
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Xuemin Cheng,
Tsinghua University, China

REVIEWED BY

Peng Ren,
China University of Petroleum (East China),
China
Qiqi Zhu,
China University of Geosciences Wuhan,
China

*CORRESPONDENCE

Heng Li

12309119@kust.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Observation,
a section of the journal
Frontiers in Marine Science

RECEIVED 29 January 2023

ACCEPTED 13 March 2023
PUBLISHED 23 March 2023

CITATION

Zhang C, Zhang G, Li H, Liu H, Tan J and
Xue X (2023) Underwater target detection
algorithm based on improved YOLOv4 with
SemiDSConv and FIoU loss function.
Front. Mar. Sci. 10:1153416.
doi: 10.3389/fmars.2023.1153416

COPYRIGHT

© 2023 Zhang, Zhang, Li, Liu, Tan and Xue.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 23 March 2023

DOI 10.3389/fmars.2023.1153416
Underwater target detection
algorithm based on improved
YOLOv4 with SemiDSConv and
FIoU loss function

Chengpengfei Zhang1, Guoyin Zhang1, Heng Li1*, Hui Liu1,
Jie Tan2 and Xiaojun Xue1

1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2College of Engineering, Tongren Polytechnic College, Tongren, China
Underwater target detection is an indispensable part of marine environmental

engineering and a fast and accurate method of detecting underwater targets is

essential. Although many target detection algorithms have achieved great

accuracy in daily scenes, there are issues of low-quality images due to the

complex underwater environment, which makes applying these deep learning

algorithms directly to process underwater target detection tasks difficult. In this

paper, we presented an algorithm for underwater target detection based on

improved You Only Look Once (YOLO) v4 in response to the underwater

environment. First, we developed a new convolution module and network

structure. Second, a new intersection over union loss was defined to substitute

the original loss function. Finally, we integrated some other useful strategies to

achieve more improvement, such as adding one more prediction head to detect

targets of varying sizes, integrating the channel attention into the network, utilizing

K-means++ to cluster anchor box, and utilizing different activation functions. The

experimental results indicate that, in comparison with YOLOv4, our proposed

algorithm improved the average accuracy of the underwater dataset detection by

10.9%, achieving 91.1%, with a detection speed of 58.1 frames per second.

Therefore, compared to other mainstream target detection algorithms, it is

superior and feasible for applications in intricate underwater environments.

KEYWORDS

deep learning, underwater detection, YOLO, convolutional neural network,
loss function
1 Introduction

Underwater target detection technology has been widely used in marine biodiversity

monitoring, marine ecosystem health assessment, and smart mariculture (Akkaynak and

Treibitz, 2019). Due to the difficulties in data acquisition and the intricate underwater

environment, underwater target detection has been an important and challenging task

when it comes to detecting targets. The existing research on underwater target detection
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methods can be broadly classified into two types: one is the

traditional approach based on using hand-crafted features and

shallow classifiers, and the other is a deep learning approach

based on automatic feature extraction. Traditional target

detection algorithms usually use a sliding window approach to

delineate the region of interest on the input picture that may

contain the target. Then, features will be extracted from the

region-of-interest by using feature extraction algorithms, such as

histogram of oriented gradient(HOG) (Dalal and Triggs, 2005),

oriented fast and rotated brief(ORB)(Rublee et al., 2011), and scale-

invariant feature transform(SIFT)(Lowe, 2004). Finally, classifiers

such as adaboost (Yoav and Schapire, 1997), support vector

machine (SVM) (Cortes and Vapnik, 1995), and deformable part

model(DPM) (Felzenszwalb et al., 2008). are used to classify the

extracted features. However, traditional target detection algorithms

have many disadvantages, such as their poor robustness, low

efficiency, and limited accuracy, which makes it difficult to meet

the current demand. For the past few years, deep convolutional

neural networks(DCNN) have been widely used in many fields such

as medical image semantic segmentation (Wang Z. et al., 2022),

urban land-use planning (Zhu et al., 2022), and autonomous

driving (Li and Jin, 2022), with satisfactory results. Many

approaches based on DCNN principles have been devised, and

their effectiveness has been proven in a variety of domains,

including in underwater target detection.

Target detection methods based on DCNN are gradually

evolving in two directions due to the divergent focus on detection

accuracy and detection speed. One is a region proposal-based target

detection algorithm, also called the two-stage algorithm. Among all

these algorithms, the R-CNN series is the most representative. R-

CNN (Girshick et al., 2014) was presented by R. Girshick et al. in

2014, and it significantly outperformed the mainstream algorithm

on the Pascal VOC dataset. It applies a selective search method to

engender region proposals and uses CNN to extract features. After

that, features are classified using SVM. Based on R-CNN, Fast R-

CNN(Girshick, 2015), Faster R-CNN (Ren et al., 2017), and Mask

R-CNN (He et al. 2018), many other two-stage methods have been

gradually proposed and achieved better accuracy and speed.

However, these two-stage algorithms have high computation

time, which makes it difficult to meet the needs for real-time

target detection. In order to resolve this issue, the regression-

based target detection algorithm, also called the one-stage

algorithm, was proposed. You Only Look Once (YOLO) (Redmon

et al., 2016) was first introduced by J. Redmon et al.in 2015. When it

was proposed, it attracted a lot of attention. YOLO’s core idea is to

use the whole picture as the input to the CNN and output the result

of bounding box prediction. (Zhang et al., 2022) Because of this,

YOLO has fast detection speed. Since its development, one-stage

algorithms such as single shot multibox detector (SSD) (Liu et al.,

2016) and RetinaNet (Lin et al., 2017). Were gradually proposed,

and one-stage target detection algorithms were developed rapidly.

Although most of the algorithms mentioned above have

achieved good performance in daily scenes, applying these deep

learning algorithms directly to process underwater target detection

tasks still has some problems. Firstly, the targets have a relatively

large variation in scale due to the shooting distance. Secondly,
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underwater images are generally low-quality due to the complex

and changing underwater environment, which means models have

a low target localization accuracy in the underwater target detection

assignment. Finally, looking at the research on underwater target

recognition based on deep learning, although most of the existing

detection methods have high recognition precision, the real-time

performance of many of them is insufficient due to their high

complexity, large number of parameters, and large scale. Therefore,

it is essential to develop an underwater target detection algorithm

that meets the needs for real-time detection while ensuring

recognition accuracy.

In this paper, we presented an algorithm for underwater target

detection based on improved YOLOv4 (Bochkovskiy et al., 2020) to

solve the above-mentioned issues. In terms of network structure, we

followed the original version, used CSPDarknet53 (Wang et al., 2020)

as the backbone, and introduced channel attention block into it to

emphasize useful informative features. Then, we constructed a new

convolution module by integrating the traditional convolution, the

depthwise separable convolution (DSC), and channel shuffle (Zhang

et al., 2018), named SemiDSConv for convenience. This module can

ensure the performance similar to a traditional convolution network,

reduce the computational cost, and speed up the inference while

solving the channel information separation problem caused by DSC.

Based on this new module, inspired by CSPNet, we further designed

the SemiDSCSP module, and applied it with the SemiDSConw

module to the neck part of the model to replace the original

convolution network and further reduce the inference time. In the

head part, we added a prediction head to help the model deal with

large changes in the targets’ scale. Meanwhile, we defined a new

intersection over union (IoU) loss function, FIoU, which boosts the

localization accuracy and the convergence speed of the model. In

comparison with the original YOLOv4, our improved YOLOv4 can

better deal with underwater target detection tasks. For the dataset of

URPC, the mAP was increased by 10.9% with the baseline and the

inference speed reaching 58.1 frames per second (FPS). Overall, the

presented algorithm demonstrates good results with a quick speed.

The contributions of our work can be summed up as follows:
1. Developed a new convolution module named SemiDSConv.

This module’s performance is close to the traditional

convolution network, but with less computation and faster

inference speed. Based on it, the SemiDSCSP module was

then designed and replaced the traditional convolution in the

neck part;

2. Defined a new IoU loss, FIoU, that obtains superior

localization accuracy and faster convergence speed;

3. Integrated some other useful tricks, such as introducing the

channel attention block which can help the network to

extract useful informative features more easily, adding a

new prediction head to deal with dramatic changes in the

scale of the underwater targets, using Mish as activation

function, and using the K-means++ clustering algorithm to

cluster anchor boxes;

4. On the URPC dataset, the proposed method achieved

91.1% mAP, outperforming the baseline by 10.9% with

58.1 FPS.
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2 Related work

2.1 YOLOv4

Since the YOLO algorithm was first presented by J. Redmon

et al. in 2015, it has received great attention among researchers.

YOLOv4 was introduced in 2020 and is one of the state-of-the-art

object detection algorithms. It greatly improved the detection

accuracy and computational speed of YOLOv3 (Redmon and

Farhadi, 2018). On COCO target detection dataset, YOLOv4

improves YOLOv3’s FPS by 12%. Compared to other one-stage

algorithms, such as SSD, YOLOv4 has a detection accuracy that far

exceeds theirs while having the speed to meet real-time detection

requirements. Compared to YOLOv5 and v7, it is lighter and has a

faster detection speed when handling underwater target detection

tasks with not much difference in accuracy. Thus, YOLOv4 is

suitable for real-time target detection tasks.

YOLOv4 mainly consists of three sections: the backbone, the

neck, and the head. YOLOv4 takes CSPDarknet53 as the backbone

network. CSPDarknet53 is composed of five large residual blocks

which contains one, two, eight, eight, and four residual units in them,

respectively. Each residual unit consists of 3*3 and 1*1 convolutional

layers. This architecture can help the network to get richer gradient

information while reducing the amount of calculation needed. In the

neck part, YOLOv4 uses PANet(Liu et al., 2018) to fuse the feature

information from different-size feature maps to enhance the ability of

the model to detect objects of various sizes. Meanwhile, Yolov4 adds

the SPP block into the network which can expand the receptive field,

prevent overfitting, and improve scale-invariance. In the end, the

extracted multi-scale feature maps are sent into the YOLOv3

detection head for detection.
2.2 Channel attention

Channel attention mechanisms have shown their utility across

many tasks. For the underwater image, typically, targets only

occupy a fraction of the whole image, and the rest is background

information. In order to minimize the distractions of background

information and highlight the target, channel attention can be used

to help distinguish the target from the background as channel

attention focuses on what is meaningful given an image (Woo et al.,
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2018). SENet(Squeeze-and-Excitation Network) (Hu et al., 2018)

was proposed by Jie Hu et al., which is a prominent representative of

channel attention. It is composed of two parts: a squeeze operation

and an excitation operation. The squeeze operation uses global

average pooling to aggregate the summarized information from

each channel, and the excitation operation adjusts the relevance of

each channel according to its weight. Therefore, the introduction of

the SE block can enhance the feature extraction capability of the

model. The structure of the SE block is indicated in Figure 1.
2.3 Activation functions

The activation Function is one of the crucial factors influencing

the performance of a neural network. The rectified linear unit

(ReLU) (Glorot et al., 2011) was proposed by Vinod Nair et al. in

2011. Its formula is defined in Equation (1).

fReLU(x) = max (0, x)  , x ∈ R : (1)

Due to its low computational cost and easy optimization

characteristics, ReLU is widely used in neural networks. However,

it is not without weaknesses. As shown in Equation (1), ReLU grows

unbounded and is directly truncated at negative values. The former

would lead to excessive differences in weights, resulting in reduced

accuracy. The latter would result in a Dead ReLU problem, i.e. if the

input is a negative value, the output of ReLU and the gradient will

become zero. Finally, the network parameters will not be updated.

Alex Krizhevsky proposed ReLU6 (Krizhevsky and Hinton, 2010)

to address the former issue, which is formulated in Equation (2).

fReLU6(x) = min (6,max (0, x))  , x ∈ R : (2)

But it still does not solve the Dead ReLU problem. In 2019,

Diganta Misra et al. presented Mish activation function (Misra,

2019), which can be defined as:

fMish(x) = xtanh( ln (1 + ex)), x ∈ R : (3)

Compared with ReLU, Mish is non-monotonic, smoother, and

allows a few negative weight inflow. Figure 2 shows visually the

differences between ReLU, ReLU6, and Mish. Better expressivity

and information flow are facilitated by these properties, and these

properties also make the network avoid saturation.
FIGURE 1

The structure of the SE block.
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2.4 General target detection

Since the rise of convolutional neural networks, many

researchers have continued to propose new methods and ideas

due to the need for various target detection tasks. Aiming to

improve the assignment of anchor labels in the current anchor-

based model, Kim (Kim and Lee, 2020) et al. proposed a

probabilistic model for assigning labels to anchors - Probabilistic

Anchor Assignment(PAA), the assignment criteria of which depend

on the combination of classification accuracy and IoU, rather than

IoU alone. Redundant hyperparameters such as IoU threshold and

number of positive samples, are then discarded to improve the

performance and stability of the model. Yang (Yang et al., 2022)

et al. proposed the Cascade Sparse Query (CSQ) mechanism, where

Query represents using the query passed in the deeper-level (higher-

level feature with lower resolution) layer to guide the detection of

small targets in this layer, and then predicting the query in this layer

to be further passed to the next layer. Sparse represents the

significant reduction of the computational overhead of the

detection head on the low-level feature layer by using sparse

convolution. Li(Li et al., 2022) et al. improved Multiscale Vision

Transformers which incorporates decomposed relative positional

embeddings, proposed MViTv2, and optimized the pooling

attention in the network using residual structures. After that,

many experiments have been conducted to verify the superiority

of the proposed algorithm in the fields of classification, detection,

and video tracking. To address the problem of sample scarcity in the

dataset, Hou(Hou et al., 2022) et al. creatively proposed a new idea

to explore the relationship between samples and help the network to

learn by focusing on the batch dimension and introducing the

Transformer structure in it. The proposed BatchFormer has

achieved good performance in a large number of experiments.
Frontiers in Marine Science 04
2.5 Underwater target detection

In the past few years, with the evolution of deep learning-based

target detection algorithms, more and more researchers have been

implementing this technology in the underwater environment. In

2019, Moniruzzaman (Moniruzzaman et al., 2019) et al. constructed a

Halophila ovalis dataset that consists of 2,699 underwater

photographs of Halophila ovalis and presented Inception V2-based

Faster R-CNN network to detect seagrass. Experimentally, the

proposed network achieved a high mAP of 0.3464 on laboratory

images. In 2021, Zeng (Zeng et al., 2021) et al. presented a method to

introduce the adversarial occlusion network (AON) to the Faster R-

CNN algorithm and the resulting model achieves better robustness in

terms of underwater seafood. In the same year, Wang (Wang et al.,

2021) et al. introduced YOLOv5 for underwater target detection and

conducted a lot of detailed experiments and comparisons based on

this, and finally used the experimental results as the YOLOv5 baseline

for underwater target detection. For the task of underwater sea

cucumber target detection, Peng (Peng et al., 2021) et al. proposed

the Shortcut Feature Pyramid Network (S- FPN) and Piecewise Focal

Loss (PFL), which improved the multi-scale feature fusion approach of

the network and balanced the positive and negative samples, enabling

themAP to achieve a high accuracy of 94%. Yeh (Yeh et al., 2021) et al.

proposed an underwater target detector with joint image color

conversion for the problem of underwater image color absorption,

which converts underwater color images to grayscale images, and

improved the performance of the target detector with low

computational cost. In 2022, Hong (Hong et al., 2022) et al. used a

parameter calibration strategy to fine-tune the parameters of the Mask

RCNNmodel to detect and locate shrimp better. Cai (Cai et al., 2022)

et al. proposed a weakly supervised learning framework for

underwater object detection, using two detectors trained
FIGURE 2

Comparison between ReLU, ReLU6, and Mish.
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simultaneously and learning from each other to select cleaner samples,

which eventually achieved good performance. Chen (Chen et al., 2022)

et al. proposed the Sample-WeIghted hyPEr Network (SWIPENET)

and a novel training paradigm called Curriculum Multi-Class

Adaboost (CMA) to address both problems simultaneously for the

case of ambiguous underwater targets and the presence of many small

targets, which eventually achieved good performance. In 2023, Wang

(Wang et al., 2023) et al. proposed a new underwater target detection

algorithm based on reinforcement learning and image enhancement,

which automatically learns and adjusts the combined sequence of

underwater image enhancement methods by a neural network in

order to help the network’s detector achieve the best performance.

Although these works achieved quite a high degree of detection

accuracy, there are still some limitations to them, namely the low

detection speed. Therefore, how to ensure a high detection accuracy

with real-time rapid detection is still a research issue worthy of study.
3 Proposed model

3.1 Network structure

Considering the speed requirements of real-time detection tasks,

we chose the best-known and the most used one-stage algorithm—

YOLOv4-as our baseline. The framework of the improved YOLOv4 is

shown in Figure 3. We introduced a new convolution module and a

bottleneck structure based on it to speed up the network inference. A

new IoU loss function was developed to enhance detection precision

and the velocity of convergence. A new prediction head was added to
Frontiers in Marine Science 05
deal with the large differences in underwater target scales. The

prediction head we added uses mainly high-resolution and shallow

features to predict, which makes it sensitive to small targets.

Therefore, the newly added prediction head and the original

prediction heads form a four-head structure that can better handle

the drastic changes in the size of underwater targets. The channel

attention module was introduced into the backbone to encourage the

network to retain more useful features. In addition, we used Mish

activation function to replace ReLU. It solves the Dead ReLU

problem, avoids network convergence slowdown, and, at the same

time, improves the accuracy of the network. Although it slightly

increases the computational cost, we deem it worthwhile.
3.2 SemiDSConv module

The depthwise separable convolution (DSC) is composed of two

parts: depthwise convolution and pointwise convolution. Depthwise

convolution convolves each channel of the input feature map

separately. If the amount of input channels is N, after convolving

each of the N channels, these feature maps are collocated together to

get an output feature map of channel N. Pointwise convolution is a

1×1 convolution. The pointwise convolution in DSC is mainly used

to allow DSC to freely change the number of output channels and to

perform channel fusion on the output feature map of depthwise

convolution. The ratio of the computational cost of DSC to

conventional convolution is illustrated in Equation (4)

k·k·n·s·s+n·m·s·s
k·s·n·m·s·s = 1

m + 1
k2 (4)
FIGURE 3

The improved YOLOv4 network structure.
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Where k·k. is the convolution kernel size. n and m denote the input

and output channels, separately. s·s represents the size of the feature

map. From the equation, it is clear that the computational cost of

DSC is much less than that of traditional convolution.

However, due to the characteristics of DSC, channel

information is computed separately from each other, resulting in

a significant reduction in its capability to extract and fuse features,

much weaker than traditional convolution. To overcome this issue,

the SemiDSConv module was designed. The structure of the

SemiDSConv module is indicated in Figure 4.

The SemiDSConv module first uses a 1*1 convolution kernel to

fuse the input features maps, while achieving channel

dimensionality reduction to reduce the computational cost of

subsequent convolution operations. After that, the feature maps

are computed through the traditional convolution and the

depthwise separable convolution, respectively. The channels are

then concatenated together. It then performs shuffle operations so

that the information between the channels is completely fused. The

SemiDSConv module effectively maintains the advantages of DSC

while minimizing the negative impact of its shortcomings on

the network.

Based on this, inspired by the CSPNet, we also designed the

SemiDSCSP module, which enables the network to better extract

and fuse the feature information. The structure of the SemiDSCSP

module is indicated in Figure 5.

It is worth mentioning that if all traditional convolutions in the

network are replaced with SemiDSConv, the number of network

layers will be too deep. This would make the resistance of data flow

too high and increase the inference time significantly. In the Neck

part, the feature map is extracted by the backbone, with smaller

width and height, less redundant repetitive information, and shorter

inference time. Therefore, we replaced traditional convolutions only

in the Neck to achieve good performance.
3.3 FIoU loss function

Due to differences in the network structure and the basic idea,

YOLO has its natural disadvantage in localization precision

compared with a two-stage algorithm. Therefore, the authors of

the YOLO series and other researchers have been exploring

strategies to address this issue. Among the various improvement
Frontiers in Marine Science 06
strategies, improving the loss function is the most effective and

direct strategy. YOLOv4 includes three types of loss functions:

confidence loss, category loss, and localization loss (also called the

loss of bounding box coordinates). Different from YOLOv3,

YOLOv4 substitutes Complete-IoU (CIoU) (Zheng et al., 2021)

loss for cross entropy loss in YOLOv3 as the localization loss

function and obtains better convergence speed and accuracy (Jiao

et al., 2022). The CIoU loss was improved from Distance-IoU

(DIoU) (Zheng et al., 2020) loss. The DIoU loss and the CIoU

loss is defined in Equations (5)-(9):

LDIoU=1−IoU+
r2(p,pgt)

d2
(5)

LCIoU=1−IoU+
r2(p,pgt)

d2
+av: (6)

IoU=
A∩Agt

�� ��
A∪Agt

�� �� : (7)

a=
v

(1−IoUÞ+v : (8)

v ¼ 4
p2

( arctan  
wgt

hgt
− arctan  

w
h
)2: (9)

where p and pgt are the central points of the predicted box and the

ground-truth box. d is the diagonal length of the minimum

bounding rectangle. r (p, pgt) indicates the Euclidean distance

between p and pgt. A denotes the predicted box whereas Agt

denotes the ground-truth box. w, wgt,h, and hgt respectively

represent the width of the predicted box and ground-truth box

and the height of the two boxes.

As shown in Equations (6), (8), and (9), the newly added

penalty term av is to measure the discrepancy of aspect ratio

between the predicted box and the ground-truth box. The

experimental results indicate that, compared with previous IoU

loss functions (GIoU and DIoU) (Rezatofighi et al., 2019), the

localization accuracy and the convergence speed of the CIOU loss

have substantially increased. However, CIoU still has certain

limitations. Specifically, when {w= kwgt = khgt|k∈R+} is satisfied, v

becomes zero and the loss function will degrade to DIoU loss. This

drawback renders the convergence speed slow in some cases. For

the underwater target detection task, the slow convergence of the

loss function may cause the network to fail and to converge quickly
FIGURE 4

The structure of the SemiDSConv module.
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in a limited number of epochs due to the small number of samples.

It may also lead to overfitting if the training epochs are extended for

model convergence.

In order to address this situation, we designed a new loss

function that inherited some properties from CIoU loss and

added proper penalty terms to it. We call it Fast-IoU(FIoU); the

specific formula is shown as follows:

LFIoU=LIoU+LD+LR+LL= 1−IoU+

r2(p,pgt)
d2

+av + 
r2(h,hgt)

l2h
+
r2(w,wgt)

l2w
:

(10)

where, lh and lw are the height and width of the minimum

bounding rectangle. As shown in Equation (10), we divide the

whole loss function into four parts: the IoU loss LIoU, the distance

loss LD, the aspect ratio loss LR and the side length loss LL.
Frontiers in Marine Science 07
Generally, LR and LL function together to optimize the similarity

between two boxes. If {w = kwgt, h = khgt|k ∈ R+} is satisfied,

although LR becomes zero, LL it is still minimizing the difference

between the two boxes’ width and height. The convergence process

of the CIoU and the FIoU is shown in Figure 6.

In order to verify the effect of different loss functions on the

network model performance, we evaluate FIoU loss function by

replacing CIoU with FIoU in the original YOLOv4 algorithm.

Figure 7 shows the training loss curves of two models in the

URPC dataset. As can be seen, the FIoU decreased more quickly

than CIoU in epochs 0 to 30. After 30 epochs, the curve of FIoU loss

functions was stable while CIoU was not. Although after 45 epochs,

both the FIoU and the CIoU loss functions were stabilized, FIoU

was still well below CIoU. It verifies that the FIOU loss function has

a quicker convergence rate and better regression accuracy than the

CIOU loss function.
FIGURE 6

The diagrams of prediction box regression in the first and second row respectively represent the prediction box regression process of CIoU and
FIoU. The green box refers to the ground truth box. The black box refers to the anchor box, and the red and blue one is the prediction boxes of
CIoU and FIoU, respectively.
FIGURE 5

The structure of the SemiDSCSP module.
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Overall, compared to CIoU loss, FIoU can get better localization

accuracy and convergence speed. This enables the YOLOv4

network using FIoU as the loss function to have a higher

performance than the network using CIoU as the loss function.

We substitute FIoU loss for CIoU loss in YOLOv4, hoping to render

it better for the underwater target detection task.
4 Experiments

4.1 Dataset

The dataset adopted in the paper was from the Target

Recognition Group of China Underwater Robot Professional

Competition (URPC), which includes four categories: echinus,

holothurian, scallop, and starfish. The dataset contained 4757

images in total. The dataset is a sequence of frames from multiple

video segments with a continuous distribution and a large similarity

between neighboring frames. Therefore, we shuffled the dataset

randomly and split the dataset into a training and test set at a ratio

of 4:1, then labeled the targets. In order to better simulate the real

situation in the underwater environment, we kept the images

without targets detected in the training set and test set. The

finally obtained training set contains 3806 images and the test set

contains 951 images. One practical issue deserves mention: the

resolution of images and the number of individual category samples
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are very unbalanced in the dataset. This would bring challenges to

the training of the network.
4.2 Model evaluation metrics

In the field of target detection, Average Precision(AP) is the metric

most commonly used to evaluate the performances of the model.

Before introducing AP, we present a brief overview of precision (P)

and recall (R), which are computed by Equations (11) and (12):

P= TP
TP+FP �100%: (11)

R  ¼  
TP

FN+TP
�100% (12)

where TP, FP and FN refers to the positive samples predicted to

be positive by the model, the negative samples predicted by the

model to be positive, and the positive samples predicted to be

negative by the model, respectively.

Because P and R are interactive, to combine the two metrics, AP

is introduced to evaluate the goodness of the detection accuracy of

the model, as defined in Equation (13):

AP=
Z1

0

P(R)dR: (13)
FIGURE 7

Curves of the FIoU and CIoU loss values with the epoch increasing.
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In multi-class target detection tasks, mean Average Precision is

commonly used to evaluate the overall model performance.

Namely, AP values were averaged for each category. The equation

for calculating mAP as defined below:

mAP= 1
no

n

i=0
AP: (14)

where n refers to the number of types.
4.3 Experimental environment and
parameter settings

We implement the proposed method on Python 3.9.7 and

Pytorch 1.8.1. All the methods were trained and tested using an

NVIDIA RTX3090 GPU and an Intel Xeon E7-4809 v3 CPU.

During the training phase, we set the initial training

hyperparameters for each group of experiments to be the same to

ensure the fairness of our experiments. The resolution of the input

images were consistently set to 640 × 640. To prevent the gradients

from exploding when the learning rate was high, the learning rate

was tuned based on the cosine annealing strategy (Loshchilov and

Hutter, 2016).

YOLOv4 algorithm expands the anchor mechanism. Setting a

predefined prior frame can well represent the original state of the

target to be detected and get a more reasonable potential

distribution of data sample bounding boxes. The high-quality

anchor can play an optimal role in the process of small target

detection and post-processing prediction. Therefore, when training

underwater data, it is very important to set appropriate anchors

according to the characteristics of the underwater dataset. In this

paper, we used the K-means++ (Arthur and Vassilvitskii, 2007)

clustering algorithm to cluster anchor boxes in the URPC dataset.

Finally, we obtain the anchor parameters’ fit among the underwater

targets. The clustered anchor boxes are (17,14), (24,21), (31,28),

(37,39), (48,32), (54,46), (69,62), (92,89), and (144,129).

The specific settings of the other hyperparameters are shown

in Table 1.

The loss function curves of the proposed method are

demonstrated in Figure 8, which contains three parts: localization

loss, classification loss, and confidence loss. From the figure, it can

be noted that all losses steadily decrease with the number of epochs.

The model converged in under 100 epochs.

In the testing stage, all the resolutions of the input image were

consistently set to 640 × 640. The IoU threshold was set to 0.4. All

other parameters were the same. During the test, only one GPU was
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used uniformly for testing. The average of the 10 test results for the

entire test set test time was considered as the final prediction time.
4.4 Experimental results and analysis

4.4.1 Ablation experiments
To verify the effectiveness of the proposed model or every

submodule, we present ablation experiments in this paper.

Table 2 shows the results of the ablation experiments. As listed

in Table 2, Model 1(baseline) was the original YOLOv4 network

structure. Model 2 replaced the ReLU activation function in Model

1 with the Mish activation function. Model 3 replaced the CIoU loss

function in Model 2 with our proposed FioU loss function. Model 4

was model 3 with SemiDSConv and SemiDSCSP. Model 5 was the

proposed four-head structure based on model 4 and model 6 was

the model in which the SE channel attention mechanism module

was embedded into Model 5.

The results showed that both Model 2 and Model 5 have

improved performance separately to varying degrees compared to

the previous model. In comparison toModel 2, Model 3, which used

FIoU loss function, increased the mAP by 4.3%. The proposed

Model 4 increased the mAP by 3.7% and also improved the

detection speed by about 14 FPS. After embedding SE channel

attention into the network, the proposed Model 6 attained the best

performance. Compared to the original YOLOv4 algorithm (Model

1), Model 6 ‘s mAP increased from 80.2% to 91.1%, an increase

of 10.9%.

It may be noted that the presented model not only reduces the

computational cost and improves the detection speed, but also

achieves good performance compared to the baseline.

4.4.2 Detection results comparison
To demonstrate the superiority of the proposed method in the

detection of underwater targets, we compared it with the original

YOLOv4 algorithm and six other methods: YOLOv5, YOLOv7

(Wang CY, et al., 2022), Tiny YOLOv4, YOLO-Fish(Al Muksit

et al., 2022), Faster R-CNN, and SSD. All tests were performed on

the URPC dataset. The results of these experiments are shown

in Table 3.

It can clearly be seen from Table 3 that the presented method

has the highest mAP, while the detection speed is faster than the

baseline, meeting the demand for real-time detection.

Figure 9 indicates the visualization experimental result of

YOLOv4, Tiny-YOLOv4, YOLOv5, YOLOv7, and our method for

underwater detection on the URPC dataset. As can be discerned
TABLE 1 Hyperparameter settings.

Training Epochs Batch Size Learning Rate Weight Decay Momentum Cosine Annealing

100 8 0.00522 0.00044 0.98 0.114

Translate (Image
Translation) Scale (Image Scale)

Fliplr
(Image Flip
Left-Right)

Flipud (Image Flip
Up-Down) Mosaic Mixup

0.0726 0.9 0 0.5 0.932 0
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from Figure 9, the detection result of our method was better than

YOLOv4, and considerably better than the Tiny YOLO v4.

To better demonstrate the detection results of our proposed

algorithm with other algorithms, we compared our proposed

algorithm with YOLOv5 and YOLOv7 in detail. Figure 10 shows the

detection results of the three algorithms. As shown in the figure, the

targets marked with red-dashed boxes in the figure have obscure and

blurred edges, which are difficult to distinguish from the background,

for which our algorithm can still identify and label well. At the same
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time, many targets underwater are easily misidentified due to the

complex environment, and the yellow-dashed boxes in the figure mark

the targets that are misidentified by the algorithm. As can be seen, our

proposed algorithm has a low false detection rate and is suitable for

using in complex underwater environments.

All the experimental results show that our proposed method

achieves a good trade-off between detection accuracy and detection

speed, which means that it is considered superior for underwater

target detection.
TABLE 2 Results of ablation experiments.

Model

Method

mAP(%)* Speed
(FPS)Baseline Mish FIoU Semi-

DSConv New Head SE

Model1 √ 80.2 51.2

Model2 √ 80.6(+0.4) 49.3

Model3 √ √ 84.9(+4.3) 49.3

Model4 √ √ √ 88.6(+3.7) 63.4

Model5 √ √ √ √ 90.5(+1.9) 58.5

Model6 √ √ √ √ √ 91.1(+0.6) 58.1
front
*The value within the bracket denotes the improvement compared to the previous model
TABLE 3 Experimental results of different algorithms on the URPC dataset.

Method mAP
(%)

Scallop
(%)

Starfish
(%)

Holothurian
(%)

Echinus
(%)

Model Size
(MB)

Speed
(FPS)

YOLOv4 80.2 73.5 87.2 77.7 82.3 204.8 51.2

YOLOv5 80.4 72.9 87.4 76.3 84.8 243.2 44.7

YOLOv7 80.5 73.6 89.7 73.7 85.1 186.0 48.9

YOLO-Fish 77.5 69.1 86.7 71.6 82.6 234.8 45.6

Tiny YOLOv4 63.7 58.5 70.8 56.5 69.0 23.0 114.9

Faster
R-CNN

84.4 78.2 93.3 79.1 86.9 419.2 4.8

SSD 61.5 59.3 68.4 56.0 62.2 36.4 72.3

Ours 91.1 86.2 93.2 89.7 95.2 182.7 58.1
A B C

FIGURE 8

The curves of the loss values: (A) localization loss; (B) classification loss; (C) confidence loss.
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FIGURE 9

Visualization comparison of detection results with YOLO v4, Tiny YOLO v4, YOLOv5, YOLOv7, and ours.
FIGURE 10

More detailed visualization comparison of detection results with YOLOv5, YOLOv7, and ours.
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5 Conclusions

Detecting targets with good accuracy and fast detection speed in

underwater environments is a challenging problem. In this paper,

we presented a real-time underwater target detection algorithm

based on improved YOLOv4. In our work, we first developed a new

convolutional module and network structure to enhance the feature

extraction capability for the model, reduce the computational effort,

and speed up the model inferencing. Then, we defined a new IoU

loss that improves the target detection performance and the

convergence speed of the network. Meanwhile, we optimized the

network model and made some other small improvements. We

added a new prediction head to handle dramatic changes in the

scale of the underwater targets and embedded the channel attention

block in the network, which makes the detection and classification

of the network more accurate. Experiments show that the presented

model achieves 91.1% mAP and 58.1 FPS detection speed on the

URPC dataset, outperforming the other listed algorithms in terms

of combined performance, which indicates that the proposed model

has significant advantages in handling underwater target detection

tasks and is more robust in complex underwater environments.

In our future work, how to compress model size to design a

more lightweight network and make it applicable to small,

embedded devices while maintaining accuracy is an issue that

merits further research.
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