z t2

t1
k⊥(x, ~t)d~t

t2 − t1
, (3)

where

k⊥(x, t) =
Z t

0
d~t 〈 u

0
g ⊥(t0 x, t0)u

0
g ⊥(t0 + ~t

��� ���x, t0) 〉L : (4)

Here the bracket 〈 · 〉 represents the ensemble average of all the

pseudo-trajectories passing the adaptive bin centered at x. For

example, Figure 2A shows sample pseudo-trajectories through the

adaptive bin centered at (167.91°E, 53.41°N). u
0
g ⊥(t0 + ~t jx, t0)

represents the cross-stream geostrophic eddy velocity at time t0 +
~t at the position of the particle, which passes the position x at time

t0. As t increases, the velocity gradually gets decorrelated with the

initial velocity and k⊥(x, t) asymptotes to a constant value, i.e., has

converged. The Lagrangian equilibration time teq is the minimum

time it takes for k⊥(x, t) to level off. We use the criteria from Chen

and Waterman (2017) to judge whether k⊥(x, t) has leveled off. In

brief, when the change rate of the fitted k⊥(x) over a 30-day period
(i.e. ½t1, t2�) is less than the minimum value of two standard
A B

FIGURE 2

(A) Sample pseudo-trajectories through the adaptive bin centered at 167.91°E, 53.41°N. The blue dot shows the centroid of the adaptive bin. (B) k⊥(x,
t ) [Equation 4] as a function of t in the adaptive bin from (A). Red lines show the uncertainties of k⊥(x, t ) at the 95% confidence level via a
bootstrapping method. The vertical grey line indicates the equilibration time teq , where k⊥(x, t ) starts leveling off.
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errors during that period, we consider k⊥(x) has leveled off. Here

teq = (t1s + t2s)=2:0, where ½t1s, t2s� denotes the smallest ½t1, t2� with
converged k⊥(x, t). As an example, the grey line in Figure 2B shows

teq in the adaptive bin centered at (167.91°E, 53.41°N).

We chose to use pseudoparticle trajectories instead of the

original particle trajectories to improve the convergence of eddy

diffusivity (Chen et al., 2014b; Chen et al., 2017; Guan et al., 2022).

Specifically, a point is selected every few days from the original

trajectory as the initial position of the pseudo-trajectory, and a

certain track length for the pseudo-trajectory is selected. It can

increase the number of trajectories and make diffusivity converge

(Griesel et al., 2010; Klocker et al., 2012). To ensure the convergence

of eddy diffusivity, the length of pseudo-trajectories should be

longer than the Lagrangian equilibrium time. Yet, the longer the

pseudo-trajectory is, the smaller the number of pseudo trajectories

is. And adequate amount of pseudo trajectories in each bin is a

prerequisite for obtaining converged diffusivity estimates.

Considering this, we choose 115 days to be the pseudo-trajectory

length in this study. The interval between the adjacent initial

positions of pseudo-trajectories is chosen to be five days.

To further improve the convergence of eddy diffusivity, we

choose to use the adaptive-bin method based on the K-means

algorithm (Koszalka and LaCasce, 2010; Chen et al., 2014b; Guan

et al., 2022) instead of the geographic bin method. Due to the flow

inhomogeneity, the number of pseudo-trajectories in the regular

geographic bins varies greatly (Figure S1 in Supplementary

Material), leading to poor convergence of diffusivity estimates. As

an example, the blue bars in Figure 1C show the histogram of the

number of pseudo-trajectories in each 1°×1° geographic bin in a

selected region located at 30°N-45°N 120°E-180°. The histogram

has a wide shape and the number of tracks ranges from 400-1400.

The advantage of using adaptive bins instead of geographic bins is

that the K-means algorithm can make sure the number of the tracks

in each bin is roughly the same. Take the region located at 30°N-45°

N 120°E-180° as an example, the adaptive bins are randomly

distributed in this area (Figures 1B, C). However, the number of

pseudo-trajectories in each adaptive bin is roughly uniform ranging

from 800 to 1200. In this case, the average size of adaptive bins in

the global ocean is roughly 1°× 1°. We find that increasing the

number of pseudo-trajectories in each adaptive bin will increase the

size of adaptive bins and thus decrease the spatial resolution of our

eddy mixing estimates. However, the large-scale structures of eddy

diffusivities is insensitive to this change.

2.2.2 Trend estimation method
We chose to use the Theil-Sen estimator (TS) approach (Theil,

1950; Sen, 1968) for trend estimation in this study. The TS method

is a robust non-parametric statistical method for estimating trends.

The disadvantage of the commonly used simple linear regression

method is that the estimated trend is sensitive to the outliers in time

series (Ohlson and Kim, 2015). In contrast, the TS method is

insensitive to both the outliers and uncertainties in time series.

Therefore, the TS method has been widely used in the analysis of

trend in meteorological and oceanographic variables (Gocic and

Trajkovic, 2013; Sa’adi et al., 2019; Zhao et al., 2022).
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The statistical significance of the estimated trend is assessed

through a modified Mann-Kendall test (Mann, 1945; Kendall, 1948;

Hamed and Rao, 1998). This method has been widely used to

determine the statistical significance of the estimated trend (Yue

and Wang, 2004; Hu et al., 2020; Zhao et al., 2022). The advantage

of this method is that it neither requires the time series to be in a

normal distribution nor requires the trend to be linear. In addition,

it is neither affected by missing values nor influenced by abnormal

data points. Furthermore, this method can effectively eliminate the

impact of serial correlation on the estimated trend. Thus, it can be

used to assess the trend significance for the time series with

autocorrelation (Hamed and Rao, 1998).
3 Trends in eddy mixing

3.1 Global analysis

3.1.1 Spatial structure
The trend of k⊥,particle in the global ocean has large spatial

variability (Figure 3A). The trend magnitude is large in the western

boundary currents and their extension regions, the equatorial

Indian Ocean, and the central equatorial Pacific Ocean. In

particular, there is a significant increase trend of k⊥,particle in the

equatorial Pacific Ocean, with a magnitude as large as 5000 m2s−1

per decade. In the western boundary currents and their extension

regions, the structure of the k⊥,particle trend is patchy. The trend is

negative in the upstream of the Kuroshio Extension, but positive in

the downstream. The opposite occurs at the Gulf Stream Extension,

with positive (negative) trend in the upstream (downstream).

From a global perspective, the trend of the globally integrated

k⊥,particle, inferred from the TS method, is 284.1 m2s−1 per decade

(Figure 4). It accounts for 3.7% of the climate-mean k⊥,particle.
k⊥,particle shows an increasing trend in 54% of the global ocean.

Among these areas with an increasing trend, 17.7% is significant at

the 95% confidence level.

Based on the mixing length theory (Taylor, 1915), eddy

diffusivity is proportional to the product of eddy mixing length

and eddy velocity magnitude. Therefore, the particle-based eddy

mixing length,

Lmix,particle, can be diagnosed from

Lmix,particle =
k⊥,particle
Gurms

: (5)

Here urms is eddy velocity magnitude and G is the mixing

efficiency with magnitude of O(1). Following previous studies, we

choose G to be 0.35 (e.g., Chen et al., 2014b; Chen et al., 2017; Busecke

and Abernathey, 2019; Guan et al., 2022). Equation (5) indicates that

both the trend in Lmix,particle and the trend in urms contribute to the

trend in k⊥,particle. Positive trends in Lmix,particle and urms lead to

increasing trend in k⊥,particle. On the other hand, negative trends of

these two factors lead to decreasing trend in k⊥,particle.
Since the trend of k⊥,particle arises from the trends in Lmix,particle

and urms. Here we assess the global trend distributions of both

Lmix,particle and urms (Figures 3B, C). Compared to the trend in urms,
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the global structure of the Lmix,particle trend resembles more to that of

the k⊥,particle trend. Similar to k⊥,particle, the large magnitude of the

Lmix,particle trend occurs in the western boundary currents and their

extension regions, the equatorial Indian Ocean, and the central

equatorial Pacific Ocean. In contrast, the large trend in urms only

occurs in the western boundary currents and their extension

regions. In the central equatorial Pacific Ocean, the trend of

Lmix,particle increases significantly, with a magnitude as large as 50

km per decade. In contrast, the increasing trend of urms is

insignificant in the central equatorial Pacific Ocean.

Our analysis in Figure 5 indicates that compared to urms, the

trend of Lmix,particle contributes more to that of k⊥,particle. The
correlation coefficient of the trends between Lmix,particle and

k⊥,particle reaches 0.69. The errorbar, based on a bootstrapping
Frontiers in Marine Science 06
technique technique (Chernick, 2011; Chen et al., 2014b; Schulte

et al., 2016; Ivanova et al., 2021), is 0.02 at the 95% confidence level

(Figure 5A). Concerning urms, its trend is also positively correlated

with the k⊥,particle trend, with a weaker correlation magnitude

though (0.37 ± 0.02 at the 95% confidence level) (Figure 5A). In

89% (75%) of the global ocean area the sign of the trend in

Lmix,particle(urms) is consistent with that of k⊥,particle (Figure 5B).

3.1.2 Decomposition of the mixing trend
Although the mixing length theory [Equation (5)] suggests

that eddy diffusivity is proportional to eddy velocity magnitude

and eddy mixing length, it remains unclear which of these two

factors contributes more to the diffusivity trend. To quantify the

contribution of each factor to the trend in eddy diffusivity, we
A

B

C

FIGURE 3

The trend of (A) k⊥,particle , (B) Lmix,particle , and (C) urms in the global ocean during the period 1994-2017. The trend diagnosis method is described in

section 2.2.2. Black dots indicate the grid points, where the trend is statistically significant at the 95% confidence level. Yellow boxes show the five
representative regions we discuss.
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introduce a metric “relative trend”. Then we employ a trend

decomposition method to quantitatively decompose the relative

trend of k⊥,particle into two components: One related to Lmix,particle

and the other related to urms [Equation (6)].This decomposition

approach is inspired by Guo et al. (2022), who successfully

decomposed the trend in eddy heat flux into components related

to the velocity variance, temperature variance, and coherence

parameters, respectively. By taking the logarithm on both sides of

Equation (5) and then computing their temporal derivatives, the

relative trend of k⊥,particlecan be expressed as

1
k⊥,particle

∂ k⊥,particle
∂ t

=
1

urms

∂ urms

∂ t
+

1
Lmix,particle

∂ Lmix,particle

∂ t
: (6)

That is, the relative trend of k⊥,particle is equal to the sum of the

relative trend in Lmix,particle and that in urms. Using Equation (6), one can

quantify the contribution of each factor to the relative trend of k⊥,particle.
We estimated the relative trends in k⊥,particle, Lmix,particle and urms

in the global ocean (Figure 6). The relative trend of k⊥,particle has
elevated positive values in the equatorial central Pacific and at high

latitudes of the northeast Pacific and Atlantic Oceans. Its value is
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also significantly large around 40°S in the central Pacific. However,

the relative trend in k⊥,particle is negative at 20°S-30°N in thewestern

Pacific. Similar to k⊥,particle, the relative trend in Lmix,particle also has

significant positive values in the central equatorial Pacific and at the

high-latitude Pacific. Concerning the relative trend in urms, it is

generally positive in the Southern Ocean and at high-latitude

regions of the Northern Hemisphere. In the equatorial eastern

Pacific, the relative trend of urms is positive but smaller than that

at high-latitudes. In contrast, the relative trend of urms is negative in

both the equatorial western Pacific and the mid-latitude Pacific.

To assess the respective contribution of Lmix,particle and urms to

the relative trend in k⊥,particle, we diagnosed the ratio of the relative

trends between Lmix,particle and k⊥,particle and that between urms and

k⊥,particle. A positive (negative) ratio of the relative trends between

Lmix,particle and k⊥,particle indicates that Lmix,particle has a positive

(negative) effect on the relative trend of k⊥,particle. We can also

interpret the contribution of urms to k⊥,particle in an analogous way.

Our results, shown in Figures 7A and 6B, suggest that compared to

urms, Lmix,particle contributes much more to the relative trend in

k⊥,particle.
A

B

FIGURE 4

(A) The spatially averaged k⊥,particle time series (blue solid line) and its trend (blue dashed line, m2s−1 per decade) in both the five representative

regions and the global ocean. These representative regions are indicated in Figure 3. (B) The relative trends of k⊥,particle, Lmix,particle, and urms [Equation

(6)] in the five representative regions during 1994-2017. Statistically insignificant trends at the 95% confidence level are marked by “ �“, and
significant trends are marked by “ ∘“.
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The ratio of the relative trends between Lmix,particle and k⊥,particle
is generally larger than that between urms and k⊥,particle (Figures 7A,
B). In 65% (73%) of the global ocean, the ratio of the relative trends

between Lmix,particle and k⊥,particle relative trends is larger than 0.6

(0.5). We also evaluated the probability density functions (PDFs) of

these ratios (Figures 7C, D). For the ratio between the Lmix,particle and

k⊥,particle relative trends, the PDF is wide and asymmetric with a

skewness value of 2.73 (Figure 7C). Its peak approximately occurs at

0.6. As to the ratio between the urms and k⊥,particle relative trends, its
PDF is only slightly asymmetric with a skewness value of 0.47

(Figure 7D). The PDF peak approximately occurs at 0.3. Comparing

the two PDFs further reveal that Lmix,particle plays a larger role than

urms in modulating the relative trend of k⊥,particle.
3.2 Regional analysis

Considering that the mixing trend has complex spatial

variability, next we focus on five representative regions to further

characterize and interpret the mixing trend in the ocean (yellow

boxes in Figure 3). All these five regions have statistically significant

mixing trend (Figure 4A). They respectively represent areas with

large positive mixing trends (Regions 3 and 5), weak positive mixing

trend (Regions 1 and 4), and large negative mixing trend (Region 2).

Region 3 is located in the equatorial Central Pacific, where the

largest positive mixing trend occurs. Previous studies have shown

that eddy mixing in the equatorial region is linked with the large-

scale climate variability (e.g., El Niño-Southern Oscillation;

Gnanadesikan et al., 2017; Busecke and Abernathey, 2019).

Regions 1 and 4 are located in the mid-ocean regions in the

Pacific. The mixing trend in these two regions are positive but

weak. Region 5 is a representative patch in the Antarctic

Circumpolar Current and mixing there is relatively strong and

positive. There are also regions with negative mixing trends in the

global oceans, for example Region 2.
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The time series of the regionally averaged k⊥,particle and the

corresponding trends based on TS method are shown in Figure 4A.

The trends in all the five regions are statistically significant at the

95% confidence level. In Region 2, the k⊥,particle time series has a

negative trend, decreasing by 1.62 � 103 m2s−1 per decade. It

accounts for 18.8% of the climate mean k⊥,particle. In all the other

four regions, the k⊥,particle time series have positive trends. Among

these four regions, the trend in Region 3 is the largest, with a

magnitude of 5.32 � 103 m2s−1 per decade and accounting for

31.0% of the climate mean value. These results suggest that eddy

mixing effect will be significantly enhanced in the context of tropical

climate change.

We also carried out the mixing trend decomposition, based on

Equation (6). In all these regions, the relative trend of Lmix,particle has

magnitude larger than that of urms (Figure 4B). The Lmix,particle

relative trend accounts for 56%-91% of the relative trend in k⊥,particle
, indicating that Lmix,particle contributes more than urms to the trend

in k⊥,particle. On the other hand, the relative trends of both Lmix,particle

and urms are statistically significant at the 95% confidence level,

except for the urms trend in Region 3.

To keep this study concise and reader-friendly, we only focus on

five regions with significant mixing trends, located in either the

Pacific Ocean or the Southern Ocean. Note, that, there are also

regions in other basins with significant mixing trends, such as 39°N-

57°N 10°W-20°W in the Atlantic Ocean. In this Atlantic box, the

eddy diffusivity trend is 555.5 m2s-1 per decade. Consistent with the

five regions we focus on, the Lmix,particle relative trend in this box is

also larger than that of urms (not shown).
4 Suppressed mixing length theory
and its trend decomposition

Since eddy mixing length and eddy velocity magnitude jointly

determine eddy diffusivity [Equation (5)], separately interpreting
A B

FIGURE 5

(A) The correlation coefficient of the global trends between k⊥,particle and urms , and that between k⊥,particle and Lmix,particle . The errorbar is at the 95%

confidence level by the bootstrapping method. (B) The percentage of the grid points where urms(Lmix,particle) and k⊥,particle trends have the same sign.
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the trends in mixing length and eddy velocity magnitude can help

reveal the underlying mechanism of eddy mixing trend. We chose

to use SMLT to discuss the mechanism of the trends in eddy mixing

length (sections 4 and 5). In this section, we first introduce SMLT

and then describe how to decompose the relative trend of SMLT-

based mixing length into those of eddy and mean flow properties.
4.1 Suppressed mixing length theory

Though several mixing theories have been proposed (Ferrari

and Nikurashin, 2010; Bates et al., 2014; Chen et al., 2015; Jansen

et al., 2015; Wei and Wang, 2021), none of them can perfectly

represent eddy mixing lengths. One of these theories that receive

much attention is SMLT (Ferrari and Nikurashin, 2010), which is

built on the critical layer idea from Green (1970). SMLT is derived

based on several assumptions (e.g., linear, flat and homogeneous

system, single-wave representation of eddies) (Ferrari and
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Nikurashin, 2010; Chen et al., 2015) and it often breaks down at

topographic regions (Naveira Garabato et al., 2011; Chen et al.,

2014b). However, it successfully represent the mixing suppression

phenomenon induced by the propagation of eddies relative to the

mean flow (e.g., Ferrari and Nikurashin, 2010; Klocker et al.,

2012b). Much evidence shows that SMLT can well capture the

large-scale spatial structure of eddy mixing (e.g., Ferrari and

Nikurashin, 2010; Klocker et al., 2012b; Abernathey and Marshall,

2013; Bates et al., 2014; Klocker and Abernathey, 2014; Roach et al.,

2016; Roach et al., 2018; Groeskamp et al., 2020). In addition,

SMLT-based eddy mixing was found to be linked with the large-

scale climate variability (Busecke and Abernathey, 2019). Since this

study focuses on the large-scale and long-term variability of eddy

mixing, we chose to discuss the mechanism of the eddy mixing

length trend using SMLT.

In brief, SMLT explicitly expresses the cross-stream eddy

mixing length as a function of mean flow and eddy properties.

Based on this theory, eddy mixing length in the cross-stream
A

B

C

FIGURE 6

The relative trend of (A) k⊥,particle , (B) Lmix,particle , and (C) urms from Equation (6) in the global ocean during the period 1994-2017. Black dots indicate

the grid points where the relative trend is statistically significant at the 95% confidence level.
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direction can be written as the product of eddy size Leddy and a

suppression factor S ( ≤1),

Lmix,SMLT = Leddy
1

1 + k2eddyg
−2(cw − Ug

�� ��)2
" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

: (7)

Following Chen et al. (2014b), Leddy can be estimated from

Leddy(x, y) = 2p

ðð
SEKE(k, l)dkdlðð ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 + l2
p

SEKE(k, l)dkdl

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k−1eddy(x,y)

, (8)

where keddy refers to the dominant eddy wavenumber, SEKE(k, l)

is the wavenumber spectra of geostrophic EKE, k represents the

zonal wavenumber, and l denotes the meridional wavenumber. The

variable jUg j is the magnitude of the geostrophic mean flow and cw
represents the phase speed along the direction of geostrophic mean

flow. Therefore, the term cw − jUg j in the suppression factor S

represents the propagating speed of eddies relative to the mean flow.

The phase speed cw is estimated from the Hovmöller diagram of sea

surface height anomaly using the Radon transform method (Guan

et al., 2022). As stated in Chen et al. (2014b), g −1 represents the

eddy decorrelation time scale,

g (x, y) =
urms(x, y)

2GLeddy(x, y)
: (9)

All these parameters above are diagnosed using AVISO data.
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Based on Equations (7)- (9), we can obtain another expression

of SMLT,

Lmix,SMLT = Leddy
1

1 + 16p2G 2u−2rms(cw − Ug

�� ��)2
" #

:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S

(10)

Similar to Equation (5), based on the mixing length theory (Taylor,

1915), we can diagnose the SMLT-based cross-stream eddy diffusivity from

k⊥,SMLT = GurmsLmix,SMLT : (11)
4.2 Decomposition of eddy mixing
length trends

Equation (10) shows that the SMLT-based eddy mixing length is

mainly regulated by the following three terms: Leddy , urms and cw − jUg j
. We can explore their respective contribution to the trend of eddy

mixing length using the trend decomposition method from Guo et al.

(2022). Note that this decomposition method has also been used in

section 3.1.2. The SMLT-based eddy mixing length (Lmix,SMLT ,2) trend

can be decomposed as follows:

1
Lmix,SMLT

∂ Lmix,SMLT

∂ t

=
1

Leddy

∂ Leddy
∂ t

+
2(1 − S)
urms

∂ urms

∂ t
−

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{S1

2(1 − S)

(cw − Ug

�� ��) ∂ (cw − Ug

�� ��)
∂ t

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{S2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
S 
∂ S
∂ t

, (12)

where S1 and S2 represent the contributions of urms and cw −

jUg j to the trend of eddy mixing length. Equation (12) reveals that
D

A

B

C

FIGURE 7

(A) The ratio of the relative trends between Lmix,particle and k⊥,particle in the global ocean. (B) The ratio of the relative trends between urms and k⊥,particle
in the global ocean. (C) and (D) show histograms of the ratios from panels A and B.
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the relative trend of Lmix,SMLT can be represented in the form of the

sum of the relative trends of these three terms (Leddy , S1, and S2).

Note that S1 represents the contribution of urms to the Lmix,SMLT

trend. Therefore, urms can not only directly affect the eddy

diffusivity trend [Equation (6)], but also indirectly modulate the

eddy diffusivity trend by influencing the eddy mixing length

[Equation (12)].

Based on Equation (12), one can assess the contribution of each

factor (Leddy , S1, and S2) to the trend of the SMLT-based eddy

mixing length. In the regions where SMLT successfully captures the

trend in particle-based eddy mixing lengths, these results based on

Equation (12) can help interpret the particle-based eddy mixing

length trend as well.
5 Interpreting trends in eddy
mixing length

5.1 Trend decomposition of eddy
mixing length

We compare the SMLT-based trends in eddy diffusivity and

mixing length with those from particles (Figure 8). SMLT can not

capture themagnitude of the trend in eddy diffusivity. Also, SMLT does

not capture the magnitude of the trend in eddy mixing length. This

result is to a certain degree consistent with Guan et al. (2022), who

found that the SMLT-based eddy diffusivity magnitude is noticeably

smaller than its particle-based counterpart. The trend sign of the

SMLT-based eddy diffusivity is consistent with the particle-based

result in all the regions, except for Region 3. Concerning the trend in

eddy mixing length, SMLT- and particle-based results have consistent

signs in Regions 4 and 5. In the other three regions, the trend of the

SMLT-based eddy mixing length is insignificant, whereas those from

particles are significant. Therefore, SMLT could be used to reveal the

mechanism of the Lmix,particle trend in only Regions 4 and 5.

The decomposition of the Lmix,SMLT trend, based on Equation

(12), reveals that among the three factors (Leddy , urms, and cw − jUg j),
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urms plays a dominant role in determining the trend in Lmix,SMLT . On

the other hand, the trend in cw − jUg j plays a negative role in the

trend of eddy mixing length. As shown in Figure 9, in all the five

regions, the relative trend in term S1 is larger than those in S2 and

Leddy . Note that S1 represents the contribution of urms to the

Lmix,SMLT trend. Therefore, besides acting as a direct and important

governor of the eddy diffusivity trend (Figure 4B), urms also play an

indirect role in modulating eddy diffusivity trend through

influencing the eddy mixing length (Figure 9). Although the

relative trends of Leddy and S1 have comparable magnitudes in

Region 3, the relative trend of Leddy is much smaller than that of S1

in the other regions, indicating a relative small role of Leddy in

influencing the Lmix,SMLT trend. In all the regions except Region 3,

the sign of the relative trend in S2 is opposite to that of Lmix,SMLT .

Therefore, in these regions, cw − jUg j plays a negative role in the

trend of eddy mixing length. Considering that the SMLT-based and

particle-based eddy mixing lengths have the same trend sign in

Regions 4 and 5, the SMLT results in these two regions can, to a

certain degree, indicate the underlying mechanism of the particle-

based eddy mixing length trend. However, in the other three regions

(Regions 1-3), the sign of the trend in SMLT-based mixing length

differs from that of particle-based mixing length. Therefore, SMLT

cannot be used to explain mixing-length trends in Regions 1-3.

Here we compare the trends in eddy properties with the mixing

trends (Figure 10). In all the selected regions, the trend in eddy size

(Leddy) has the same sign as the trends in the particle-based eddy

mixing length (Lmix,particle) and eddy diffusivity (k⊥,particle). This
indicates that a positive response of the long-term variation of

Lmix,particle and k⊥,particle to the variability in Leddy . However, though

the trend in cw − jUg j also has consistent sign with those in

Lmix,particle and k⊥,particle in all the regions except Region 3

(Figure 10B), cw − jUg j and Leddy play opposite roles in shaping

the mixing trends [see Equation (12)]. Similarly, in all these regions,

the trend signs of urms are consistent with those of Lmix,particle and

k⊥,particle (Figure 9C). This indicates that urms plays a positive role in

the mixing trends, consistent with the mixing length theory

[Equation(5)] and SMLT [Equation (10)].
A B

FIGURE 8

Trends in (A) eddy diffusivity and (B) eddy mixing length from the particle-based and SMLT-based methods in the representative regions shown in
Figure 3. Statistically insignificant trends at the 95% confidence level are marked by “ �“, and significant trends are marked by “ ∘“.
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5.2 Trends in eddy/mean flow properties

We further depict the regional trends in the eddy flow

properties that are linked with the SMLT-based eddy diffusivity:

Eddy size (Leddy), the propagating speed of eddies relative to the

mean flow (cw − jUg j), eddy velocity magnitude (urms) and the

inverse of the eddy decorrelation time scale (g ) (Figure 10). In

Regions 1, 4 and 5, eddy gets larger, more energetic, and propagate

faster relative to the mean flow during the period 1997-2017.

However, in these three regions, the inverse of the eddy

decorrelation time scale has an increasing trend, indicating a

faster decay of eddies during this period. In contrast, in Region 2,

eddies get less energetic and decay more slowly during this time

period. Yet, the trends in eddysize and eddy propagating speed

relative to the mean flow are statistically nonsignificant. In Region 3,

however, there are no statistically significant trends in all the four

eddy properties.
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Note that our trends in eddy properties can be interpreted based

on previous studies about eddy dynamics. Firstly, we found that

faster (slower) propagating speed of eddies relative to the mean flow

generally corresponds to smaller (larger) eddy decorrelation time

scale, i.e., faster (slower) eddy decay (Figures 10B, D). This

phenomenon is consistent with the observation finding by Liu

et al. (2022). Through both observations and idealized

experiments, they demonstrate that a stronger Rossby wave phase

speed leads to fast radiation of eddy energy and thus shorter eddy

lifespan. Secondly, faster (slower) propagating speed of eddies

relative to the mean flow often corresponds larger (smaller) eddy

size. Specifically, in Regions 1, 4 and 5, the trends in cw − jUg j and
Leddy are both statistically significant and they have the same signs.

This is to a certain extent related to the following previous findings.

Klocker and Marshall (2014) found that eddy phase speed is

generally consistent with the phase speed of linear, long Rossby

waves that are Doppler shifted with the barotropic mean flow.
D

A B

C

FIGURE 10

Trends of eddy/mean flow parameters from SMLT in the representative regions shown in Figure 3. (A) Leddy . (B) jcw − jUgjj. (C) urms. (D) g . The trends

that are statistically insignificant at the 95% confidence level are marked by “ �“, and those significant ones are marked by “ ∘“.
FIGURE 9

The relative trends of Lmix,SMLT , Leddy , S1, and S2 from Equation (12) in the representative regions. The trends that are statistically insignificant at the

95% confidence level are marked by “ �“, and those significant ones are marked by “ ∘“.
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Specifically, they show that the eddy propagation speed relative to

the barotropic mean flow is bL2D, where LD is the Rossby

deformation radius. In general, LD can be an approximate

substitute for Leddy (Tulloch et al., 2011; Klocker and Abernathey,

2014). Therefore, it is unsurprising that cw − jUg j has consistent

trend sign with Leddy . One caveat of this interpretation is that Ug

here is the surface geostrophic mean flow magnitude, not the

barotropic mean flow considered in Klocker and Marshall (2014).
6 Interpreting trends in eddy
velocity magnitude

Mixing length theory indicates that eddy diffusivity is

proportional to the product of eddy mixing length and eddy

velocity magnitude urms [Equation (5)]. Here we interpret the

trends in urms using the geostrophic EKE budget, which is a key

step towards unravelling the mechanism of the mixing-length trend.
6.1 Geostrophic EKE budget

To investigate the mechanism of the trend in urms (surface

geostrophic eddy velocity magnitude), we chose to derive and diagnose

the budget equation of the surface geostrophic EKE (for details, see

Supplementary Material). The formulation of the framework is inspired

by the eddy/mean energy diagnostic framework fromChen et al. (2014a).

But different from Chen et al. (2014a), our derivation here separately

considers the geostrophic and ageostrophic EKE,

∂KE,g

∂ t
= ADVg +MKE,g

+ PWH + R : (13)

Here KE,g refers to the geostrophic EKE

KE,g =
1
2
r0(u

0 2
g + v

0 2
g ), (14)

where r0 is the sea surface density and takes a constant of

1027.5 kg m-3. The overbar refers to the annual-mean over each

year and ·0 denotes the deviation from the mean.

The mathematical formulas and the physical meanings of the

terms on the right-hand side of Equation (13) are provided in

Table 1. Equation (13) indicates that the trend in the geostrophic

EKE may be induced by geostrophic advection (ADVg), the

geostrophic contribution to the eddy-mean kinetic energy

exchange rate (MKE,g
), the pressure work due to the horizontal

ageostrophic flow (PWH) and the residual term (R). As shown in

Table 1, the residual term, R, includes four components: energy

advection related to ageostrophic flow (ADVr), the contribution of

ageostrophic flow to the eddy-mean kinetic energy exchange rate

(MKE,r
), the change of EKE due to vertical and horizontal friction

(XKE
), and the temporal change rate of KE,r . Among these

components, ADVr , MKE,r
and ∂KE,r

∂ t can be diagnosed from

ADVr = −∇H(uo · 0:5r0(u
0 2
o + v

0 2
o ))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ADVo

− ADVg , (15)
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MKE,r
= − r0(u

0
o · u

0
o ·∇H�uo + v

0
o · u

0
o ·∇H�vo)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MKE,o

−MKE,g
, (16)

∂KE,r

∂ t
=
∂ 1

2 r0 u
0 2
o + v

0 2
o

� �� �
∂ t

−
∂KE,g

∂ t
: (17)

Here uo and vo refer to the total surface velocity in the zonal and

meridional direction. The ageostrophic velocity is defined as the

difference between the total surface velocity and the geostrophic

velocity,

uag = uo − ug : (18)

The full velocity uo is available from the OSCAR dataset, and

the geostrophic velocity ug and sea surface height h are available

from the AVISO dataset. Therefore, one can directly diagnose all

the terms in Equation (13) except for the R term. Then we can

approximately infer the value of R by closing the KE,g budget.

Concerning the terms in the R equation (Table 1), using OSCAR

and AVISO data, we can directly diagnose ADVr , MKE,r
and ∂KE,r

∂ t .

The X term is not explicitly diagnosed due to the absence of

observed horizontal/vertical friction information.
6.2 Geostrophic EKE budget trends

To explore the origin of the trends in the surface geostrophic

EKE and thus urms, we diagnosed the geostrophic EKE budget for

each year [Equation (13)]. Then we estimated the trends in each

term during the period 1994-2017. As shown in Figure 11, in all

selected regions, the trends of ADVg and MKE,g
are generally small,

with magnitudes on the order of 10-7~10-8 J m-3. In contrast, the

trends in PWH and R are on the order of 10-5~10-6 J m-3, much

larger than those in ADVg and MKE,g
. Therefore, in these five

representative regions, the trends in the surface geostrophic EKE

are mainly induced by the pressure work due to the horizontal

ageostrophic flow (PWH) and the residual term (R).

The trends in PWH are statistically significant at the 95%

confidence level in Regions 4 and 5. In these two regions, the

trends in PWH and urms have consistent signs (Figures 10C, 11C).

Therefore, in Regions 4 and 5, the trend in pressure work (PWH)

contributes to the trend in urms. Using the classical linear Ekman

theory, we express PWH as a function of wind stress and

geostrophic flow (see Supplementary Material 3 for details). A

series of studies have shown that both wind speed and ocean

currents are accelerating (Hu et al., 2020; Peng et al., 2022).

Much evidence have demonstrated that the increasing trend of

EKE in the Southern Ocean is associated with enhanced wind stress

(Sallee et al., 2011; Hogg et al., 2015; Mudelsee, 2019; Cai et al.,

2022). In our study, Regions 4 and 5 are within the Southern Ocean.

Similarly, in the western boundary current regions, Beal and Elipot

(2016) found that the enhanced wind power leads to the

strengthening of EKE. Therefore, the acceleration of the wind and

the geostrophic flow may jointly induce the trend in the pressure

work (PWH).
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Using the OSCAR and AVISO datasets, we also diagnosed the

energy terms in the R equation (Table 1). We estimated the ADVr

andMKE,r
terms [Equations (15) and (16)], which are the part of the

advection and eddy-mean energy exchange rate terms related to

ageostrophic flow. The term XKE
is inferred from the other terms in

the R equation (Table 1). In all the five regions, the trends in both

ADVr and MKE,r
are on the order of 10-7~10-8 J m-3, whereas the

trend in XKE
is on the order of 10-5~10-6 J m-3 (not shown).

Therefore, the leading contributor to the trend in R is XKE
, which

denotes the EKE change rate due to horizontal/vertical friction. One

caveat, however, is that uncertainties exist in our estimation of XKE
.

Example sources of uncertainty are provided next. One, our

derivation of the geostrophic EKE budget [Equation (13)] ignores

the contribution of vertical velocity to advection and eddy-mean

energy exchange terms. Furthermore, the gridded AVISO dataset

averages out the high-frequency ocean motions (e.g., internal tides).

These issues would lead to uncertainties in our inference of R. In

addition, the ageostrophic flow from OSCAR is to a large extent the

Ekman flow and thus it does not include the submesoscale

component of the ageostrophic flow. In consequence, our

estimation of ADVr , MKE,r
and ∂KE,r

∂ t excludes the contribution of

oceanic submesoscales, which may be non-negligible. The estimates

of R and XKE
terms could be improved as the resolution of satellite

observation increases. Further investigation along this line is left for

future work.
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Using the AVISO observations during 1994-2017, this study

estimated the trend in particle-based eddy diffusivity (k⊥,particle) at the
global surface ocean. The spatial structure of this eddymixing trend has

large regional variability. In 54% of the global ocean, k⊥,particle shows an
increasing trend. The globally integrated k⊥,particle shows a significant

increasing trend, with an increase of 284.1 m2s−1 per decade,

accounting for 3.7% of the climate mean value. Using a trend

decomposition method (Guo et al., 2022) and the mixing length

theory, we found that the relative trend of k⊥,particle is equal to the

sum of the relative trend in eddy mixing length (Lmix) and that of eddy

velocity magnitude (urms). In 73% of the global ocean, Lmix contributes

more to the relative trend in eddy diffusivity than urms. Therefore, in

these regions, the main direct source of the k⊥,particle trend is the trend

in Lmix , not that in urms. Yet, the contribution of urms is also noticeable.

Since Lmix and urms jointly determine eddy diffusivity, we explore

the mechanism of eddy mixing trends by interpreting the trends in

Lmix and urms, respectively. We chose to discuss the mechanism of the

Lmix trend using SMLT and its trend decomposition. SMLT well

captures the trend sign of the particle-based eddy mixing lengths in

two of the five regions, i.e., Regions 4 and 5. The trends in eddy/mean

flow parameters related to SMLT (e.g., eddy size, urms, the

propagating speed of eddies relative to the mean flow, and the

inverse of the eddy decorrelation time scale) jointly determine the
TABLE 1 The mathematical formulas and physical meanings of the terms on the right hand side of Equation (13).

Term Mathematical form Meaning

ADVg −∇H (ug · KE,g ) The change rate of geostrophic EKE due to geostrophic advection

MKE,g − r0(u
0
g · u

0
g ·∇H�ug + v

0
g · u

0
g ·∇H�vg ) The change rate of geostrophic EKE induced by the geostrophic eddy momentum flux

PWH − u
0
ag ·∇Hp

0
≈ −gr0u

0
ag ·∇Hh

0 The pressure work induced by ageostrophic flow

R
ADVr +MKE,r

+ XKE
−
∂KE,r

∂ t

The residual term
∇H is the two-dimensional divergence operator, the subscript g(ag) represents the sea surface geostrophic (ageostrophic) flow. The term r is sea surface density, p is sea surface pressure, and h is
sea surface height. The definition of the subterms in the R formula is available in Equations (15)- (17). For details, see Supplementary Material.
D

A B

C

FIGURE 11

The trend in each term from the geostrophic EKE budget [Equation (13)] in the representative regions. (A) MKE,g
. (B) ADVg . (C) PWH . (D) R. Statistically

insignificant trends at the 95% confidence level are marked by “ �“, and significant trends are marked by “ ∘“.
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trend in the SMLT-based mixing length. Among these parameters,

urms plays a dominant role in determining the SMLT-based Lmix

trend. We also found that urms dose not only directly modulate the

trend in eddy mixing, but also indirectly affect the eddy diffusivity

trend through its link with the Lmix .

We then discuss the trend in urms, which also help unravel the

origin of the eddy mixing trend. By diagnosing a novel surface

geostrophic EKE budget, we found that pressure work due to the

horizontal ageostrophic flow plays a dominant role in the trend in

urms. Then using the classical linear Ekman theory, we developed a

formula linking pressure work with wind stress and geostrophic

flow. This formula and evidence in literature (e.g., Sallee et al., 2011;

Hogg et al., 2015; Mudelsee, 2019; Hu et al., 2020; Cai et al., 2022;

Peng et al., 2022) suggests that the acceleration of wind and

geostrophic flow might jointly induce the trend in pressure work.

There are potential avenues to further improve this work. One,

this study focuses on the surface ocean. The mixing trend at mid-

depths and in the deep ocean remains unclear. Also it would be

worthwhile evaluating whether this observed mixing trend is well

captured in the widely-used numerical products (Ma et al., 2010;

Yang et al., 2018; Xu et al., 2021). Two, the mechanisms of the

trends in relevant eddy properties (e.g., eddy size and eddy phase

speed) need to be further explored. This effort would help design

eddy parameterization schemes taking into account mixing trend.

One caveat of this work is that uncertainties remain in our mixing

trend estimation. The data duration we use is only 24 years and a longer

time series may lead to a more robust estimation of the long-term trend

(Beech et al., 2022). Therefore, though expensive, continuous

observations of the oceanic currents and other relevant tracer variables

(e.g., temperature) would be valuable for more accurate trend estimation.

Despite the uncertainties in our trend estimation, our results clearly

indicate that there is regional long-term adjustment ofmesoscale eddies

throughout the ocean. As the ocean’s response to climate change is

slow, ocean changes, including the changes in eddy mixing, will

continue building up. The eddy adjustment may significantly affect

the distribution of key tracers in the ocean (e.g., heat, salt, and nutrient)

and thus change the water mass distribution and air-sea interaction.

This in turn would lead to the variability of the ocean circulation,

climate system and marine ecosystem. Therefore, it could be useful to

fully consider the long-term trends in eddymixing when implementing

eddy parameterization schemes in non-eddy-resolving climate models.
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