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The bottom friction is critical for the dissipation of the global tidal energy. The

bottom friction coefficient is traditionally determined using the Manning’s n

formulation in tidal models. The Manning’s n coefficient in the Manning’s n

formulation is vital for the accurate simulation and prediction of the tide in

coastal shallow waters, but it cannot be directly measured and contains large

amounts of uncertainties. Based on a two-dimensional multi-constituent tidal

model with the adjoint data assimilation, the estimation of the Manning’s n

coefficient is investigated by assimilating satellite observations in the Bohai,

Yellow and East China Seas with the simulation of four principal tidal

constituents M2, S2, K1 and O1. In the twin experiments, the Manning’s n

coefficient is assumed to be constant, and it is estimated by assimilating the

synthetic observations at the spatial locations of the satellite tracks. Regardless

the inclusion of artificial random observational errors associated with synthetic

observations, the model performance is improved as evaluated by the

independent synthetic observations. The prescribed ‘real’ Manning’s n

coefficient is reasonably estimated, indicating that the adjoint data assimilation

is an effective method to estimate the Manning’s n coefficient in multi-

constituent tidal models. In the practical experiments, the errors between the

independent observations at the tidal gauge stations and the corresponding

simulated results of the four principal tidal constituents are substantially

decreased under both scenarios of the constant and spatially-temporally

varying Manning’s n coefficient estimated by assimilating the satellite

observations with the adjoint data assimilation. In addition, the estimated

spatial and temporal variation trend is robust and not affected by the model

settings. The spatially-temporally varying Manning’s n coefficient is negatively
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correlated with the current speed and shows significant spatial variation in the

shallow water areas. This study demonstrates that the Manning’s n coefficient

can be reasonably estimated by the adjoint data assimilation, which allows

significant improvement in accurate simulation of the ocean tide.
KEYWORDS

Manning’s n coefficient, bottom friction coefficient, adjoint data assimilation, parameter
estimation, spatial-temporal variation
1 Introduction

Tide is a ubiquitous oceanographic phenomenon in the global

ocean (Wei et al., 2022) and is a significant source of power to drive the

ocean interior mixing (Munk and Wunsch, 1998). Different from the

tide in deep seas, the tide in shallow waters is pronouncedly effected by

the bottom friction in the bottom boundary layer (Nicolle and

Karpytchev, 2007), which is responsible for the dissipation of over

70% of the global tidal energy (Munk and Wunsch, 1998). The tide in

shallow waters is an important research field of physical oceanography

and is essential for ocean transport (Wei et al., 2022), coastal ocean

engineering (Lee and Jeng, 2002; Chen et al., 2007), sediment and

nutrient transport (Sana and Tanaka, 1997; Fan et al., 2019). Coastal

tidal models have been the effective tool to simulate and predict the

tide and to investigate the bottom friction dissipation in shallow

waters. The bottom frictional stress in the coastal tidal models can

be defined using a linear or quadratic drag law (Mayo et al., 2014). In

the widely used quadratic drag law, the bottom frictional stress is a

quadratic function of the bottom friction coefficient (BFC) and

velocity (Taylor, 1920). BFC can be determined using the Manning’s

n formulation and equal to gn2/h1/3, where g is the acceleration due to

gravity, h is the water depth, and n is the Manning’s n coefficient

(Mayo et al., 2014). The Manning’s n coefficient is defined as multiple

types of resistance to water flow because of bottom surface

characteristics and is vital for accurate simulation and prediction of

the tide in shallow coastal waters, whereas it cannot be directly

measured and contains large amounts of uncertainties caused by the

empirical estimation (Budgell, 1987; Mayo et al., 2014).

As an empirically derived model parameter, the Manning’s n

coefficient in the tidal models can be estimated by the traditional

trial and error method, but it is unfeasible especially for the spatially

varying or spatially-temporally varying Manning’s n coefficients

(Siripatana et al., 2018). Blakely et al. (2022) estimated the optimal

constant Manning’s n coefficient and internal tide dissipation

coefficient in every region in a global tide model using the sequential

frictional parameter optimization process. With development of

computer power and satellite remote sensing observational

technology, estimation of Manning’s n coefficient using data

assimilation becomes more realistic and feasible. Ding and Wang

(2005) estimated the Manning’s n coefficient in the one-dimensional

flow model of a river by assimilating the synthetic observations of

discharges and stages with the optimal control theories and adjoint

analysis. Hostache et al. (2010) identified the optimal Manning’s n
02
coefficient in the Mosel River by assimilating the water level obtained

from Synthetic Aperture Radar images of river inundation into a

shallow-water flood model with the variational data assimilation

method. Pedinotti et al. (2014) estimated the Manning’s n coefficient

by assimilating virtual water level observations obtained from satellite

data into a coupled land-surface hydrology model with the extended

Kalman filter method. Sraj et al. (2014) estimated the Manning’s n

coefficient in two-dimensional (2D) shallow water equations by

assimilating buoy-observed water surface elevation with a Bayesian

inverse modeling method. Mayo et al. (2014) estimated the spatially

varying Manning’s n coefficient by assimilating the synthetic water

elevation observations with a statistical data assimilation method.

Demissie and Bacopoulos (2017) estimated the anisotropic

Manning’s n coefficient by assimilating temporally and spatially

varying velocity observations with nudging analysis. Graham et al.

(2017) estimated theManning’s n coefficient in a storm surge model by

assimilating the maximum free surface elevations at observation

stations with the measure-theoretic algorithm. Slivinski et al. (2017)

estimated the Manning’s n coefficient in a multiple-inlet system by

assimilating the observations of Lagrangian drifter trajectories with the

ensemble Kalman filter. Siripatana et al. (2017) estimated the

Manning’s n coefficient by assimilating synthetic observations in a

simplified ebb shoal associated with an idealize inlet using the ensemble

Kalman filter method and Markov chain Monte Carlo method.

Siripatana et al. (2018) further quantified the spatially varying

Manning’s n coefficients by assimilating synthetic observations of

water elevation with a sequential data assimilation framework. Ziliani

et al. (2019) estimated the two-dimensional Manning’s n coefficients in

a flood model by assimilating real measurements of water depth with

the ensemble Kalman filter. Warder et al. (2022) estimated the

Manning’s n coefficient in the numerical model of Bristol Channel

tidal dynamics by assimilating tidal harmonic data at 15 locations with

a Bayesian inference algorithm.

The adjoint data assimilation is one of the classical data

assimilation methods and has been widely used in the parameter

estimation in oceanography (Navon, 1998; Fringer et al., 2019).

Ullman and Wilson (1998) used the adjoint data assimilation to

estimate the BFC directly by assimilating the Acoustic Doppler

current profiler data. Heemink et al. (2002) applied the adjoint data

assimilation to estimate the open boundary conditions, the spatially

varying BFC and viscosity parameter, and the water depth in a

three-dimensional shallow sea model by assimilating tidal gauge

data and satellite altimeter data. Gao et al. (2015) used the adjoint
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data assimilation to simultaneously estimate the spatially varying

BFC and internal tide dissipation coefficient in the South China Sea

by assimilating the tidal harmonic constants derived from both tidal

gauge stations and satellite altimeter crossover points. Wang et al.

(2021a) estimated the temporally varying BFC in the Bohai Sea by

assimilating satellite-retrieved tidal harmonic constants with the

adjoint data assimilation. Wang et al. (2021b) estimated the

spatially-temporally varying BFC in multi-constituent tidal model

in the Bohai, Yellow and East China Seas (BYECS) by assimilating

satellite altimeter data with the adjoint data assimilation. Compared

to the depth independent BFC, the extra depth dependency in the

Manning’s n formulation redistributes resistance to the inner shelf

from the outer and mid shelf, leading to much better simulated

results of tides in marginal seas when the global ocean tides are

simulated (Blakely et al., 2022). It is necessary to estimate the

Manning’s n coefficient in the marginal seas. However, the adjoint

data assimilation has not been used to estimate the Manning’s n

coefficient in the Chinese shallow coastal waters.

The tidal dynamics in the BYECS are complex and has been

simulated by many researchers. However, the Manning’s n coefficient

in the BYECS is traditionally set as constant or spatially varying based

on personal experiences and has not been systematically estimated

using the data assimilation method. Therefore, the applicability of

estimating the Manning’s n coefficient in the BYECS with the adjoint

data assimilation are not clear at present. In order to investigate the

feasibility and effectiveness of adjoint data assimilation in estimating

Manning’s n coefficient in the BYECS, twin experiments of

assimilating synthetic satellite observations and practical experiments

of assimilating real satellite observations are conducted in this study.

Remaining sections of this paper is organized as follows: Section 2

introduces models, observations and procedure of estimating the

Manning’s n coefficient; Section 3 describes the twin experiments to

investigate the feasibility and effectiveness of estimating the Manning’s

n coefficient; Section 4 illustrates the practical experiments to

synchronously simulate the four principal tidal constituents in the

BYECS by estimating the Manning’s n coefficient; Section 5 gives

discussions; Section 6 summarizes the key finds with conclusion.

2 Models and observations

2.1 2D multi-constituent tidal model

The governing equations of the 2D multi-constituent tidal

model are as follows (Wang et al., 2021b):

∂ z
∂ t

+
1
a
∂½(h + z )u�

∂ l
+
1
a
∂½(h + z )v cos f�

∂ f
= 0 (1)
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∂ u
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+
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where z is the sea surface elevation above the undisturbed sea level; t

is time; l and f are longitude and latitude, respectively; R is the radius

of the earth; a = R cos f; h is the undisturbed water depth; u and v are
the velocity components in the east and north, respectively; f is the

Coriolis parameter; g is the acceleration due to gravity; k is the BFC; A

is the horizontal eddy viscosity coefficient; D is the Laplace operator;

D(u, v) = a−1½a−1 ∂l ( ∂l (u, v)) + R−1 ∂f ( cos f ∂f (u, v))�; and z is

the adjusted height of equilibrium tide.

The BFC k is calculated using the Manning’s n formulation, as

follows:

k =
g
C2 =

g

(h
1=6

n= )2
=

gn2

h1=3
(4)

where C is the Chezy friction coefficient and n is the Manning’s

n coefficient.

The initial condition is that both the sea surface elevation z and
the velocity (u and v) are zero in the computational domain. At the

closed land boundaries, the normal velocity is zero. At the open sea

boundaries, the sea surface elevation z is caused by the principal

tidal constituents and calculated as follows:

z (t) = o
M

m=1
FmAm cos (wmt + Vm + Um − Gm) (5)

where A and G are the amplitude and phase lag (UTC, the same

below), respectively; F is the nodal factor; V is the initial phase angle of

the equilibrium tide; U is the nodal angle; w is the angular speed of the

tidal constituent;m is themth tidal constituent; andM is the number of

the principal tidal constituents and can be specified according to the

requirement. The specific number of the principal tidal constituents

used in this study will be given when the model settings are described

below. The harmonic constants (amplitude and phase lag) of the

principal tidal constituents at the open sea boundaries are obtained

from Oregon State University Tidal Inversion Software (Egbert and

Erofeeva, 2002). The numerical schemes used for solving this 2Dmulti-

constituent tidal model are the same as those in Lu and Zhang (2006).
2.2 Adjoint model

To evaluate the simulated errors, a cost function is defined

based on the adjoint method and calculated as follows (Lu and

Zhang, 2006; Zhang and Wang, 2014):

J =
1
2
Kz

Z
S
(z − ẑ )

2

ds (6)

where ẑ is the assimilated observations of sea surface elevation; z is

the corresponding simulated sea surface elevation at the spatial-

temporal location of the observations; S is the set of the

observational spatial-temporal locations; Kz is the weighting matrix

and theoretically should be the inverse of the observation error

covariance matrix (Yu and O’Brien, 1992). Assuming that the data

errors are uncorrelated and equally weighted, the elements in Kz are 1

where observations are available and are 0 otherwise (Wang

et al., 2021b).
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The Lagrangian function is defined as (Thacker and Long, 1988):

L = J +
Z
S

t � ½left side of Eq : (1)  −  right side of Eq : (1)�
+m � ½left side of Eq : (2)  −  right side of Eq : (2)�
+n � ½left side of Eq : (3)  −  right side of Eq : (3)�

8>><
>>:

9>>=
>>;
ds (7)

where t , m and n are the adjoint variables of z, u and v, respectively.

In order to minimize the cost function using the Lagrange

multiplier method (Thacker and Long, 1988), i.e., to generate the

simulated results closest to the observations, the first-order derivate

of the Lagrangian function with respect to the variables and

parameters should be zero:

∂ L
∂ z

= 0;  
∂ L
∂ u

= 0;  
∂ L
∂ v

= 0 (8)

∂ L
∂ t

= 0;  
∂ L
∂ m

= 0;  
∂ L
∂ n

= 0 (9)

∂ L
∂ n

= 0 (10)

From Eq. (8), the adjoint model can be obtained. In the adjoint

model, the adjoint variables t , m and n are calculated backwards

over time, as shown in Lu and Zhang (2006).
2.3 Procedure of estimating the Manning’s
n coefficient with the adjoint data
assimilation

Based on the derived gradient of the cost function with respect

to BFC in Wang et al. (2021b) and the gradient of BFC with respect

to the Manning’s n coefficient, the gradient of the cost function with

respect to the Manning’s n coefficient can be obtained from Eq.

(10), as follows:

∂ J
∂ n

=
∂ J
∂ k

� ∂ k
∂ n

= −
2gn

h1=3
ð mu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p

h + z
+
nv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p

h + z
Þ (11)

When the gradient of the cost function with respect to the

Manning’s n coefficient is determined, the Manning’s n coefficient

can be estimated using the steepest descent method (Zhang and Lu,

2010; Wang et al., 2018) that is as efficient as the other widely used

optimization algorithm (Zou et al., 1993b; Alekseev et al., 2009; Du

et al., 2021), as follows:

p!l+1
= p!l

− g q!l (12)

where g is the step size; l is the lth iteration step of the parameter

estimation; p! is the vector of the Manning’s n coefficient arranged

in a sequence; q! is the corresponding gradient vector of the cost

function with respect to p!. When the Manning’s n coefficient is

assumed to be constant, p! and q! are degenerated to constants.

When the Manning’s n coefficient is assumed to be spatially-

temporally varying, q! will be normalized by the maximum value

of the gradient vector at the current iteration step.
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The procedure of estimating the Manning’s n coefficient is

similar to that for estimating BFC using the adjoint data

assimilation in Wang et al. (2021b), as follows:

Step 1. Initialize the Manning’s n coefficient and other model

settings, including the other model parameters and the open sea

boundary conditions.

Step 2. Run the 2D multi-constituent tidal model (Eq. (1) to Eq.

(5)) with current Manning’s n coefficient.

Step 3. Calculate the cost function using Eq. (6) and the error

statistics between the observations and the corresponding simulated

results, including the mean absolute errors (MAEs) of amplitude

and phase lag, the vectorial error for every tidal constituent and the

mean vectoral error. The mean vectorial error is calculated as

follows (Fang et al., 2004; Wang et al., 2021b):

MVE =
1

NM o
N

n=1
o
M

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Am,n cosGm,n − Am,n cosGm,n)

2 + (Am,n sinGm,n − Am,n sinGm,n)
2

q

(13)

where MVE is the mean vectorial error; A and G are the observed

amplitudes and phase lags, respectively; A and G are the simulated

amplitudes and phase lags, respectively; and N and M are the

number of observations and tidal constituents, respectively. When

the vectoral error for one tidal constituent is calculated, M is equal

to 1.

Step 4. Run the adjoint model, which is driven by the difference

between the observations and the corresponding simulated results.

Step 5. Based on the calculated model variables (z, u and v) and

adjoint variables (t , m and n), calculate the gradient of the cost

function with respect to the Manning’s n coefficient using Eq. (11)

and then adjust the Manning’s n coefficient using Eq. (12).

Step 6. Judge if the difference of the normalized cost functions

between the last two steps is less than 5.0 × 10-5, with a maximum

iteration step of 100. If satisfied, the estimated Manning’s n

coefficient and the simulated results are obtained. If not, return to

Step 2.
2.4 Observations

Similar to Wang et al. (2021b), the observed amplitudes and

phase lags of the principal tidal constituents M2, S2, K1 and O1,

retrieved from the TOPEX/Poseidon (T/P) satellite altimeter data in

the BYECS, are taken as ‘assimilating observations’ (AOs), which

are assimilated into the 2D multi-constituent tidal model using the

adjoint data assimilation. The spatial locations of the used T/P

satellite tracks in the BYECS are shown in Figure 1. The amplitudes

and phase lags of the principal tidal constituents M2, S2, K1 and O1

observed at the coastal tidal gauge stations are considered more

accurate for analysing the ocean tide (Fang et al., 2004), so they are

not assimilated and instead they are taken as ‘checking

observations’ (COs) to independently evaluate the results of the

adjoint data assimilation. The spatial locations of the tidal gauge

stations in the BYECS and their serial number in this study are

shown in Figure 1.
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2.5 Model settings

The simulated area in this study was the BYECS (Figure 1), with

a horizontal resolution of 10′×10′ and the time step of 80 s. The

horizontal eddy viscosity coefficient A was set as a constant of 5000

m2/s (Wang et al., 2021b). Following Kang et al. (1998) and Wang

et al. (2014), the default value of the Manning’s n coefficient was set

to 0.023 s/m1/3 (the unit was hereafter omitted by convention). Four

principal tidal constituents M2, S2, K1 and O1 in the BYECS were

simulated. Following Wang et al. (2021b), the 2D multi-constituent

tidal model was run for 30 d from 1 January 2010 and the initial 15

d was spun up. The simulated results in the final 15 d were analysed

to separate the simulated four principal tidal constituents (Cao

et al., 2015). The adjoint model was run for 15 d backward in time

from 31 January 2010 with the same horizontal resolution and

time step.
3 Twin experiments

3.1 Experimental design

To test the effectiveness of the adjoint data assimilation in

estimating the Manning’s n coefficient, several twin experiments

were designed. In the twin experiments, the synthetic ‘observations’

are the simulated results at the spatial and temporal locations of the

actual observations by running the numerical model with the

prescribed ‘real’ model parameters. In this study, the ‘real’

Manning’s n coefficient was assumed to be 0.023 in the twin

experiments. The 2D multi-constituent tidal model was run to

simulate the four principal tidal constituents (M2, S2, K1 and O1)

with the ‘real’ Manning’s n coefficient and the other default model
Frontiers in Marine Science 05
settings as shown in Section 2.5. The simulated sea surface elevation

at the spatial locations of the T/P satellite tracks (tidal gauge

stations) were analysed. The obtained amplitudes and phase lags

of the four principal tidal constituents M2, S2, K1 and O1 at the

spatial locations of the T/P satellite tracks (tidal gauge stations) were

taken as synthetic AOs (COs) in the following twin experiments. In

all the twin experiments, the Manning’s n coefficient was assumed

to be constant. In twin experiment TE11, the constant Manning’s n

coefficient was estimated with the initial guess value of 0.0115,

which was half of the prescribed ‘real’ Manning’s n coefficient, by

assimilating the synthetic AOs. Given the measurement errors

associated with observations, the synthetic AOs were

contaminated by adding 10%-30% artificial random errors with

uniform distribution in twin experiment TE12. In addition, the

initial guess value of Manning’s n coefficient was 0.0115 in TE12. In

twin experiment TE13 and TE14, model settings were mostly the

same as those in TE12 except that the artificial random errors were

set as 40%-60% and 70%-90%, respectively. As the artificial errors

were randomly added into the synthetic AOs, 10 scenarios with

different random seeds were performed in TE12-TE14 and the

averaged results were taken as the final results of the corresponding

twin experiment. To test the effect of different initial guess value, the

constant Manning’s n coefficient was estimated in twin experiment

TE21-TE24 with the initial guess value of 0.0345 that was 1.5 times

of the prescribed ‘real’ Manning’s n coefficient. 10 scenarios were

also performed in TE22-TE24 by assimilating the same synthetic

AOs in the 10 scenarios in TE12-TE14, respectively. The other

model settings of all the twin experiments were the same as those

described in Section 2.3 and Section 2.5, and some detailed model

settings of the twin experiments are listed in Table 1. The vectorial

errors and mean vectorial errors between the synthetic AOs (COs)

and the simulated harmonic constants in the twin experiments,

calculated using Eq. (13), were used to evaluate the effect of

data assimilation.
3.2 Results

As listed in Table 2, the vectorial errors of tidal constituents M2,

S2, K1 and O1 between the synthetic AOs and the corresponding

simulated results in all the twin experiments are significantly

reduced. The mean vectorial error for AOs before data

assimilation is 7.16 cm in TE11-TE14. After data assimilation, the

mean vectorial error for AOs is decreased to 0.37 cm in TE11, 0.43

cm in TE12, 1.99 cm in TE13 and 2.92 cm in TE14 (Table 2). The

mean vectorial error for AOs is decreased from 5.18 cm before data

assimilation to 0.42 cm in TE21, 0.45 cm in TE22, 1.37 cm in TE23

and 2.27 cm in TE24 (Table 2). The results show that the synthetic

AOs in all the twin experiments are fully assimilated. Meanwhile,

the L1 norm of gradients of cost function with respect to the

Manning’s n coefficient in all the scenarios in TE11-TE14

(Figure 2) and TE21-TE24 (Figure 3) are largely reduced and

tend to be stable, indicating that the Manning’s n coefficients in

all the twin experiments are adequately estimated.

The effect of the adjoint data assimilation in improving the

simulation accuracy should be evaluated by the independent
FIGURE 1

Bathymetric map of the BYECS (colors), and the positions of T/P
satellite tracks (red points) and tidal gauge stations (black circles).
The number in the black circles is the serial number of the tidal
gauge stations in this study.
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observations. As shown in Figure 2, the mean vectorial errors of the

four principal tidal constituents between the synthetic COs and the

corresponding simulated results in TE11-TE14 are gradually

reduced and tend to be stable within 15 iteration steps. In

addition, all the vectorial errors of M2, S2, K1 and O1 between the

synthetic COs and the corresponding simulated results are largely

decreased in TE11-TE14 (Table 3). The mean vectorial error for

COs is reduced to 0.59 cm in TE11, 0.68 cm in TE12, 3.08 cm in

TE13 and 4.55 cm in TE14 from an initial value of 10.97 cm

(Table 3), indicating the model performance is improved with a

reduction of 94.62%, 93.80%, 71.92% and 58.52% for the data misfit
Frontiers in Marine Science 06
between the simulated results and independent observations in

TE11, TE12, TE13 and TE14, respectively. As shown in Figures 3A,

C, the mean vectorial errors for COs in TE21 and TE22 are

gradually reduced and reach the minimum value within 35

iteration steps. Although the mean vectorial errors for COs in

TE23 and TE24 are firstly reduced and then increased with the

increase of iteration steps, the final results are still less than those

before data assimilation, as shown in Figures 3E, G, respectively. As

listed in Table 3, the vectorial errors of M2, S2, K1 and O1 for COs

are significantly reduced in TE21-TE24, and the mean vectoral

errors for COs are reduced by 92.50% in TE21, 91.91% in TE22,
TABLE 1 Detailed model settings of the numerical experiments.

No. Observations Observational error
Manning’ n coefficient

Distribution Initial guess value

TE11 Synthetic 0 Constant 0.023×0.5

TE12 Synthetic 10%-30% Constant 0.023×0.5

TE13 Synthetic 40%-60% Constant 0.023×0.5

TE14 Synthetic 70%-90% Constant 0.023×0.5

TE21 Synthetic 0 Constant 0.023×1.5

TE22 Synthetic 10%-30% Constant 0.023×1.5

TE23 Synthetic 40%-60% Constant 0.023×1.5

TE24 Synthetic 70%-90% Constant 0.023×1.5

PE11 Actual / Constant 0.023

PE12 Actual / Constant 0.023×0.5

PE13 Actual / Constant 0.023×1.5

PE21 Actual / Spatial-temporal 0.023
TABLE 2 Vectorial errors and mean vectorial error of the four principal tidal constituents between the AOs and the corresponding simulated results in
the numerical experiments.

No.

Vectorial error of M2

(cm)
Vectorial error of S2

(cm)
Vectorial error of K1

(cm)
Vectorial error of O1

(cm)
Mean vectorial error

(cm)

Before After Before After Before After Before After Before After

TE11 15.83 0.33 6.98 0.50 3.15 0.33 2.68 0.32 7.16 0.37

TE12 15.83 0.50 6.98 0.54 3.15 0.34 2.68 0.33 7.16 0.43

TE13 15.83 4.21 6.98 2.11 3.15 0.85 2.68 0.79 7.16 1.99

TE14 15.83 6.30 6.98 2.99 3.15 1.27 2.68 1.12 7.16 2.92

TE21 11.64 0.66 5.06 0.60 2.30 0.21 1.71 0.22 5.18 0.42

TE22 11.64 0.74 5.06 0.62 2.30 0.23 1.71 0.23 5.18 0.45

TE23 11.64 3.19 5.06 1.14 2.30 0.70 1.71 0.43 5.18 1.37

TE24 11.64 5.23 5.06 1.98 2.30 1.13 1.71 0.74 5.18 2.27

PE11 21.54 21.09 8.22 8.04 3.81 4.05 4.78 4.96 9.59 9.53

PE12 29.12 21.27 11.92 8.31 4.11 3.92 4.57 4.98 12.43 9.62

PE13 21.45 20.87 8.30 7.78 5.16 4.17 5.82 5.06 10.18 9.47

PE21 21.54 7.07 8.22 2.62 3.81 2.39 4.78 2.52 9.59 3.65
fr
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73.27% in TE23 and 56.27% in TE24, respectively. The results

evaluated by the independent COs show that the model

performance of the 2D multi-constituent tidal model is

significantly improved by assimilating the synthetic AOs,

regardless of the initial guess value of the Manning’s n coefficient

being less or larger than the prescribed ‘real’ value.

When the percentage of the artificial random observational

errors becomes larger, the MAEs between the simulated harmonic

constants (amplitudes and phase lags) and the synthetic COs for the

four principal tidal constituents M2, S2, K1 and O1 are increased

from TE11 (TE21) to TE14 (TE24), especially for TE13 (TE23) and
Frontiers in Marine Science 07
TE14 (TE24), and the standard deviations of the 10 scenarios are

also increased, as shown in Figures 4, 5). Meanwhile, the difference

between the estimated and prescribed Manning’s n coefficient is

increased from TE11 (TE21) to TE14 (TE24), and the dispersion of

the finally optimized Manning’s n coefficient is also increased with

the increased percentage of the artificial random observational

errors, as shown in Figure 6. The vectorial errors of the four

principal tidal constituents and the mean vectorial error in TE12

(TE22) are slightly larger than those in TE11 (TE21). In addition,

the final estimated Manning’s n coefficient in TE11 (TE21) and

TE12 (TE22) are 0.0234 (0.0231) and 0.0233 (0.0232) as shown in
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FIGURE 2

Variations of (A) the mean vectorial error of the four tidal constituents M2, S2, K1 and O1 for COs and (B) the L1 norm of gradients of cost function
with respect to the Manning’s n coefficient in TE11. (C, D) same as (A, B) but for TE12. (E, F) same as (A, B) but for TE13. (G, H) same as (A, B) but for
TE14. The colored lines in (C–G) and (D–H) indicate the results in the 10 scenarios of the corresponding experiment.
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FIGURE 3

Same as Figure 2, but for (A, B) TE21, (C, D) TE22, (E, F) TE23 and (G, H) TE24.
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Figures 6A, B, E, F), respectively. The results indicate that the 10%-

30% random observational errors have little influence on the adjoint

data assimilation and the estimation of the Manning’s n coefficient.

When the percentage of the artificial random observational errors

increases to 40%-60% and 70%-90%, however, those vectorial errors

are significantly increased with a nearly linear trend (Figures 4, 5)

and the estimated Manning’s n coefficients become obviously

deviate from the prescribed value (Figure 6). When the
Frontiers in Marine Science 08
percentage of the artificial random observational error is 40%-

60%, the contaminated synthetic observations are nearly 0.5 times

or 1.5 times of the true values in the average sense. As a result, the

mean vectorial error for COs after data assimilation in TE13 (TE23)

is about 5.22 (3.56) times that in TE11 (TE21) and the estimated

Manning’s n coefficient is only 0.0199 (0.0199) in TE13 (TE23).

When the percentage of the artificial random observational error is

70%-90%, the contaminated synthetic observations are much
TABLE 3 Vectorial errors and mean vectorial error of the four principal tidal constituents between the COs and the corresponding simulated results
in the numerical experiments.

No.

Vectorial error of M2

(cm)
Vectorial error of S2

(cm)
Vectorial error of K1

(cm)
Vectorial error of O1

(cm)
Mean vectorial error

(cm)

Before After Before After Before After Before After Before After

TE11 24.66 0.50 9.87 0.70 4.94 0.61 4.41 0.57 10.97 0.59

TE12 24.66 0.77 9.87 0.78 4.94 0.60 4.41 0.57 10.97 0.68

TE13 24.66 6.77 9.87 3.18 4.94 1.24 4.41 1.12 10.97 3.08

TE14 24.66 10.11 9.87 4.46 4.94 1.96 4.41 1.68 10.97 4.55

TE21 19.47 1.01 7.78 0.90 3.98 0.31 2.90 0.32 8.53 0.64

TE22 19.47 1.15 7.78 0.93 3.98 0.34 2.90 0.33 8.53 0.69

TE23 19.47 5.21 7.78 1.61 3.98 1.34 2.90 0.96 8.53 2.28

TE24 19.47 8.49 7.78 2.83 3.98 2.07 2.90 1.53 8.53 3.73

PE11 27.69 26.76 11.01 10.68 5.19 5.68 6.60 6.94 12.62 12.52

PE12 38.16 26.77 16.12 10.96 5.68 5.75 6.21 7.09 16.54 12.64

PE13 28.46 26.59 11.19 10.38 8.07 5.80 8.44 7.00 14.04 12.44

PE21 27.69 11.48 11.01 6.10 5.19 3.75 6.60 3.04 12.62 6.09
fr
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FIGURE 4

Variations of (A) MAEs of the M2 amplitude between the COs and the corresponding simulated results in TE11, TE12, TE13 and TE14. (B, C) same as
(A) but for MAEs of the M2 phase lag and vectorial error of M2, respectively. (D–F) same as (A–C) but for S2. (G–I) same as (A–C) but for K1. (J–L)
same as (A–C) but for O1. (M–O) same as (A–C) but for the averaged values of the above-mentioned four tidal constituents. Blue vertical bars
indicate the standard deviation of the 10 scenarios in the corresponding experiment.
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deviated from the true observations, hence the mean vectorial error

for COs is much larger and the estimated Manning’s n coefficient is

further deviated from the prescribed value. The above results

indicate that when the observational errors are within reasonable

range, the Manning’s n coefficient can be successfully estimated and

the model performance can be significantly improved by

assimilating AOs with the adjoint data assimilation. When the

observational errors are too large, although the results may not be
Frontiers in Marine Science 09
perfect, the model performance can still be improved and the

estimated Manning’s n coefficient can be much closer to the

prescribed value than those before data assimilation.

Regardless of the inclusion of artificial random errors associated

with synthetic AOs, the simulated four principal tidal constituents

M2, S2, K1 and O1 after the data assimilation are consistently much

closer to the COs than those before the data assimilation in all the

twin experiments, demonstrating that the adjoint data assimilation
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FIGURE 6

(A) Prescribed Manning’s n coefficient (red dashed line) and the estimated results (blue line) in TE11. (B) Prescribed Manning’s n coefficient (red
dashed line) and the estimated results in the 10 scenarios (colored lines) in TE12. (C, D) same as (B) but for TE13 and TE14, respectively. (E–H) same
as (A–D) but for TE21, TE22, TE23 and TE24, respectively.
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FIGURE 5

Variations of (A) MAEs of the M2 amplitude between the COs and the corresponding simulated results in TE21, TE22, TE23 and TE24. (B, C) same as
(A) but for MAEs of the M2 phase lag and vectorial error of M2, respectively. (D–F) same as (A–C) but for S2. (G–I) same as (A–C) but for K1. (J–L)
same as (A–C) but for O1. (M–O) same as (A–C) but for the averaged values of the above-mentioned four tidal constituents. Blue vertical bars
indicate the standard deviation of the 10 scenarios in the corresponding experiment.
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can effectively improve the model performance. In addition, the

estimated Manning’s n coefficient using the adjoint data

assimilation is very close to the prescribed value when the

observational errors are within reasonable range, no matter the

initial guess value of the Manning’s n coefficient is less or larger

than the prescribed value. Even if the observational errors are very

large, the estimated Manning’s n coefficient is much closer to the

prescribed value than the initial guess value. The results of the twin

experiments demonstrate that the adjoint data assimilation can

significantly improve simulation accuracy of the tide and is an

effective method to estimate the Manning’s n coefficient in multi-

constituent tidal models by assimilating reasonable observations.
4 Practical experiments

4.1 Experimental design

In the practical experiments, the actual AOs were assimilated to

estimate the Manning’s n coefficient using the adjoint data

assimilation. In PE11, the Manning’s n coefficient was assumed to

be constant and the initial guess value was set to 0.023 that was

generally used in the traditional numerical studies in the BYECS. In

PE12 and PE13, the initial guess value of the Manning’s n coefficient

was set to 0.5 and 1.5 times 0.023, respectively. The spatially varying

Manning’s n coefficient was widely used in previous studies (Mayo

et al., 2014; Demissie and Bacopoulos, 2017). Mohammadian et al.

(2022) found that the calibrated Manning’s n coefficient on the ebb

tide was nearly 60% of that on the flood tide in the Koksoak River

Estuary, showing that the Manning’s n coefficient would be also

temporally varying. Slivinski et al. (2017) found that the spatially

varying Manning’s n coefficients estimated by assimilating the

velocity observations in 2011 were no longer optimal in 2013,

indicating the spatial and temporal variation of the Manning’s n

coefficient. In order to further improve the model performance of

the 2D multi-constituent tidal model, the Manning’s n coefficient

was assumed to be spatially-temporally varying in PE21, in which
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the initial guess value of the Manning’s n coefficient was set to 0.023

that was used in PE11. The other model settings were the same as

those described in Section 2.3 and Section 2.5, and some details are

listed in Table 1.
4.2 Results

As shown in Figure 7, the normalized cost functions in all the

practical experiments are gradually reduced and tend to be stable. The

vectorial errors of M2 and S2 between the AOs and the corresponding

simulated results after the data assimilation in all the practical

experiments are less than those before data assimilation (Table 2).

As listed in Table 2, the mean vectorial errors for AOs are reduced

from 9.59 cm to 9.53 cm in PE11, from 12.43 cm to 9.62 cm in PE12,

from 10.18 cm to 9.47 cm in PE13, from 9.59 cm to 3.65 cm in PE21.

These considerable reductions indicate that the AOs are effectively

assimilated. When the Manning’s n coefficient is assumed to be

constant in PE11, the MAEs of M2 tidal amplitude and phase lag and

the vectorial error of M2 between the COs and the simulated results

are slightly reduced (Figures 8A–C), with similar pattern occurred to

S2 (Figures 8D–F). Although the MAEs of tidal amplitude and phase

lag and the vectorial errors of K1 and O1 between the COs and the

simulated results in PE11 are increased after data assimilation

(Figures 8G–L), the mean vectoral error for COs in PE11 is

reduced from 12.62 cm to 12.52 cm (Table 3), suggesting that the

model performance is slightly improved in PE11. The vectoral errors

of K1 and O1 between the COs and the corresponding simulated

results in PE12 are firstly decreased and then increased to be slightly

larger than that before data assimilation as shown in Figures 8I, L, so

as to achieve smaller errors overall considering that the amplitudes of

K1 and O1 are much less than those of M2 and S2 in the BYECS (Fang

et al., 2004). The mean vectoral error for COs in PE12 is still largely

reduced from 16.54 cm to 12.64 cm, which is close to 12.52 cm

obtained in PE11 (Table 3). In addition, the mean vectorial error for

COs after data assimilation in PE13 is 12.44 cm and also close to that

obtained in PE11. Similarly, the estimated constant Manning’s n
A B C D

FIGURE 7

Variations of (A) the normalized cost function, (B) the mean vectorial error of the four tidal constituents M2, S2, K1 and O1 between the AOs and the
simulated results, (C) the mean vectorial error of the four tidal constituents M2, S2, K1 and O1 between the COs and the simulated results, and (D) the
spatially and temporally averaged value of the estimated Manning’s n coefficient, in PE11 (blue line), PE12 (magenta line), PE13 (black line) and PE21
(red line).
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coefficient after data assimilation is 2.506×10-2 in PE11, 2.503×10-2 in

PE12, and 2.546×10-2 in PE13 (Figure 7D), which are close to each

other. Overall, the aforementioned results show that regardless the

initial guess value of the Manning’s n coefficient being too small or

too large, the model performance can be effectively improved by the

adjoint data assimilation. The Manning’s n coefficient can be

successfully estimated and the optimal value is approximately 0.025

in the BYECS, which is nearly close to the averaged value of the

globally optimized Manning’s n coefficients in this area in Blakely

et al. (2022).

Although the model performance is improved by the adjoint

data assimilation when the Manning’s n coefficient is assumed to be

constant in PE11, PE12 and PE13, the mean vectorial errors after

data assimilation with constant Manning’s n coefficient are much

larger than the mean vectorial error of 6.90 cm obtained after data

assimilation when the BFC is directly assumed to be spatially and

temporally varying in Wang et al. (2021b). The Manning’s n

coefficient has been confirmed to be spatially-temporally varying

(Slivinski et al., 2017), so the spatially-temporally varying

Manning’s n coefficient was estimated in PE21. As shown in

Figure 7, the normalized cost function and the mean vectorial

error for AOs in PE21 are significantly decreased and the values

after data assimilation are much less than those in PE11, PE12 and

PE13, indicating that the AOs are fully assimilated. As shown in

Figure 8, the MAEs of the amplitude and phase lag of the four

principal tidal constituents between the COs and the corresponding

simulated results after data assimilation in PE21 are much less than
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those before data assimilation in PE21 and those after data

assimilation in PE11, PE12 and PE13. In addition, the vectoral

error between the COs and the corresponding simulated results in

PE21 is reduced to 11.48 cm for M2, 6.10 cm for S2, 3.75 cm for K1

and 3.04 cm for O1 (Table 3), which are much less than those in

PE11, PE12 and PE13. The mean vectorial error of the four tidal

constituents between the COs and the corresponding simulated

results in PE21 is reduced to 6.09 cm from an initial value of 12.62

cm (Table 3), indicating that the model performance is improved

with a reduction of 51.74% for the difference between the

independent observations without assimilated and the simulated

results. The percentage of the reduction is nearly 65.3 times that in

PE11. Moreover, the mean vectorial error for COs after data

assimilation in PE21 is just 6.09 cm and less than the value of

6.90 cm in Wang et al. (2021b) in which the same four tidal

constituents were simulated by assimilating the same AOs in the

BYECS. As shown in Figure 9, the mean vectorial errors of the four

principal tidal constituents for COs in PE21 at No. 3 and No. 21

tidal gauge stations, located at the central western boundary of the

BYECS (Figure 1), are larger than those at other practical

experiments, possibly because of the low resolution of bathymetry

data or the low observation accuracy of T/P satellite altimeter data

in this area. In addition, the mean vectorial errors for COs in PE21

at the stations near the southern and eastern open boundary with

the serial number of 36, 42, 47, 48, 49, 52, 54, 55 and 62 (Figure 1)

are slightly larger than those at the other practical experiments. At

the other 55 tidal gauge stations other than those already
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FIGURE 8

Variations of (A) MAEs of the M2 amplitude between COs and the corresponding simulated results in PE11 (blue line), PE12 (magenta line), PE13
(black line) and PE21 (red line). (B, C) same as (A) but for MAEs of the M2 phase lag and vectorial error of M2, respectively. (D–F) same as (A–C) but
for S2. (G–I) same as (A–C) but for K1. (J–L) same as (A–C) but for O1. (M–O) same as (A–C) but for the averaged values of the above-mentioned
four tidal constituents.
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mentioned, the mean vectorial errors for COs in PE21 are

significantly less than those in PE11, PE12 and PE13, especially

for the stations with the serial number less than 47. Model

performance is obviously improved at most area in the BYECS by

estimating the spatially-temporally varying Manning’s n coefficient

with the adjoint data assimilation.

Besides a few special observational stations, the model after data

assimilation in PE21 captures almost all (no less than 97%) of both

the observed amplitude and phase lag of the four tidal constituents

in AOs and COs with a factor of 2 (Supplementary Figure 1). In

addition, the correlation coefficients of the observed and simulated

tidal harmonic constants are not less than 0.90, indicating that the

model is reasonably accurate even though only the observations

retrieved from the T/P satellite altimeter data are assimilated in the

BYECS. Furthermore, both the cotidal charts (Supplementary

Figure 2) and the tidal current ellipses (Supplementary Figure 3)

of the four principal tidal constituents M2, S2, K1 and O1 obtained in

PE21 show the same patterns as those in the previous studies (Fang,

1994; Guo and Yanagi, 1998; Fang et al., 2004; Wang et al., 2021b),

indicating that the simulated results after data assimilation are

adequate enough to show the tidal characteristics in the BYECS and

the Manning’s n coefficient is reasonably estimated with the

assumption of spatial and temporal variations.

Overall, the aforementioned results indicate that under both

scenarios of the constant and spatially-temporally varying

Manning’s n coefficient in the practical experiments, the model

performance can be improved by estimating the Manning’s n

coefficient with the adjoint data assimilation, as evaluated by the

difference between the independent observations of tidal harmonic

constants (amplitude and phase lag) and the corresponding

simulated results. When the Manning’s n coefficient is assumed to

be spatially-temporally varying, the model performance can be

significantly improved with a reduction of 51.74% for the
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difference between the independent observations without

assimilated and the simulated results, showing that the Manning’s

n coefficient in multi-constituent tidal models can be reasonably

estimated by assimilating satellite observations with the adjoint

data assimilation.
5 Discussions

5.1 Spatial distribution and temporal
variation of the estimated Manning’s n
coefficient

As indicated by Wang et al. (2018) and Wang et al. (2021b), the

spatially-temporally varying model parameters estimated by the

adjoint data assimilation may be affected by the model settings and

should be discussed by the sensitivity experiments using the local

forward sensitivity analysis (Zou et al., 1993a; Cacuci, 2003).

Therefore, several sensitivity experiments were carried out to test

the robustness of the spatially-temporally varying Manning’s n

coefficient estimated in PE21. In the sensitivity experiment SE1

(SE2), the initial guess value of the Manning’s n coefficient was set

to 0.5 (1.5) times 0.023 that used in PE21 to test the influence of the

initial guess value in the adjoint data assimilation. In the sensitivity

experiment SE3 (SE4), the step size used in the estimation of the

Manning’s n coefficient in Eq. (12) was set to 0.5 (1.5) times that

used in PE21 to test the influence of the adjustment strategy. Only

M2 and K1 were simulated in the sensitivity experiment SE5 and

only M2 was simulated in the sensitivity experiment SE6, to test the

influence of the number of the simulated tidal constituents. In the

sensitivity experiment SE7, the starting time of the numerical

experiment was set to 16 January 2010 to test the influence of the
FIGURE 9

The mean vectorial error of the four tidal constituents between the COs and the corresponding simulated results in PE11 (blue asterisk), PE12
(magenta triangle), PE13 (black circle) and PE21 (red square) at all the tidal gauge stations. The gray dashed line shows that the mean vectorial error
in PE21 at this tidal gauge station is larger than that in either of the other three experiments.
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simulated period. The typical model settings of the sensitivity

experiments are listed in Table 4, and the other model settings

were the same as those in PE21.

As listed in Table 4, the mean vectorial errors for COs in all the

sensitivity experiments are substantially decreased, showing that the

AOs are fully assimilated and the model performance is effectively

improved. To evaluate the influence of the model settings on the

estimated results, the spatially-temporally varying Manning’s n

coefficient estimated by the adjoint data assimilation in PE21 and

all the sensitivity experiments are temporally (spatially) averaged to

get the spatial distribution (temporal variation) of the Manning’s n

coefficient. The correlation coefficients between the temporal

variation of the estimated Manning’s n coefficient in PE21 and

those in the sensitivity experiments are not less than 0.74 (Table 4),

suggesting a significant positive correlation at the 0.1 percent

confidence level. Except for SE5 and SE6, the correlation

coefficients were not less than 0.89. The correlation coefficients

for the spatial distributions were not less than 0.78 in all the

sensitivity experiments, indicating a significant positive

correlation at the 0.1 percent confidence level. The results show

that the trend of the spatially-temporally varying Manning’s n

coefficient estimated in PE21 is not affected by the model settings

and is relatively robust.

The simulated sea surface elevation and the estimated

Manning’s n coefficient are spatially averaged to obtain the

temporal variation. As shown in Figures 10A, B, the temporally

varying sea surface elevation simulated in PE21 varies semi-

diurnally and diurnally, while the variation period of the

temporally varying Manning’s n coefficient estimated in PE21 is

quarter-diurnal and one-third diurnal. The correlation coefficient

between the temporally varying sea surface elevation andManning’s

n coefficient in PE21 is only -0.02. The temporally varying

Manning’s n coefficient and current speed in PE21 have the

similar variation period (Figures 10C, D) and the correlation

coefficient is -0.43, indicating that the temporally varying

Manning’s n coefficient is related to the current speed. When

only M2 and K1 are simulated in SE5, the temporal variations of

the Manning’s n coefficient and current speed become slightly
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simple (Figures 10E, F), and the correlation coefficient is -0.46.

When only M2 is simulated in SE6, both the estimated Manning’s n

coefficient and current speed vary quarter-diurnally (Figures 10G,

H), and the correlation coefficient is -0.56. The above results show

that the temporal variation of the spatially averaged Manning’s n

coefficient estimated by the adjoint data assimilation is negatively

correlated with the current speed on the whole.

The estimated Manning’s n coefficient in PE21 is temporally

averaged to obtain the spatial distribution (Figure 11). The spatial

distribution of the Manning’s n coefficient is larger than 0.04 near

the coastline of the BYECS, as shown in Figure 11A. The temporally

averaged Manning’s n coefficient near the coastline of the Bohai Sea

is much larger than that in the central area of the Bohai Sea, as

shown in Figure 11B, which is consistent with that the estimation of

the Manning’s n coefficient should be focused on the shallow areas

(Mayo et al., 2014). Manning’s n formulation (Eq. (4)) suggests that

the Manning’s n coefficient will have less effect on the simulated

results for the large water depth. As a result, the temporally

averaged Manning’s n coefficient is close to the initial guess value

of 0.023 in most areas with water depth larger than 30 m. The

temporally averaged Manning’s n coefficient is less than 0.002 near

the Yangtze Estuary (Figure 11C), and the area is close to the mud

area off the Yangtze Estuary where the sea bed is composed of fine

sediment and the bed surface is smooth (Bian et al., 2013). In the

Hangzhou Bay with rapid tidal current (Supplementary Figure 3),

the temporally averaged Manning’s n coefficient is large, because

the high tidal current tends to resuspend the fine sediments leaving

a rougher surface or create ripples and dunes on the seabed (Blakely

et al., 2022). In the middle of the BYECS with the centre of 126°E

and 30°N, the estimated Manning’s n coefficient is larger than 0.03,

which may be related to the spatial distribution of sand there as

shown in Dutkiewicz et al. (2015). In some areas, the estimated

Manning’s n coefficient may be not exactly correlated with the

physical characteristics, which may be related to the low resolution

of bathymetry data or the low observation accuracy of T/P satellite

altimeter data in some area. Overall, the estimated Manning’s n

coefficient in PE21 shows significant spatial variation in the shallow

water areas.
TABLE 4 Detailed model settings and results of the sensitivity experiments.

No. Tidal constituents Starting time Initial guess value a Step size b

Mean vectorial error for COs
(cm)

Correlation
coefficient

Before After Temporal Spatial

SE1 M2, S2, K1, O1 1 Jan 2010 0.5 1 16.54 6.89 0.89 0.78

SE2 M2, S2, K1, O1 1 Jan 2010 1.5 1 14.04 6.02 0.93 0.84

SE3 M2, S2, K1, O1 1 Jan 2010 1 0.5 12.62 6.19 1.00 0.99

SE4 M2, S2, K1, O1 1 Jan 2010 1 1.5 12.62 6.07 1.00 0.99

SE5 M2, K1 1 Jan 2010 1 1 16.78 7.35 0.79 0.97

SE6 M2 1 Jan 2010 1 1 28.74 11.06 0.74 0.95

SE7 M2, S2, K1, O1 16 Jan 2010 1 1 12.50 6.03 0.98 1.00
fron
aNormalized by the initial guess value used in PE21.
bNormalized by the step size used in PE21.
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5.2 Settings of the Manning’s n coefficient
in tidal models

As discussed by Wang et al. (2021b), the Manning’s n

formulation has been widely used in tidal models and the

Manning’s n coefficient should be accurately determined. As

shown in the practical experiments PE12 and PE13, when the

Manning’s n coefficient is set to unreasonable constant value, the

errors between the observations and the simulated results are large

(Table 3). However, when the adjoint data assimilated is used to

estimate the constant Manning’s n coefficient by assimilating the

publicly available satellite observations, the errors can be

considerably reduced (Figure 7C) and the estimated Manning’s n

coefficient will tend to be the similar optimal value (Figure 7D). For

the 2D multi-constituent tidal model used in this study, the optimal

value of the constant Manning’s n coefficient is approximately 0.025

in the BYECS, which is suggested to the other tidal models using the

constant Manning’s n coefficient in the BYECS. Although the

optimal value of 0.025 is nearly close to the averaged value of the

globally optimized Manning’s n coefficients in this area in Blakely

et al. (2022), it is greater than the locally re-optimized Manning’s n

coefficients in this area in Blakely et al. (2022). Therefore, when the

internal tide dissipation is considered in the tidal model, it is

necessary to simultaneously estimate the Manning’s n coefficient

and the internal tide dissipation coefficient using the adjoint data

assimilation, which will be the future work.

As shown by the twin experiments, the observational errors are

important to estimate accuracy of the Manning’s n coefficient using

the adjoint data assimilation. When the mean percentage of the

observational errors reaches 50%, the estimated Manning’s n

coefficients in both TE13 and TE23 are far deviated from the
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prescribed ‘real’ value. With the development of satellite remote

sensing observational technology, the accuracy of the satellite

observations is markedly improved. The accuracy of the observed

amplitudes and phase lags by the T/P satellite altimeter data are

about 2-4 cm and 5° in the BYECS (Fang et al., 2004), respectively,

indicating that the publicly available satellite observations of the sea

level are adequate enough for estimating the Manning’s n coefficient

in the coastal tidal models. However, when the Manning’s n

coefficient is assumed to be constant in PE11-PE13, only slight

improvement exists for 2D multi-constituent tidal model in the

BYECS, so it is necessary to set the spatially or temporally varying

Manning’s n coefficient. Slivinski et al. (2017) found that the

spatially varying Manning’s n coefficients estimated in 2011 were

no longer optimal in 2013, indicating the spatial-temporal variation

of the Manning’s n coefficient due to the changes of the geometry or

bottom roughness (Sraj et al., 2014; Slivinski et al., 2017). When the

Manning’s n coefficient is assumed to be spatially-temporally

varying and estimated by the adjoint data assimilation in PE21,

the mean vectorial error of the four tidal constituents is significantly

decreased and the estimated spatially-temporally varying

Manning’s n coefficient is robust. But it is difficult to propose a

universal scheme to set the spatially-temporally varying Manning’s

n coefficient in the tidal model at this stage. As well known, the

Manning’s n coefficient is associated with the subaqueous land

classifications (Bunya et al., 2010) and the theoretical Manning’s n

coefficient can be determined according to the median grain size of

the sediment of the seafloor (Warder et al., 2022). Therefore, it

would be an important future research to establish a universal

empirical formula of the Manning’s n coefficient considering the

relationship between the Manning’s n coefficient and sediment type

at seafloor. In addition, the unknown coefficients in this formula are
A

C
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G

B

D

F

H

FIGURE 10

(A) Time series of the spatially averaged Manning’s n coefficient (red line) and sea surface elevation (blue line) in PE21, (B) power spectral densities of
the spatially averaged Manning’s n coefficient (red line) and sea surface elevation (blue line) in PE21. (C, D) Same as (A, B) but for the spatially
averaged Manning’s n coefficient (red line) and current speed (blue line) in PE21. (E, F) Same as (C, D) but for SE5. (G, H) Same as (C, D) but for SE6.
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further estimated by assimilating the observations with the adjoint

data assimilation.
6 Conclusions

Tide is a ubiquitous oceanographic phenomenon in the global

ocean (Wei et al., 2022) and is essential for the design and plan of

coastal ocean engineering (Lee and Jeng, 2002; Chen et al., 2007;

Wang et al., 2021a). The bottom friction is critical for the

dissipation of the global tidal energy and is a quadratic function

of BFC and velocity (Taylor, 1920). BFC is traditionally determined

using the Manning’s n formulation in tidal models. So, the

Manning’s n coefficient in the Manning’s n formulation is vital

for the accurate simulation and prediction of the tide in shallow

coastal waters, whereas it cannot be directly measured and contains

large amounts of uncertainties. Based on a two-dimensional multi-

constituent tidal model with the adjoint data assimilation developed

in Wang et al. (2021b), the Manning’s n coefficient is estimated by

assimilating satellite observations using the adjoint data

assimilation in the BYECS with the simulation of four principal

tidal constituents M2, S2, K1 and O1. The observed amplitudes and

phase lags of the four principal tidal constituents retrieved from the

satellite altimeter data are taken as AOs, while those at the tidal

gauge stations are taken as COs to evaluate the simulation results.

In the twin experiments, the synthetic observations at the spatial

locations of the satellite tracks are assimilated to estimate the

constant Manning’s n coefficient. Regardless the inclusion of the

artificial random observational errors associated with synthetic

AOs, the simulated four principal tidal constituents M2, S2, K1

and O1 after the data assimilation are consistently much closer to

the COs than those before the data assimilation in all the twin
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experiments (Table 3 and Figures 2, 3). In addition, the estimated

Manning’s n coefficient is close to the prescribed value, especially

when the percentage of the observational errors are not too large, no

matter the initial guess value of the Manning’s n coefficient in the

adjoint data assimilation is less or larger than the prescribed value

(Figure 6). The results of the twin experiments demonstrate that the

adjoint data assimilation can significantly improve simulation

accuracy of the tide and is an effective method to estimate the

Manning’s n coefficient.

In the practical experiments, under both scenarios of the

constant and spatially-temporally varying Manning’s n coefficient,

the model performance can be effectively improved by assimilating

the satellite observations with the adjoint data assimilation. When

the Manning’s n coefficient is assumed to be spatially-temporally

varying, the model performance can be significantly improved with

a reduction of 51.74% for the difference between COs and the

simulated results (Table 3), showing that the Manning’s n

coefficient in multi-constituent tidal models can be reasonably

estimated by assimilating satellite observations with the adjoint

data assimilation. In addition, the estimated spatial-temporal

variation characteristics is robust and not affected by the model

settings (Table 4). The spatially-temporally varying Manning’s n

coefficient is negatively correlated with the current speed and show

significant spatial variation on shallow areas.

This study demonstrate that the Manning’s n coefficient can be

reasonably estimated by the adjoint data assimilation, which allows

significant improvement in accurate simulation of the ocean tide. In

the future, it is essential to propose a universal empirical formula of

the Manning’s n coefficient considering the relationship between

the Manning’s n coefficient and sediment type at seafloor. In

addition, the unknown coefficients in this empirical formula

should be estimated by assimilating the observations with the
A B

C

FIGURE 11

Spatial distribution of the temporally averaged Manning’s n coefficient in (A) the BYECS, (B) the Bohai Sea and (C) the Yangtze Estuary and the
Hangzhou Bay, in PE21. The magenta line shows the bathymetric contours at 30 m.
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adjoint data assimilation, to further provide suggestions for setting

the spatially-temporally varying Manning’s n coefficient in tidal

models. Besides, it is also the future work to consider both the

bottom boundary layer dissipation and the internal tide dissipation

in the tidal model, and simultaneously estimate the Manning’s n

coefficient and the internal tide dissipation coefficient using the

adjoint data assimilation.
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