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Classification of inbound and
outbound ships using
convolutional neural networks
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Xiaojing Zhao1, Wenhua Song2 and Xiaolei Li1

1College of Marine Technology, Ocean University of China, Qingdao, China, 2College of Physics and
Optoelectronic Engineering, Ocean University of China, Qingdao, China
In general, a single scalar hydrophone cannot determine the orientation of an

underwater acoustic target. However, through a study of sea trial experimental

data, the authors found that the sound field interference structures of inbound

and outbound ships differ owing to changes in the topography of the shallow

continental shelf. Based on this difference, four different convolutional neural

networks (CNNs), AlexNet, visual geometry group, residual network (ResNet),

and dense convolutional network (DenseNet), are trained to classify inbound and

outbound ships using only a single scalar hydrophone. Two datasets, a simulation

and a sea trial, are used in the CNNs. Each dataset is divided into a training set and

a test set according to the proportion of 40% to 60%. The simulation dataset is

generated using underwater acoustic propagation software, with surface ships of

different parameters (tonnage, speed, draft) modeled as various acoustic

sources. The experimental dataset is obtained using submersible buoys placed

near Qingdao Port, including 321 target ships. The ships in the dataset are labeled

inbound or outbound using ship automatic identification system data. The results

showed that the accuracy of the four CNNs based on the sea trial dataset in

judging vessels’ inbound and outbound situations is above 90%, among which

the accuracy of DenseNet is as high as 99.2%. This study also explains the

physical principle of classifying inbound and outbound ships by analyzing the

low-frequency analysis and recording diagram of the broadband noise radiated

by the ships. This method can monitor ships entering and leaving ports illegally

and with abnormal courses in specific sea areas.

KEYWORDS

waveguide invariant, direction estimation, convolutional neural networks, horizontal
slowly varying wedge waveguide, single hydrophone
1 Introduction

In target detection and recognition technologies, ocean targets are primarily classified

into surface and underwater targets. Synthetic aperture radar (SAR) is one of the main

methods used to identify and classify surface ships. Recently, many scholars have applied

convolutional neural networks (CNNs) to SAR ship classification. Hog–ShipCLSNet, a

novel deep-learning network with hog feature fusion for SAR ship classification, was
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proposed by Zhang et al. (2021). Xu et al. (2022) proposed a

lightweight deep-learning detector called lite-yolov5.

Underwater acoustic technology is one of the main methods of

locating underwater targets. Passive location technology for

underwater acoustic targets primarily locates the target by

processing the acoustic signal that radiates from the target, which

the hydrophone array receives. Because the system does not actively

emit an acoustic signal, it exhibits good concealment. In the early

stages, owing to the lack of sound field modeling theory,

conventional underwater target positioning technology mainly

used the time difference of arrival between each hydrophone

array element. The most representative method was the three-

sub-array positioning method (Carter, 1981). Positioning

according to the change in the direction of arrival with the

movement of the target, the main representative of which is

target motion analysis (TMA) (Nardone et al., 1984). With the

development of sound field modeling theory, some location

methods have been developed to consider and utilize waveguide

phenomena, among which the most typical methods are matched

field estimation and sound-field interference fringes.

The three-subarray positioning method assumes that acoustic

waves are cylindrical or spherical. This method estimates the

distance and azimuth of the target using the difference in the

wavefront’s curvature and the relative time delay of each element.

The calculated amount for the three-subarray positioning method

was small. However, when the target is far away, the positioning

error of the finite-aperture array is large because the wavefront’s

curvature changes slightly.

TMA methods include bearings-only and frequency-bearing

TMA (Jauffret and Bar-Shalom, 1990; Maranda and Fawcett, 1991).

Bearings-only TMA uses only target-bearing information but

requires observation platform maneuvering. The frequency-

bearing TMA does not require an observation platform to

maneuver; it uses frequency and azimuth information as

observations. The existing passive positioning method for the

TMA requires maneuvering observations or multi-observation

platforms, which require much computation and a complex

processing system.

The received signal waveform distortion caused by the

waveguide multipath dispersion characteristics was ignored by

both the three-subarray positioning and TMA methods. In a

shallow sea environment, where the boundary of the sea surface

and bottom affects the acoustic propagation, the performance is

seriously affected because the waveguide effect is not considered.

Matched field processing (MFP) is a generalized beamforming

method that uses the spatial complexities of acoustic fields in an

ocean waveguide to localize sources in range, depth, and azimuth or

to infer the parameters of the waveguide itself. It has experimentally

localized sources with accuracies exceeding the Rayleigh and

Fresnel limits for depth and a range of two orders of magnitude,

respectively. Nevertheless, there are some limitations to the MFP.

The most important liability is sensitivity to mismatch. Because

MFP exploits the environment, its model must be accurate,

especially when seeking high performance (Baggeroer et al., 1993).

Because of their respective limitations, these three underwater

acoustic target location methods have unavoidable defects when
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positioned in shallow-sea environments. To address this dilemma,

many scholars have investigated target location methods based on

sound field interference structures (Clay, 1987; Thode, 2000;

Cockrell and Schmidt, 2010; Song and Cho, 2015; Cho et al.,

2016; Song and Cho, 2017; Song et al., 2017; Chi et al., 2021;

Li et al., 2022). Hence, the target location method based on the

sound-field interference structure is more robust than that based on

the matched field.

The single-hydrophone acoustic acquisition and processing

system has a simple structure and low cost, making it convenient

for installation on floating and submersible buoys, underwater

gliders, unmanned underwater vehicles, and other small platforms.

However, in conventional research, researchers have believed that the

signal received by a scalar hydrophone lacks azimuthal information.

Thus, the conventional single-hydrophone target location method

can only be used for target ranging, not direction finding.

Unlike conventional research which believes that a single scalar

hydrophone does not contain azimuth information, this study

inferred that in the area where the topography of the sea floor

changes (even if the change is small), the bending degree of the

interference fringe in the range-frequency domain is different before

and after the range at the closest point of approach (rCPA), and the

interference fringe is asymmetrical before and after the range at the

closest point of approach (rCPA). Based on this asymmetric feature,

we used only a single scalar hydrophone to effectively distinguish

between inbound and outbound vessels on a shallow continental

shelf. In the concrete implementation, four network structures with

good performance in image classification were introduced, namely

AlexNet, visual geometry group (VGG), residual network (ResNet),

and dense convolutional network (DenseNet), because images often

describe the sound field interference structure (Krizhevsky et al.,

2012; Simonyan and Zisserman, 2014; He et al., 2015; Huang et al.,

2017). This ship classification algorithm can monitor ships entering

and leaving ports illegally, supervise inbound and outbound ships,

and monitor abnormal heading targets in the channel.

The remainder of this paper is organized as follows. Section 2

summarizes the experimental procedure and preprocessing of

experimental data. Section 3 describes the ship classification

algorithm, data simulating method, and training of the CNNs.

The results of the trained deep learning models are discussed in

Section 4. Section 5 introduces the definition of generalized

waveguide invariants to analyze the physical factors responsible

for the differences in the interference structure (Gao et al., 2022).

Finally, Section 6 presents the conclusions of this study.
2 Experiment

2.1 Experiment procedure

The experimental data used here were collected from a

submarine buoy deployed by the Ocean University of China. The

experimental setup is shown in Figure 1A. The experimental area

comprised shallow water with a depth of approximately 24 m and a

wedge-shaped seabed with a slowly changing horizontal (a slope of

0.057°). The submarine buoy recorded the underwater noise from
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321 inbound and outbound ships at Qingdao Port between June 15

and 22, 2022, the structure of which is shown in Figure 1B. The

trajectories of these ships originated from the signals received by the

automatic identification system (AIS) placed on the shore, as shown

in Figures 1C, D.
2.2 Experimental data preprocessing

Data preprocessing is required to achieve better performance.

The low-frequency analysis and recording (LOFAR) diagram is a

basic time-frequency representation often used for localizing sources.
Frontiers in Marine Science 03
The short-time Fourier transform (STFT) can transform the

raw signal into a LOFAR diagram using STFT. The time of

the cloest point to the approach (tCPA) was estimated based on

the LOFAR diagram. After comparing tCPA with the AIS data, we

labeled the LOAR diagram as an inbound or outbound ship.

By processing the experimental data, we found that the

structures of the LOFAR diagrams of inbound and outbound

ships are different. LOFAR diagrams of Figures 2A, B are the

LOFAR diagrams of the same ship’s departure and arrival. In the

experimental data, the interference fringes of the outbound ships

generally bent down on the right side. In contrast, those of the

inbound ships bent down on the left side. Owing to this difference,
A B

DC

FIGURE 1

Sea trial system. (A) Submarine topographic map. The yellow circle marks the position of the submarine buoy. The middle part of the black dotted
line is the channel. The red arrow is the direction of the inbound ship, which is about 1500 m away from the submarine buoy. The green arrow is the
direction of the outbound ship, which is about 3000 m away from the submarine buoy. (B) Submersible buoys. The part in the red circle is the
hydrophone part of the self-contained hydrophone, and the cylinder in the blue box is its data-sampling and processing system. (C) AIS signal
receiving terminal. The part in the red circle is the GPS antenna, and the long black pole pointed by the blue arrow is the AIS signal antenna. (D) AIS
data system.
BA

FIGURE 2

LOFAR diagrams of the same ship entering and leaving the port. (A) Inbound time-frequency diagram. (B) Outbound time-frequency diagram.
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we used CNNs to extract features and classify inbound and

outbound ships.
3 Method

This study proposed a method based on CNNs to classify

inbound and outbound ships using a single scalar hydrophone on

a shallow continental shelf. The flowchart is shown in Figure 3A.

We used the STFT to transform the raw signal into a LOFAR

diagram. The diagram was used as the input to the trained deep-

learning models after edge detection to classify the ships.

Training deep-learning models require training datasets of

various labeled samples. As the range at the closest point of

approach, rCPA, was relatively fixed in the experimental data,

simulation data were also used during the training and validation

steps. As shown in Figure 3B, both experimental and simulation

data were used to train the models, which were tested with the

experimental and simulation test sets, respectively.
3.1 Simulation data

The simulation was divided into three steps. First, building the

ship radiated noise model and getting the ship radiated noise s(w),
and second, obtaining the channel transfer function H(w) using the
sound propagation calculation model Range-dependent acoustic

model (RAM). Finally, the hydrophone reception signal is obtained

by multiplying H(w) and s(w).
Frontiers in Marine Science 04
3.1.1 Ship noise simulation
Ship noise is mainly composed of a line spectrum and a

continuous spectrum. Its mathematical model can usually be

expressed as

S(t) = ½1 + G(t)� � Sx(t) + Sl(t) (1)

The line spectrum component can be simulated by generating a

series of sinusoidal signals, and its parameters can be set according

to the following methods (He and Zhang, 2005).

(1) For line spectrum below 100 Hz, the fundamental frequency

of shaft frequency line spectrum can be set as s, and the frequency of

blade and harmonic line spectrum is mns Where s is the propeller

speed; the unit is turn/s; n is the number of propeller blades, and m

is the harmonic number.

(2) The line spectrum with a frequency of 100–1000 Hz has no

significant relationship with the ship’s speed but varies with the type

of ship. K frequencies can be set without loss of generality.

The construction of the continuous spectral data was completed

in three steps. First, we constructed the ship noise source level for

different tonnages and speeds according to the empirical equation

summarized by Ross (1976), as shown in Figure 4A. Next, we

constructed an finite impulse response (FIR) filter with a specific

frequency response using the LMS-adaptive algorithm, as shown in

Figure 4B. Finally, a continuous spectrum of the radiated noise of

the ship was obtained by inputting Gaussian white noise through

the filter.

After adding a line spectrum to the continuous spectrum, the

power spectrum of the radiated noise of the ship was obtained, as

shown in Figure 4C.
A

B

FIGURE 3

Ships classification algorithm flow chart. (A) Overall flow chart of ships classification algorithm. (B) Deep-learning models training flow chart.
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3.1.2 Transfer function simulation
In this section, the underwater acoustic propagation software

RAM is used to simulate the transfer function H(w) of the channel
(Collins, 1993).

The main environmental parameters for the simulation were as

follows. The experimental sea area was off the coast of Qingdao, and

the seabed terrain was a typical horizontal, slowly varying wedge

seabed. Therefore, a wedge-shaped seafloor was used for the

simulation. The sound velocity of the seabed is set as 1620 m·s-1,

the seabed density is 1.76 g·cm-3, and the seabed attenuation is 0.3

dB·l-1. The sound velocity profile was obtained from the measured

CTD data in the offshore waters of Qingdao on June 30, 2022. The

acoustic source emission band was 200 – 400 Hz; the receiver depth
Frontiers in Marine Science 05
was 26 m; the time of the closest point of approach (tCPA)was 150 s;

the range at the closest point of approach (rCPA)was set to 1000 m;

the sound source depth (d) was 5 m, and the motion speed (v) was

10 m/s. The 3D structure chart is shown in Figure 5A.

The spectrum received by the hydrophone is calculated every

2 s. After splicing, the time-frequency diagram, as shown in

Figure 5B, is obtained. The transfer function H(w) of the channel

under different conditions is obtained by changing the parameters

such as d, v, and rCPA.

The spectrum of the radiated noise of the ship was multiplied by

the transfer function spectrum, and the LOFAR diagram was

obtained after splicing. As shown in Figure 6, the signal-to-noise

ratio is set at 10 dB.
BA

FIGURE 5

Simulation of transfer function. (A) 3D water depth distribution. (B) Time-frequency diagram of waveguide transfer function.
A C

B

FIGURE 4

The ship’s radiated noise. (A) The ship noise source level. (B) Structure of FIR filter with specific frequency. (C) Power spectrum of ship’s radiated noise.
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3.2 Network architecture
3.2.1 AlexNet

In 2012, Krizhevsky et al. proposed AlexNet, which realized a

TOP5 error rate of 15.4% (The TOP5 error rate is the probability that,

given an image, its label is not in the top five outcomes that the model

considers most likely), and realized a deep convolutional neural

network structure in a large-scale image dataset for the first time.

AlexNet includes eight layers of transformations, including five

convolution layers, two fully connected hidden layers, and one fully

connected output layer (Krizhevsky et al., 2012), as shown in Figure 7.

The network uses a rectified linear unit (ReLU) as a nonlinear mapping

function, which makes the model converge more rapidly. The dropout

mechanism was used to effectively reduce the overfitting problem to a

certain extent, and the GPU replaced the CPU for calculations,

significantly improving the training speed of the network.

3.2.2 VGG

Simonyan and Zisserman (2014) studied the depth of CNNs

based on AlexNet, proved that increasing the depth of the network
Frontiers in Marine Science 06
can affect its performance to a certain degree, and proposed the idea

of building a depth model by reusing simple basic blocks. The

network structure of the VGG is shown in Figure 8. The first part

comprises convolution and convergence layers, and the second

comprises a fully connected layer. The original VGG network has

five convolution blocks, of which the first two blocks each have one

convolution layer, and the last three blocks each contain two

convolution layers. Because the network uses eight convolution

layers and three fully connected layers, it is usually called VGG-11.

Compared to AlexNet, VGG uses a smaller convolution core and

a deeper network structure. However, the increase in the network

depth is limited. Many network layers leads to network degradation.
3.2.3 ResNet

Based on VGG, He et al. (2015) effectively solved the problem of

decreasing the accuracy of the training set with the deepening of the

network through the design of residual blocks.

The basic structure of the residual block is shown on the right

side of Figure 9. The residual block changes the learning target to

the difference between target values H (X) and x, called the residual.

Residual mapping is often easier to optimize. Through the design of

the residual block, some neural network layers can be artificially

created to skip the connection of neurons in the next layer, thus

weakening the strong connections between each layer.
3.2.4 DenseNet

In 2017, Huang et al. proposed DenseNet based on ResNet. However,

unlike ResNet, DenseNet proposed a more radical dense connection

mechanism where all layers are interconnected (2017). Specifically, each

layer accepts all the layers in front of it as its additional input, as shown in

Figure 10, which can achieve feature reuse and improve efficiency.

3.3 Training CNNs
3.3.1 Input data preprocessing

As shown in Figure 11, before inputting in the CNNs, all of

the LOFAR diagrams were resampled to 256×256 for the
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Structure of AlexNet.
FIGURE 6

Time-frequency diagram of the received signal.
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reduction of the computation, smoothed by mean filtering

to reduce salt-and-pepper noise, and the Canny operator

detected edges for better performance. The experimental

and simulation data were split into training and test sets at

the same ratio. The ratio of the training set to the test set

is 40%:60%.
3.3.2 Network training
The implementation of the neural networks mentioned in Section

3.2 was done in Python 3 using the open-source Pytorch (Paszke et al.,

2019). The network was trained for 100 and 20 epochs on the sea trial

and simulation datasets, respectively. The batch size was set to 32. An

Intel Core i7-9700 3.00 GHz CPU trained the networks. The final

trained model could complete the classification of 128 samples in

8.53 s.
 

Input
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Fully connected layer
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256
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FIGURE 8

Network structure of VGG.
FIGURE 9

Structure of residual block.
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FIGURE 10

Dense connection structure.
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4 Results

4.1 Accuracy and train loss

The results for the simulation training dataset are presented in

Figure 12. From the perspective of training loss, ResNet and DenseNet

declined rapidly, whereas AlexNet and VGG declined relatively slowly.

From the training set’s perspective, the four networks’ training

accuracy reached 100%, but that of AlexNet and VGG fluctuated

significantly. For the test dataset, the final test accuracies of AlexNet,

VGG, ResNet, and DenseNet were 99.49%, 100%, 100%, and 100%,

respectively. AlexNet and VGG exhibited larger fluctuations.

The results for the experimental dataset are illustrated in

Figure 13. Compared to the simulation dataset, the experimental

dataset fluctuated greatly, which may be due to the influence of
Frontiers in Marine Science 08
marine environmental noise (such as the calls of marine organisms)

in individual samples. From the perspective of the test dataset, the

final test accuracies of AlexNet, VGG, ResNet, and DenseNet were

90.63%, 95.51%, 96.63%, and 99.22%, respectively. AlexNet and

VGG fluctuated less, but their final test-set accuracies were lower.

ResNet fluctuated more; however, its final test set accuracy was

higher. DenseNet fluctuated less but had the highest final test

set accuracy.

Overall, ResNet and DenseNet performed better than AlexNet

and VGG on both the simulation and experimental datasets,

possibly because they used a residual block design with a deeper

network structure. In the experimental dataset, the stability of

DenseNet was better than that of ResNet, and the final test set

accuracy of DenseNet was higher, which may be because DenseNet

adopts a denser connection mechanism.
Edge 
detection

LOFAR diagram

Resample
mean filtering

60%

40%

Labeled 
samples

train 
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FIGURE 11

Input data preprocessing flow chart.
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Simulation data classification results. (A) Train loss of four networks. (B) Train accuracy of four networks. (C) Test accuracy of four networks. AlexNet
is the blue line. VGG is the red line. ResNet is the yellow line. DenseNet is the purple line.
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4.2 Confusion matrixes

Table 1 presents the confusion matrices of the four networks

trained using the experimental datasets. Each column represents a

prediction, and each row represents the true label of the data.

Among the 128 inbound and outbound ships, AlexNet mistakenly

judged three inbound ships as outbound and nine outbound ships

as inbound. The VGG mistakenly judged one inbound ship as

outbound and five outbound ships as inbound. ResNet recognized

70 outbound ships and 54 diagrams from 58 test diagrams of

inbound ships. DenseNet outperformed the other three CNNs

and recognized all 58 inbound ships and 68 diagrams from 70

testing diagrams of outbound ships. DenseNet offers a reliable

method for classifying inbound and outbound ships.
5 Analysis of physical principles

This study introduced the concept of a generalized waveguide

invariant to analyze the reasons for the differences in the interference

fringe structures of inbound and outbound ships. Based on the

conventional definition of waveguide invariance, the generalized

waveguide invariant considers the effect of azimuth change on the

waveguide invariant b and derives a new definition equation.
Frontiers in Marine Science 09
Assuming that the sound source moves along a straight line and

its track does not pass through the receiver, the movement of the

sound source will not only cause a change in the sound propagation

path distance with time but also cause a change in the azimuth angle

with time.

In Figure 14, the orange circle represents the receiver’s position,

the blue rectangle represents the sound source, v represents the

sound source’s moving speed, vt and vn the radial and tangential

velocities, respectively, and q represents the azimuth.

In this case, the waveguide-invariant b was related to the

distance and azimuth of the sound propagation path. Based on

the definition equation b = r
w

dw
dr of the conventional waveguide

invariant, the definition equation of the generalized waveguide

invariant is derived as shown in Equation 2.

b=
r
w
dw
dr

=−
sp,mnðw,q,rÞ+ ∂

∂q f 1
r ∫

r
0sp,mn(w,q,r0)dr0gcotq

1
r ∫

r
0sg,mn(w,q,r0)dr0

(2)

In Equation 2, the first term of the molecule contributes to

the change in distance along the sound propagation path, and

the second term corresponds to the change in azimuth. When

the sound source is close to the nearest point and azimuth q! 0

, there is a singularity in the waveguide invariants’ values. When

the distance between the sound source and the receiver is far

enough, the azimuth change q is very weak. b is mainly
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Experimental data classification results. (A) Train loss of four networks. (B) Train accuracy of four networks. (C) Test accuracy of four networks.
AlexNet is the blue line. VGG is the red line. ResNet is the yellow line. DenseNet is the purple line.
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determined by the first term of Equation 2, and the influence of

azimuth on waveguide invariants can be ignored. The first term

in Equation 2 is a classical waveguide invariant expression.

After adding the second term, the waveguide invariant b is

related to the distance and the azimuth variation term between

the sound source and the receiver.

According to the theory of generalized waveguide invariants,

the value of waveguide invariants changes abruptly before and after

the target ship passes the nearest point, which causes asymmetric

interference fringes on the time-frequency diagram. Furthermore,

the directions of the inbound and outbound ships are opposite;

therefore, their interference fringe structures show different

characteristics: one is high on the left and low on the right, and

the other is high on the right and low on the left.
6 Conclusion

Here, we first found that the spectrum interference structure of

the acoustic signal received by a single hydrophone is asymmetric in

sea trial experimental data. Then we used this feature to classify

inbound and outbound ships using a single hydrophone through

CNNs and explained the physical principle through generalized

waveguide invariants.

This method overcame the idea that single-scalar hydrophones

can only be used for ranging, and not direction-finding. This

algorithm classified the direction of the target ship using only a

single-scalar hydrophone. However, at this stage, it was only

possible to determine approximately whether a ship was inbound

or outbound, and a more detailed course judgment could not be
Frontiers in Marine Science 10
completed. When the seabed topography was known for specific

sea areas, this method could achieve more detailed course

discrimination and complete the positioning of the target ship or

underwater target. This algorithm could achieve more

comprehensive sea area monitoring by combining ls-ssdd-v1.0

and official-ssdd with SAR ship classification and identification.

This issue should be addressed in future studies.
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ABLE 1 Confusion matrixes of four networks trained by experimental datasets.

AlexNet Inbound Outbound ResNet Inbound Outbound

Inbound 55 3 Inbound 54 4

Outbound 9 61 Outbound 0 70

VGG Inbound Outbound DenseNet Inbound Outbound

Inbound 57 1 Inbound 58 0

Outbound 5 65 Outbound 2 68

ABLE 1 Confusion matrixes of four networks trained by experimental datasets.
fro
FIGURE 14

Schematic of sound source moving along a straight line without
passing the receiver.
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