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spatiotemporal transfer
network for prediction of SST
sequences and fronts with
remote sensing data
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Technology, Ocean University of China, Qingdao, China, 2Faculty of Information Science and
Engineering, Ocean University of China, Qingdao, China, 3Laboratory for Regional Oceanography and
Numerical Modeling, Laoshan Laboratory, Qingdao, China
Ocean fronts are a response to the variabilities of marine hydrographic elements

and are an important mesoscale ocean phenomenon, playing a significant role in

fish farming and fishing, sea-air exchange, marine environmental protection, etc.

The horizontal gradients of sea surface temperature (SST) are frequently applied

to reveal ocean fronts. Up to now, existing spatiotemporal prediction approaches

have suffered from low prediction precision and poor prediction quality for non-

stationary data, particularly for long-term prediction. It is a challenging task for

medium- and long-term fine-grained prediction for SST sequences and fronts in

oceanographic research. In this study, SST sequences and fronts are predicted

for future variation trends based on continuous mean daily remote sensing

satellite of SST data. To enhance the precision of the predicted SST sequences

and fronts, this paper proposes a novel memory-contextual spatiotemporal

transfer network (MCSTNet) for SST sequence and front predictions. MCSTNet

involves three components: the encoder-decoder structure, a time transfer

module, and a memory-contextual module. The encoder-decoder structure is

used to extract the rich contextual and semantic information in SST sequences

and frontal structures from the SST data. The time transfer module is applied to

transfer temporal information and fuse low-level, fine-grained temporal

information with high-level semantic information to improve medium- and

long-term prediction precision. And the memory-contextual module is

employed to fuse low-level, spatiotemporal information with high-level

semantic information to enhance short-term prediction precision. In the

training process, mean squared error (MSE) loss and contextual loss are

combined to jointly guide the training of MCSTNet. Extensive experiments

demonstrate that MCSTNet predicts more authentic and reasonable SST

sequences and fronts than the state-of-the-art (SOTA) models on the SST data.

KEYWORDS

the encoder-decoder structure, the time transfer module, the memory-contextual
module, MCSTNet, SST sequence and front prediction tasks
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1 Introduction
Comprehending complex ocean phenomena is a difficult task

since plenty of natural processes must be taken into account.

Numerical models based on physical equations have long been

used in the field of ocean phenomena prediction. In-depth research

is made possible due to the abundance of ocean products that are

derived from satellites, which also emphasizes the need for practical

techniques for researching time-series observations. As one of the

most time-honored ocean products, sea surface temperature (SST)

is a key factor in helping to comprehend scientific issues concerning

sea-air interaction, biological, chemical, and physical oceanography.

SST is frequently applied to disclose a variety of important ocean

phenomena, such as ocean fronts (Legeckis, 1977). When dealing

with phenomena of a complex nature, traditional statistical analysis

approaches are restricted by their shallow model structure.

Deep neural networks (DNNs) are an upgraded version of

artificial neural networks (ANNs) that are one of the most widely

used and currently prominent deep learning (DL) approaches,

which use valid parameter optimization techniques and

architecture designs (Jordan and Mitchell, 2015; LeCun et al.,

2015). Compared to conventional statistical models, DL

approaches are far more sophisticated. They have been widely

applied in oceanography domains (Ducournau and Fablet, 2016;

Ham et al., 2019; Reichstein et al., 2019; Li et al., 2020; Buongiorno

Nardelli et al., 2022). It is efficient to discover and mine the complex

rules in a time series of large amounts of remote sensing data

(Zheng et al., 2020; Liu et al., 2021). Inspired by the video frame

prediction using DL approaches (Wang et al., 2021; Gao et al.,

2022), in this paper, we develop an SST pattern prediction method

by building a DL model.

There are many different algorithms for DL, two typical ones of

them being convolutional neural networks (CNNs) (Kunihiko and

Sei, 1982) and recurrent neural networks (RNNs) (Glorot et al.,

2011). CNNs are generally used in computer vision and are

essentially input-to-output mappings that learn a large number of

mapping relationships between inputs and outputs. On the other

hand, RNNs are commonly applied in natural language processing

(NLP) and various sequence processing tasks, where information is

passed through repetitive loops so that the network can remember

the sequence information and analyze patterns of data variation

across the sequence.

The improvements in the structures of RNN, such as long short-

term memory (LSTM), have better memory capability and long-

term dependency to handle sequence prediction problems. While

traditional RNN structures suffer from vanishing and exploding

gradients when dealing with long sequences, resulting in ineffective

information transfer. LSTM enhances the hidden layer of RNNs,

and short and long time series are stored and retrieved by its

memory blocks (Hochreiter and Schmidhuber, 1997). Recurrently

connected cells are applied to study the relationships between two

time frames and then transfer the probabilistic inference to the

subsequent frame. Recently, these methods have been enhanced so

that many architectures for temporal sequence processing tasks are

available. Specifically, convolutional long short-term memory
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(ConvLSTM) is proposed by Shi et al. (2015), which substitutes

the CNN activation method for the sigmoid activation functions or

rectified linear unit (RELU) so that it obtains higher prediction

accuracy compared to LSTM. This is because CNN can improve the

feature extraction capabilities of LSTM. An encoder-decoder LSTM

is proposed by Srivastava et al. (2015), which achieves

reconstructing and predicting the video sequences. These

developments open up a number of inspiring opportunities.

Zhang et al. (2017) try to apply a fully connected LSTM (FC-

LSTM) structure to model the sequence dependencies and tackle

the issue of SST pattern prediction. As far as we are aware, this is the

first study to employ the cutting-edge sequence prediction

technique to predict SST. Nevertheless, FC-LSTM only considers

temporal sequence. As a matter of fact, SST pattern prediction is an

issue of spatiotemporal sequence, which inputs previous SST

patterns and outputs future SST patterns. The predictive

performance is restricted due to the flaw of FC-LSTM. Therefore,

it is difficult to increase prediction accuracy because a great deal of

information is lost during the prediction processing. Generally,

previous SST pattern prediction approaches neglected the spatial

sequences in images, leading to low prediction accuracy (Srivastava

et al., 2015; Zhang et al., 2017). To tackle this issue, based on the SST

data of Chinese coastal waters and the Bohai Sea, Yang et al. (2017)

develop an SST forecast network called CFCC-LSTM that consists

of one convolutional and one fully connected LSTM layer. Wei et al.

(2020) employ a neural network to forecast South China Sea

temperature based on the Ice Analysis (OSTIA) data. Likewise,

Meng et al. (2021) propose a generative adversarial network (GAN)

based on physics-guided learning and apply observation data from

the South China Sea to calibrate parameters, improving the

prediction performance of sea subsurface temperature. In

addition, Zheng et al. (2020) propose a DL network with a bias

correction and a DNN to predict SST data and then tropical

instability waves (TIWs) based on the predicted SST data. In

other oceanic areas, SST patterns are also forecasted by DL-based

approaches (Patil and Deo, 2017; Zhang et al., 2017; Patil and Deo,

2018). Although it is unsatisfactory for the long sequence prediction

performance and the authenticity of the predicted images using the

aforementioned approaches, it has been demonstrated that

predicting SST by DL approaches based on spatiotemporal

sequences of remote sensing images offers promise for building a

data-driven model to tackle this issue.

Since SST is extremely simple to observe with high precision, its

horizontal gradients are frequently employed to describe fronts

(Ruiz et al., 2019). SST fronts are narrow transition zones between

two or more bodies of water with distinctly different temperature

characteristics, including fronts associated with small-scale

meteorological forcing, submesoscale fronts, tidal fronts, shelf-

break SST fronts, and planetary-scale SST fronts (Mauzole, 2022).

Fronts can divide SST images into multiple regions and produce

nonlinear flows and processes on different temporal and spatial

scales. Therefore, monitoring and predicting front activity is a

considerable challenge. Continuous changes in front activity can

be obtained by processing a time series of daily SST and using these

changes to predict future front activity, which is important for sea-

air exchange, marine fish farming, and fishing (Toggweiler and
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Russell, 2008; Woodson and Litvin, 2015). However, previous

research has only conducted a preliminary investigation of front

forecasts in different oceanic areas. In the Kuroshio region, although

direct forecasting of Kuroshio fronts is relatively rare, changes in the

position of the Kuroshio can directly affect the extent of Kuroshio

intrusion on the shelf and therefore the position of the Kuroshio

fronts. Thus, several studies on forecasting the path of the Kuroshio

have been done. For instance, Komori et al. (2003) make use of a 1-

1/2 layer primitive equation model to forecast short-term Kuroshio

path variabilities south of Japan and reproduce the characteristic

evolution of the Kuroshio into a large-amplitude route off Enshu-

nada. Kagimoto et al. (2008) successfully forecast the Kuroshio large

meander path variations using a high-resolution (approximately

10 km) ocean forecasting system, the Japan Coastal Ocean

Predictability Experiment (JCOPE). Kamachi et al. (2004) develop

a more complex ocean data assimilation forecasting system for

operational use by the Japan Meteorological Agency. Moreover,

Gulf of Mexico eddy frontal positions (Oey et al., 2005; Yin and

Oey, 2007; Counillon and Bertino, 2009; Gopalakrishnan et al.,

2013) and Iceland-Faroe front variability (Miller et al., 1995;

Popova et al., 2002; Liang and Robinson, 2004) are forecasted.

From the perspective of the global forecast system, Smedstad et al.

(2003) establish the global eddy real-time forecasting systems that

are capable of forecasting fronts and eddies using the assimilation

methods of optimal interpolation (OI) based on SST and sea surface

height (SSH) data. The interpolation results are corrected based on

daily data changes and rely on SST data from satellite infrared

radiometers to locate the fronts, while SST data from the infrared

radiometers are highly disturbed by cloud cover, resulting in low

prediction performance. To improve the prediction performance,

several model-based global ocean forecasting systems are

developed, such as those based on the Hybrid Coordinate Ocean

Model (HYCOM) (Chassignet et al., 2009) and the Nucleus for

European Modelling of the Ocean Model (NEMO) (Hurlburt et al.,

2009). Up to now, existing research using DL-based models to

predict fronts has been rare. Yang et al. (2022) employ GoogLeNet

to categorize the front trend as attenuating or enhancing, but this is

only a classification task and cannot predict future front

variation trends.

Existing DL-based approaches for spatiotemporal sequence

prediction are mainly divided into four categories: RNNs-based

(Wang et al., 2017; Wang et al., 2019; Wang et al., 2021), CNNs-

based (Gao et al., 2022), CNNs and RNNs-based (Shi et al., 2015),

and DL and physical constraints-based (Guen and Thome, 2020)

approaches. CNNs-based approaches are not good at predicting

long-term changes in the data because they cannot learn continuous

change features in the sequence well (Wang et al., 2017). RNNs-

based approaches predict future sequences by learning the change

features of previous sequences, while the quality of predicted images

decreases with increasing prediction time, resulting in poor

prediction quality for complex long term prediction tasks. CNNs

and RNNs-based approaches, in which the CNNs discard some

fine-grained information when extracting features to reduce the

computational complexity of the network, result in poor prediction

quality. DL and physical constraints-based approaches are

employed to constrain data with simple change patterns by a
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specific physical model, whereas the quality of predicted images is

low for non-stationary data. The existing spatiotemporal prediction

approaches have suffered from low prediction precision and poor

prediction quality for non-stationary data, especially for long-term

prediction, which is a challenging task for long-term fine-grained

prediction for SST sequences and fronts.

In this study, variations in future trends of SST sequences and

fronts are predicted based on continuous mean daily SST data.

Encouraged by the excellent performance of U-Net in

oceanography (Li et al., 2020), this paper proposes a memory-

contextual spatiotemporal transfer network (MCSTNet) for

continuous spatiotemporal prediction of SST sequences and

fronts to improve prediction precision. The MCSTNet involves

three components: the encoder-decoder structure, the time transfer

module, and the memory contextual module. During the training

phase, the combined benefits of mean squared error (MSE) loss and

contextual loss collectively guide MCSTNet for stability training.

Extensive experiments demonstrate that the predicted SST

sequences and fronts by our proposed MCSTNet are more

authentic and reasonable than the state-of-the-art (SOTA) models

and that MCSTNet outperforms the SOTA models on the SST data.

Furthermore, the SSS data are applied to verify the performance and

generalization ability of MCSTNet.

Our contributions are as follows:
• Based on continuous mean daily SST data, a continuous

spatiotemporal prediction MCSTNet framework is

proposed to predict the short-, medium-, and long-term

future variations in trends of SST sequences and fronts.

• The methodology of MCSTNet contains three components:

the encoder-decoder structure, the transfer module, and the

memory-contextual module. The encoder-decoder

structure extracts the rich contextual and semantic

information in SST sequences and frontal structures from

the SST data. The time transfer module transfers temporal

information and fuses low-level, fine-grained temporal

information with high-level semantic information, and

the memory-contextual module fuses low-level

spatiotemporal information with high-level semantic

information, which enhances the predicted precision of

SST sequences and fronts.

• Qualitative and quantitative experimental results

demonstrate that the performance of MCSTNet is

superior to the SOTA models on both SST and SSS data.

The ablation studies demonstrate the effectiveness of each

module within MCSTNet.
The remainder of this paper is organized as follows. The SST

data is preprocessed, and a continuous spatiotemporal prediction

network, called MCSTNet, is built in Section 2. The experimental

results display the excellent spatiotemporal SST sequence and front

prediction capability of MCSTNet on the SST and SSS data, which

combines the medium- and long-term prediction benefits of the

time transfer module with the short-term prediction capability of

the memory-contextual module, as presented in Section 3. We

summarize this paper with remarks and future work in Section 4.
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2 Materials and methods

In this section, we preprocess the SST data based on the

derivation of physical quantities. Moreover, a continuous

spatiotemporal prediction network called MCSTNet is proposed

for the SST sequence and front prediction tasks.
2.1 Data preprocessing

The daily SST data, with a spatial resolution of 0.05° × 0.05°, are

generated by the Operational Sea Surface Temperature and Sea Ice

Analysis (OSTIA) system. A representative oceanic area, the

Oyashio current (OC) region (30° N – 45° N, 142° E – 157° E), is

selected, whose SST is shown in Figure 1A. We apply 8-year SST

data as a training set, from 1 January, 2006, to 31 December, 2013,

to train the learning models, and use 2-year SST data as a testing set,

from 1 January, 2014, to 31 December, 2015, to test them. Physical

quantities are employed to derive gradients of SST to obtain front

structures, which is our target data. In this study, the SST gradient

map is referred to as the SST front structures because the SST

gradient can reflect the SST front structures (Guan et al., 2010). The

formulas are:

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x + G2

y

q
, (1)

Gx(i, j) =

(SST(i, j + 1) − SST(i, j − 1))=2,   j ≠ 0 and j ≠ jm − 1,

SST(i, 1) − SST(i, 0),   j = 0,

SST(i, jm − 1) − SST(i, jm − 2),   j = jm − 1,

8>><
>>:

(2)

Gy(i, j) =

(SST(i + 1, j) − SST(i − 1, j))=2,   i ≠ 0 and i ≠ im − 1,

SST(1, j) − SST(0, j),   i = 0,

SST(im − 1, j) − SST(im − 2, j),   i = im − 1,

8>><
>>:

(3)

where G denotes the final gradients of the SST data in equation (1).

In equation (2), Gx denotes the zonal gradient of the SST data that is

half of the difference between adjacent pixels in the zonal direction

on the SST data, and jm is the last pixel value in the zonal direction.
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In equation (3), im is the last pixel value in the meridional direction,

and Gy represents the meridional gradient of the SST data, which is

half of the difference between adjacent pixels in the meridional

direction on the SST data.

Figure 1B shows front structures obtained from the SST data

using physical quantities to derive gradients. The nearshore front

structures are excluded because the nearshore environment

interferes with SST, resulting in data inaccuracies in experiments.

The magnitude of the values of the front structures reflects their

strength, which is significantly larger than that of the surrounding

hydrographic elements. The final fronts can be obtained by setting

the threshold q , where 0 ≤ q ≤ 1:8°C/km. This is due to the fact

that the minimum gradient value is 0°C/km and the mean value of

the maximum value of SST fronts for each day of the 10-year period

in the OC region is 1.8°C/km. When using SST gradient data to

obtain SST fronts, the size of the q value needs to be selected based

on experience and practical application scenarios. Figure 1C

displays the SST fronts when the threshold q = 0:5°C/km is used

to segment front structures. Values exceeding 0.5°C/km are

detected as SST fronts and assigned a value of 1, while values

lower than 0.5°C/km are detected as non-SST fronts and assigned a

value of 0.

In addition, the sea surface salinity (SSS) data are applied to

verify the reliability and generalizability of the proposed MCSTNet.

Similar to the SST data, the 8-year SSS data are used as a training

set, from 1 January, 2006, to 31 December, 2013, and the 2-year SSS

data are employed as a testing set, from 1 January, 2014, to 31

December, 2015. The daily SSS data, with a spatial resolution of

0.08° × 0.08°, from ERA5 reanalyses are generated by the

Operational Mercator global ocean reanalysis system. Similarly,

the target front structures are obtained using physical quantities

to derive gradients of SSS. Hereafter, we substitute front for front

structure in subsequent text.
2.2 The MCSTNet framework

The overall framework of MCSTNet is displayed in Figure 2,

which is made up of three parts: the encoder-decoder structure, the

time transfer module, and the memory-contextual module. The

encoder-decoder structure is the backbone structure except for the

time transfer module and memory-contextual module, which
A B C

FIGURE 1

Data processing procedures in the OC region. (A) The SST data on 2 January, 2015, (B) front structures derived from physical quantities, and (C) fronts
derived from threshold segmentation. The background is represented by category 0 and the SST front structure is represented by category 1.
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comprises a data encoder, a feature decoder, as well as a multi-task

generation module. The encoder-decoder structure is used to

extract the rich spatial features of input sequences and generate

high-quality predicted spatial information. The time transfer

module is applied to transfer temporal information and fuse low-

level, fine-grained temporal information with high-level semantic

information to improve medium- and long-term prediction

precision. The memory-contextual module is employed to fuse

low-level spatiotemporal information with high-level semantic

information to enhance short-term prediction precision. Thus,

MCSTNet is better at transferring spatiotemporal information for

sequence prediction. As shown in Figure 2, the MCSTNet

framework receives the previous SST sequences and predicts the

future SST sequences and fronts.

2.2.1 The encoder-decoder structure
The encoder-decoder structure is made up of a data encoder, a

feature decoder, and a multi-task generation module.

2.2.1.1 The data encoder

The convolutional block makes use of a 2D convolution that can

only receive data in four dimensions, but the input data for the
Frontiers in Marine Science 05
sequence prediction task has five dimensions ([batch, sequence

length, number of input image channels, input image height, input

image width]). Therefore, it is necessary to combine the batch and

sequence length of the input data into one dimension, becoming

four dimensions ([batch × sequence length, number of input image

channels, input image height, input image width]). The first

dimension is [batch x sequence length], treating all sequences as

independent images. The transformed four-dimension data are fed

into the data encoder, which includes four convolutional blocks and

four max-pooling operations. The convolutional block consists of a

2D convolution with a convolution kernel of 3 × 3, a GroupNorm

with a group size of 2, and a LeakyRelu. To ensure that the size of

input and output data is the same, the 2D convolution uses the zero

padding technique. The max-pooling operation, with a step size of

2, is employed between convolutional blocks to halve the size of

feature maps.
2.2.1.2 The feature decoder

After the data encoder, the feature decoder is employed to

decode the obtained high-level spatial sequence information. The

feature decoder is made up of four convolutional blocks and four

up-sampling layers with a factor of 2, which doubles the size of
FIGURE 2

The MCSTNet framework. It includes three parts: the encoder-decoder structure, the time transfer module, and the memory-contextual module.
MCSTNet receives SST sequences and then outputs the predicted SST sequences along with SST fronts.
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feature maps. The contextual feature maps obtained using the

feature decoder are short on rich semantic information, while the

semantic feature maps obtained using the data encoder are short on

rich contextual information. The multi-scale feature maps from the

data encoder and the feature decoder are connected using the

memory-contextual module and the time transfer module to get

the most out of the low-level contextual features and high-level

semantic features of the input data, improving the quality of the

predicted images.

2.2.1.3 The multi-task generation module

The multi-task generation module contains two sub-networks,

each of which is made up of a convolutional block and a 2D

convolution with a convolution kernel of 1 × 1. Two sub-networks

receive the feature maps obtained by the feature decoder to generate

the predicted SST and fronts, respectively.

2.2.2 The time transfer module
The time transfer module further extracts the temporal

information from the shallow data encoder and transfers it to the

deep feature decoder, enabling the transfer of the temporal

information. To re-establish the temporal relationship between

the image sequences, the features output from the shallow data

encoder are dimensionally transformed from [batch × sequence

length, number of input image channels, input image height, input

image width] to [batch, sequence length × number of input image

channels, input image height, input image width], to fuse the

temporal and channel dimensions. Global self-adaptive max-

pooling and global self-adaptive average pooling are performed in

the channel dimension, respectively. The pooled features obtained

are input to a two-layer, fully connected network with shared

weights for non-linear transformation. The obtained features are

added to the deep feature encoder output to obtain temporal feature

information. After learning temporal feature information, the data

needs to be transformed back to the shape it had before being input

into the time transfer module to fuse the temporal information with

the spatiotemporal features output by the deep feature decoder. The

obtained features are dimensionally transformed, expanding the

dimension to [batch, sequence length × number of input image

channels, input image height, input image width], and then

reshaping it to [batch × sequence length, number of input image

channels, input image height, input image width]. Finally, the

obtained temporal features and the deep spatial semantic features

are multiplied element by element and added to achieve the transfer

and fusion of temporal information.

2.2.3 The memory-contextual module
The memory-contextual module consists of ConvLSTMs with

three hidden layers. The memory-contextual module learns

spatiotemporal sequence information in the feature space from

the shallow data encoder and transfers the learned spatiotemporal

sequence information to the deep feature decoder, which learns

information about object position changes in the image sequence,

i.e., learns spatiotemporal sequence information about sequence

changes. Specifically, the four-dimensional features output by the
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shallow data encoder are reshaped into five-dimensional

spatiotemporal sequence features, which are fed into the memory-

contextual module to learn the spatiotemporal sequence

information. The obtained five-dimensional spatiotemporal

sequence features are reshaped into four-dimensional features,

which are concatenated with the spatiotemporal features output

by the deep feature decoder to obtain the combined spatiotemporal

sequence features.

2.2.4 Loss function
In this study, predictions of future SST sequence and front

variation trend based on previous SST data are multi-task

predictions, requiring a different loss function for each sub-

network to guide the training of MCSTNet. Essentially, the SST

sequence and front prediction tasks are image generation issues, i.e.,

it is necessary to determine whether the generated image sequence

is similar to the real image sequence. In general, image similarity is

measured using MSE, and the loss function is written as

LMSE(I, Î ) =
1

M·N o
M−1

i=0
o
N−1

j=0
½I(i, j) − Î (i, j)�2 : (4)

In equation (4), M denotes the number of rows of predicted

image pixels; N denotes the number of columns of predicted image

pixels; I denotes the target SST or front images; Î denotes the

predicted SST or front images; and i, j denotes the position of each

pixel. The lower the MSE value is, the more similar the two images

are. MSE measures whether the predicted and target images have

the same meaning in terms of corresponding pixels. Meanwhile, the

feature similarity between the predicted and target images should be

measured. Specifically, the predicted and target images are input

into the ResNet-50 feature extractor, which uses a pre-trained

model from ImageNet and weights sourced from He et al. (2016),

to extract features, respectively, and the features output of the last

lth layer are obtained. Generally, contextual loss is employed to

determine the difference between features by calculating the cosine

similarity. Because contextual loss measures the overall feature

similarity of images, it can promote the prediction of non-

stationary information.

When the cosine distance is small, they can be considered similar,

and conversely, they are considered dissimilar. Thus, the issue of

determining whether two features are similar is transformed into the

issue of minimizing the cosine similarity between feature maps of the

predicted and target images. Contextual loss is written as:

LCX(yp, yt , l) = 1 − cos(Fl(yp),Fl(yt)), (5)

where yp represents the predicted SST or fronts, yt represents the

target SST or fronts, F represents a ResNet-50 pre-trained feature

extractor, and l represents the last lth layer of the ResNet-50 in

equation (5).

Combining the advantages of MSE in tackling stationary

information and the virtues of contextual loss in tackling non-

stationary information, the overall loss function is jointly guided by

two loss functions and is written as:

LFront = LSST = lLCX + (1 − l)LMSE : (6)
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In equation (6), l is an equilibrium factor to balance the two

loss functions, which is usually determined based on

experimentation and experience (l = 0:2 in our experiments).

MCSTNet makes use of a multi-task training mode to predict

SST sequence and front images, respectively. Although MCSTNet

has two prediction sub-networks, i.e., the SST prediction sub-

network and the front prediction sub-network, the predicted

results only differ in data, so the loss functions of these two

prediction sub-networks can be the same. The final loss function

of MCSTNet is the sum of the loss functions of the SST prediction

sub-network and the front prediction sub-network and is written as:

LMCSTNet = LSST + LFront : (7)
3 Experiment

In the experiments, the excellent spatiotemporal sequence

prediction capability of our proposed MCSTNet is reported and

compared with SOTA sequence prediction models based on the SST

data. The generalization of MCSTNet is verified based on the SSS

data. Furthermore, the effectiveness of each module in MCSTNet

is evaluated.
3.1 Experimental settings

In this section, we introduce the MCSTNet training process and

experimental platform configuration.

3.1.1 The training process of MCSTNet
In this study, MCSTNet was used for the SST sequence and

front prediction tasks that required learning the stationary and non-

stationary information in SST sequences. Its training process was

extremely challenging, and it might be difficult to fit the network

during the training process. To facilitate network fitting, MCSTNet

introduced a probability of using the target SST during the training

process. Specifically, MCSTNet set a decreasing probability value

with increasing iteration steps, which meant that the target

sequences were used to substitute the predicted sequences with a

certain probability when training the memory-contextual module.

The training process of MCSTNet is shown in Algorithm 1.

During the training process, MCSTNet received the input SST

sequences of length 10 with random sampling, the target SST

sequences, and the probability of using the target SST. The input

SST sequences and the target SST sequences were fed into the data

encoder and feature encoder to extract features, respectively. When

generating each predicted SST feature, based on the probability of

using the target SST, the predicted SST sequence features are

substituted for the target SST sequence features. This enables the

memory-contextual module to learn the spatiotemporal feature

information well, making the whole network stable during

training. The initial value of the probability was approaching 1.0,

which decreased with increasing iteration steps, eventually

decreasing to zero. When the value of this probability was zero,
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the whole network was predicted using all the input SST sequences.

During the test, the value of this probability was always set to zero.

3.1.2 Experimental platform configuration
The experimental platform configuration is as follows. The

server operating system is Ubuntu 20.04.4 LTS, with 2 physical

cores and 56 logical CPU cores, 128 GB of memory, and two

NVIDIA 3090 Ti graphics cards. The software development

environment relies on Linux, and the development language is

Python 3.7.11. The DL framework used is Pytorch 1.12.0, which is

widely used for DL. It is a flexible and efficient DL framework with

an underlying C++ implementation. To make a fair comparison,

we set the hyperparameters for MCSTNet and other comparative

methods to be consistent. A detailed list of hyperparameters for

MCSTNet and other comparative methods is presented in

Table S2.
Require: SSTx: input SST sequences; SSTy:

target SST sequences; SSTy:̂ the predicted SST

sequences; Fronty: target fronts; Frontŷ: the

predicted fronts; N: epoch; B: batch size; L:

the length of the predicted sequences; Θ:

MCSTNet’s parameter; prob: the probability

of using SSTy to assist in temporal learning

during MCSTNet training; step: iteration

steps; υ, η: the hyperparameters of prob;

Require: Adam optimizer: α = 0.9, β = 0.999,

learning rate=0.001;

1: Initial MCSTNet’s parameters Θ;

2: prob = υ/(υ + exp ((step + η)/υ));

3: step = 0;

4: while not converged do

5: for i = 1, 2,…, N/B do

6: Sample training data SSTx, SSTy;

7: Input training data into MCSTNet to extract

the features of SSTx and SSTy, respectively;

8: When data are passed to the memory-

contextual module in MCSTNet;

9: for j = 1, 2,…, L do

10: The temporary variable temp ϵ [0, 1];

11: if temp < prob then
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Fron
12: Employ the features of SSTy[j] to replace

the predicted features of SSTx[j] and pass them

to the next layer of the network;

13: else

14: Employ the features of SSTx[j] as the

predicted features and pass them into the

next layer of the network;

15. end if

16. end for

17: When data are passed to the time transfer

module in MCSTNet, fuse the temporal features

of the feature decoder and pass them into the

next layer of the network;

18: Guide MCSTNet training by equation (7);

19: Update MCSTNet’s parameters Θ;

20: Obtain SSTy ̂ and Fronty;̂

21: step += 1;

22: end for

23: end while
ALGORITHM 1
The training process of MSTNet.
3.2 Comparative approaches

In our experiments, the SOTA models incorporated physical

constraints-based PhyDNet (Guen and Thome, 2020), RNNs-based

ConvLSTM (Shi et al., 2015), PredRNN (Wang et al., 2017),

PredRNNv2 (Wang et al., 2021), as well as MIM (Wang et al., 2019),

and CNNs-based SimVP (Gao et al., 2022), which were used as

comparative approaches to compare with our proposed MCSTNet.

PhyDNet introduces a recurrent physical cell to model

physical dynamics for discretizing the restriction of the partial

differential equation (PDE) and is a global sequence to sequence

DL-based approach. It is the first study to achieve good

predictive performance by combining physical constraints

with DL.

ConvLSTM innovatively combines CNN and LSTM for

predicting sequences of images, enabling the capture of both

spatial and temporal sequences, and has been applied to a real-life

radar echo dataset for precipitation nowcasting. Each layer of the
tiers in Marine Science 08
CNN structure encodes spatial information, while the memory

units encode temporal information independently.

PredRNN is proposed by Wang et al. (2017), a novel recurrent

network in which two memory cells are used to extract the variance

of spatiotemporal information, improving the predictive power of

spatiotemporal sequences. Wang et al. (2021) propose an

enhancement to the PredRNN structure, dubbed PredRNNv2,

which is expanded to predict action-conditioned video. During

the training period, reverse scheduled sampling is employed to learn

the dependencies between jumpy frames by arbitrarily hiding the

training data and changing with certain probabilities.

Memory in memory (MIM) is proposed by Wang et al. (2019),

an upgraded form of LSTM in which two inbuilt long short-term

memories substitute for the forget gate of LSTM. MIM, with its two

cascaded and self-renewed memory structures, makes use of

differential information between neighboring recurrent states to

model for nearly stationary and non-stationary spatiotemporal

features. Higher-order non-stationarity can be dealt with by

stacking MIM structures.

SimVP is proposed by Gao et al. (2022), which only uses CNN

structure and simple MSE loss for video prediction. SimVP learns

the spatial information of the images using a normal CNN structure

and learns the temporal information in the video sequences using

an inception structure-based CNN, enabling the prediction of

spatiotemporal information in video sequences.
3.3 Experimental results

In this section, to test the capability of MCSTNet to predict

sequences and transfer spatiotemporal information, we conducted

preliminary experiments on the Moving MNIST dataset (see

Figures S1, S2; Table S1). Moreover, we conducted comparison

experiments to verify the excellent spatiotemporal sequence

prediction capability of MCSTNet on the SST data. The SSS data

were used to verify the r eliability and generalizability of MCSTNet,

and ablation studies were conducted to demonstrate the

effectiveness of each module in MCSTNet.

3.3.1 SST sequence and front predictions based
on the SST data

To demonstrate the advantages of the MCSTNet framework in

predicting SST sequences and fronts, we compared MCSTNet to

comparative approaches for both quantitative and qualitative

assessments based on the SST data.

3.3.1.1 Qualitative assessment

Figure 3 displays the predicted results of the future 10-day SST

sequences and front images using MCSTNet based on the previous

10-day satellite SST sequences, and only the images for the even-

numbered days are plotted. The time horizon of SST images and

front images is 20 days, from 6 March, to 25 March, 2015, with a

latitude range of 39.3°N–42.5°N and a longitude range of 145.2°E–

148.4°E. The predicted front images corresponding to SST

sequences in the future 10 days were obtained by MCSTNet
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through learning the SST variation laws in the previous 10 days. At

the beginning of the prediction (T = 11 and 13), the predicted SST

sequences and fronts are similar to the target SST and fronts. As the

prediction time increases, although the predicted SST sequences

and fronts deviate somewhat from the target SST and fronts, the

overall variation trend of the SST sequences and fronts is consistent

with the target. This is due to the large time span of the SST data,

which results in the large variability of the SST data. The variation

trend of SST sequences and fronts predicted by MCSTNet is

reasonable and authentic. It reveals that MCSTNet is effective for

SST sequence prediction and front variation trend prediction.

Figure 4 displays the predicted results of the future 10-day SST

sequences using MCSTNet and comparative approaches based on

the previous 10-day satellite SST sequences, and only the images for

the even-numbered days are plotted. From the thirdline, each line

displays the future 10-day SST sequences predicted by MCSTNet,

SimVP, PhyDNet, PredRNNv2, MIM, PredRNN, and ConvLSTM,

based on SST variation laws, respectively. Because of the

normalization technique used during the training on the SST

data, some of the training data was close to zero, making

PredRNNv2 and MIM difficult to train and producing poorer

visualization results. The visual results show that CNNs-based

models predict significantly better than those only relying on

RNNs, indicating that CNNs are helpful for image detail

processing. Compared to SimVP, which uses only the CNN
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structure, MCSTNet predicts SST sequences better. In particular,

medium-term SST sequences predicted by MCSTNet are more

accurate. Compared to Figure 4E, MCSTNet predicts significantly

better. This is because it is difficult to use a certain physical model to

constrain non-stationary SST data, resulting in PhyDNet predicting

SST worse. RNNs-based models, including PredRNN, PredRNNv2,

MIM, and ConvLSTM, are good at predicting data with a stable and

constant shape in the image but perform poorly in predicting image

details on non-stationary SST data, leading to poor quality of the

predicted images. MCSTNet combines the detailed learning ability

of the CNNmodule with the variation pattern learning ability of the

RNN module, which takes into account the non-stationary

information and detailed features of SST sequences, and obtains

more authentic and reasonable predicted results than comparative

approaches. It demonstrates that MCSTNet is the most appropriate

approach for the SST sequence prediction task.

Figure 5 displays the 1-day results as well as the SST and front

error images between target and prediction. The target SST and

front denote the future 1-day SST and physical-based fronts,

respectively, and are on 27 October, 2014, and 13 February, 2015.

MCSTNet received the previous 10-day satellite SST sequences to

predict the future 10-day SST sequences and front images. The SST

and fronts error images were obtained by taking the absolute value

of the differences between the target and predicted SST and the

target and predicted fronts. For each line in the error images, the
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FIGURE 3

Satellite and predicted SST sequences, physics-based and predicted fronts at five successive sequences with 1-day intervals. The previous 10-day
satellite SST sequences are input into MCSTNet to predict future 10-day SST sequences and fronts. (A) Input SST sequences on 6, 8, 10, 12, and 14
March, 2015. (B) Target SST, (C) the predicted SST, (D) target frons, and (E) the predicted fronts, on 16, 18, 20, 22, and 24 March, 2015.
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maximum and average errors are: the first line with a maximum

error of 1.572°C and an average error of 0.350°C; the second line

with a maximum error of 0.282°C/km and an average error of

0.039°C/km; the third line with a maximum error of 1.157°C and an

average error of 0.197°C; and the fourth line with a maximum error

of 0.302°C/km and an average error of 0.040°C/km. From the

statistical data and visual results, despite the relatively high

maximum error of the predicted data, the relatively small average

error indicates that the overall prediction performance of MCSTNet
Frontiers in Marine Science 10
is relatively stable. It indicates that MCSTNet is appropriate for SST

sequence and front prediction tasks.

We predicted not only short- and medium-term SST sequences

and fronts but also long-term SST sequences and fronts. Figure 6

displays the predicted results of the future 30-day SST sequences

using MCSTNet and comparative approaches based on the previous

30-day satellite SST sequences, and only the images at five

successive sequences with 5-day intervals are plotted. From the

third line, each line displays the future 30-day SST sequences
D

A

B

E

F

G

I

H

C

FIGURE 4

Satellite and predicted SST sequences at five successive sequences with 1-day intervals by MCSTNet and the compared approaches. The previous
10-day satellite SST sequences are employed to predict future 10-day SST sequences. (A) Input SST sequences on 6, 8, 10, 12, and 14 March, 2015.
(B) Target SST sequences, and the predicted SST sequences by (C) MCSTNet, (D) SimVP, (E) PhyDNet, (F) PredRNNv2, (G) MIM, (H) PredRNN, as well
as (I) ConvLSTM on 16, 18, 20, 22, and 24 March, 2015.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1151796
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ma et al. 10.3389/fmars.2023.1151796
predicted by MCSTNet, SimVP, PredRNNv2, MIM, PredRNN, and

ConvLSTM, based on SST variation laws, respectively. All models

show that the performance of the short-term prediction is better

than that of the medium-term, and that of the medium-term is

better than that of the long-term. As the predicted time increases,

the authenticity and precision of the predicted SST sequences by all

models decrease. However, our proposed MCSTNet predicts

higher-quality SST sequences than the comparison method, with

clearer images, richer detail, and more accurate SST variation

patterns. This demonstrates that MCSTNet is beneficial for
Frontiers in Marine Science 11
learning fine-grained, long-term spatiotemporal information

about SST sequence variation laws.

3.3.1.2 Quantitative assessment

To quantificationally evaluate the authenticity and quality of the

predicted SST and front images by MCSTNet and comparative

approaches, the MSE (Prasad and Rao, 1990), mean absolute error

(MAE) (Willmott and Matsuura, 2005), structural similarity (SSIM)

(Wang et al., 2004) and peak signal-to-noise ratio (PSNR) (Huynh-

Thu and Ghanbari, 2008) were selected as evaluation indices.
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FIGURE 5

Satellite and predicted SST sequences, physics-based and predicted fronts, and the error between them. The previous 10-day satellite SST
sequences are employed to predict future 10-day SST sequences and fronts, but only one day is plotted. From left to right, each column represents
target SST sequences and fronts, the predicted SST sequences and fronts by MCSTNet, and the SST and front error between target and predicted by
MCSTNet (absolute value). There are two examples of SST and front predictions: (A, B) show images from 26 October, 2014 to 27 October, 2014,
while (C, D) show images from 12 February, 2015 to 13 February, 2015.
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Specifically, the deviation between the predicted and target images

was measured by MSE and MAE. MSE evaluates the ability of

models to measure abnormal data, while MAE evaluates the ability

of models to measure most data. MAE is calculated as:

MAE(I, Î ) = 1
M·N o

M−1

i=0
o
N−1

j=0
I(i, j) − Î (i, j)
�� ��, (8)
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where I is the target images, Î is the predicted images, M is the

number of rows of images, and N is the number of columns of

images in equation (8).

The structural similarity between the target and predicted

images was measured by SSIM, which measured image similarity

in terms of luminance, contrast, and structure, respectively.

Specifically, the comparison of luminance compares the local
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FIGURE 6

Satellite and predicted SST sequences at five successive sequences with 1-day intervals by MCSTNet and the compared approaches. The previous
30-day satellite SST sequences are used to predict future 30-day SST sequences. (A) Input SST sequences on 16, 22, 28 October, and 3, 9
November, 2014. (B) Target SST sequences, and the predicted SST sequences by (C) MCSTNet, (D) SimVP, (E) PhyDNet, (F) PredRNNv2, (G) MIM,
(H) PredRNN, as well as (I) ConvLSTM on 15, 21, 27 November, and 3, 9 December, 2014.
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variations in brightness or intensity of pixels between the two

images by calculating the standard deviation of the pixel

intensities within a small region of the image. The structure

comparison compares the spatial patterns of the pixels in each

image by calculating the correlation between different regions of the

images. SSIM is written as:

SSIM(I, Î ) = ½l(I, Î )�a ½c(I, Î )�b ½s(I, Î )�g

= (2mImÎ +c1)(sIÎ +c2)
(m2

I +m
2
Î
+c1)(s2

I +s
2
Î
+c2)

,
(9)

where l(I, Î ) represents the luminance comparison between the

target and predicted images; c(I, Î ) represents the contrast

comparison between the target and predicted images; s(I, Î )

represents the structure comparison between the target and

predicted images; mI and mÎ are the mean values of I, Î ,

respectively; sI , sÎ , and sIÎ denote the covariances of I, Î , as well

as IÎ , respectively; a , b , and g are hyper-parameters; and constants

c1 as well as c2 are used to avoid zero denominator issue in

equation (9).

The quality of the maximum possible value of the target and

predicted images was assessed by PSNR. It is calculated as 10 ·

log10
MAX2

I

MSE
, where MAX2

I is the maximum pixel value of images.
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Higher image quality is represented by smaller MSE and MAE

values, as well as bigger SSIM and PSNR values.

Tables 1, 2 show the values of MSE, MAE, PSNR, and SSIM

obtained by MCSTNet and the compared approaches concerning 10-

and 30-day SST sequence prediction on the SST data, respectively.

Compared to the other models, our proposed MCSTNet obtains the

best values on all evaluation indices for both the 10- and 30-day

prediction results. As the predicted time increases, the authenticity

and accuracy of the predicted SST sequences decrease for all models.

The values for bothMSE andMAE are meaningfully lower than those

of comparative approaches, and those for PSNR and SSIM are slightly

higher than those of comparative approaches. It reveals that

MCSTNet is superior to comparative approaches, and the predicted

SST sequences by MCSTNet are the most authentic and reasonable

than comparative approaches.

3.3.2 Verification of the generalization of
MCSTNet based on the SSS data

To verify the generalization of our proposed MCSTNet, in

addition to the SST data, we also made use of MCSTNet to

predict SSS sequences and fronts on the SSS data.

Figure 7 depicts the predicted future 10-day SSS sequences and

front images with even-numbered days by MCSTNet, based on

previous 10-day satellite SSS sequences. The SSS sequences and
TABLE 1 Comparison of the results of 10-day SST spatiotemporal sequence prediction between MCSTNet and other approaches in terms of MSE,
MAE, PSNR and SSIM on the SST data.

Models MSE ↓ MAE ↓ PSNR ↑ SSIM ↑

ConvLSTM 16.2 193.8 29.6 0.880

PredRNN 12.8 170.1 30.2 0.893

MIM 10.9 155.9 30.5 0.893

PredRNNv2 10.4 151.8 30.5 0.890

PhyDNet 12.0 166.2 30.1 0.892

SimVP 12.6 172.1 29.9 0.885

MCSTNet 9.8 144.5 31.0 0.908
The best results are highlighted in boldface, and the down/up arrow indicates the lower the better/the higher the better.
TABLE 2 Comparison of the results of 30-day SST spatiotemporal sequence prediction between MCSTNet and other methods in terms of MSE, MAE,
PSNR and SSIM on the SST data.

Models MSE ↓ MAE ↓ PSNR ↑ SSIM ↑

ConvLSTM 24.3 239.9 29.0 0.844

PredRNN 23.9 239.3 29.1 0.859

MIM 19.0 217.7 29.1 0.861

PredRNNv2 19.7 215.4 29.2 0.859

PhyDNet 20.6 226.4 29.1 0.868

SimVP 22.7 242.1 28.9 0.850

MCSTNet 16.9 203.7 29.3 0.868
The best results are highlighted in boldface. The down/up arrow indicates the lower the better/the higher the better.
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front images have a temporal window of 20 days, from 6 March, to

25 March, 2015, with latitudes ranging from 35.6°N to 40.8°N and

longitudes ranging from 142.0°E to 147.2°E. The fronts were

predicted by MCSTNet based on learning the SSS variation laws

in the previous 10 days. Compared to the target, the predicted SSS

sequences and fronts using MCSTNet are authentic and reasonable,

which demonstrates that MCSTNet is effective and appropriate for

SSS sequence prediction and front variation tendency

prediction tasks.

Figure 8 shows the 1-day images as well as the SSS and front

error images. MCSTNet predicted the future 10-day SSS and front

images based on the previous 10-day SSS data. We calculated the

absolute value of the SSS and front errors as the difference between

the target and the predicted SSS and front using MCSTNet. SSS and

front errors are mostly found in the locations of extreme SSS as well

as the front and are numerically small. The results demonstrate that

MCSTNet is accurate for SSS sequence and front prediction tasks.
The values of MSE, MAE, PSNR, and SSIM of SSS sequence

prediction images obtained by MCSTNet and comparative

approaches are shown in Table 3. The best values on all evaluation

indices for the 10-day SSS sequence prediction images are obtained

by MCSTNet compared to the other models. MSE and MAE values

are significantly lower than those of comparative approaches, and

PSNR and SSIM values are somewhat higher. This demonstrates that

MCSTNet outperforms comparative approaches, and using

MCSTNet to predict SSS sequences is reasonable.
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3.3.3 Ablation studies
To demonstrate the effectiveness of the encoder-decoder

structure, the memory-contextual module (MCM), and the time

transfer module (TTM) in MCSTNet, ablation studies were done.

Figure 9 shows the predicted future 10-day front images with odd-

numbered days using each module in MCSTNet based on the previous

10-day satellite SST sequences. From the third line, each line displays

the future 10-day front predicted using MCSTNet, MCSTNet without

TTM, MCSTNet without MCM, and the encoder-decoder structure.

The results demonstrate that themodel using only the encoder-decoder

structure is basically unable to predict the trend of fronts. The

performance of the MCSTNet without MCM model, i.e., combining

TTM with the encoder-decoder structure, outperforms the encoder-

decoder structure. This is because TTM transfers temporal information

and fuses low-level, fine-grained temporal information with high-level

semantic information to improve medium- and long-term prediction

precision. MCSTNet without TTM, i.e., combining MCM with the

encoder-decoder structure, achieves good predictive results. This is

because MCM can fuse low-level spatiotemporal information with

high-level semantic information, and the quality of predicted fronts

decreases with increasing prediction time, while the encoder-decoder

structure extracts fine-grained features to precisely complement this

shortcoming. In contrast to the aforementioned models, the MCSTNet

model, which uses all modules, including the MCM, TTM, and

encoder-decoder structure, not only predicts the front variation trend
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FIGURE 7

Satellite and predicted SSS sequences, physics-based and predicted fronts at five successive sequences with 1-day intervals. The previous 10-day
satellite SSS sequences are employed to predict future 10-day SSS sequences and fronts. (A) Input SSS sequences on 6, 8, 10, 12, and 14 March,
2015. (B) Target SSS, (C) the predicted SSS, (D) target fronts, and (E) the predicted fronts on 16, 18, 20, 22, and 24 March, 2015.
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FIGURE 8

Satellite and predicted SSS sequences, physics-based and predicted fronts, and the error between them. The previous 10-day satellite SSS sequences
are used to predict future 10-day SSS sequences and fronts, but only one day is plotted. From left to right, each column represents target SSS
sequences and fronts, the predicted SSS sequences and fronts by MCSTNet, and the SSS and front error between target and predicted by MCSTNet
(absolute value). There are two examples of SSS and front predictions: (A, B) show images from 26 October, 2014 to 27 October, 2014, while
(C, D) show images from 12 February, 2015 to 13 February, 2015.
TABLE 3 Comparison of the results of 10-day SSS sequence prediction images between MCSTNet and other approaches in terms of MSE, MAE, PSNR
and SSIM on the SSS data.

Models MSE ↓ MAE ↓ PSNR ↑ SSIM ↑

ConvLSTM 0.656 42.2 38.0 0.990

PredRNN 0.649 39.3 38.1 0.989

MIM 0.576 37.2 38.8 0.989

PredRNNv2 0.653 40.7 38.1 0.990

SimVP 0.426 33.4 39.9 0.990

MCUNet 0.380 29.3 40.6 0.991
F
rontiers in Marine Science
 15
The best results are highlighted in boldface. The down/up arrow indicates the lower the better/the higher the better.
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but also generates high-quality fronts. This is important for the

prediction of fronts and illustrates that our proposed encoder-

decoder structure, MCM, and TTM, help with the front

prediction task.

To further investigate the effectiveness of each module in

MCSTNet for the front prediction task, we calculated the

precision of front prediction, which represents the probability of a

correct front prediction and whose formula is written as:

Precision(Imask, Î mask) =
oM−1

i=0 oN−1
j=0

½Imask(i,j) � Î mask(i,j)�+ϵ
oM−1

i=0 oN−1
j=0

½Î mask(i,j)�+ϵ : (10)

In equation (10), Imask and Î mask represent mask maps of target

and predicted front images, respectively, obtained by setting a

threshold value to fronts. In the mask maps, the region with fronts

was set to 1, and the region without fronts was set to 0. M and N

denote the total number of pixels in the meridional and zonal

directions of images, respectively; i and j are the pixel positions; and

ϵ = 0:00001 is the parameter to prevent the division-by-zero issue.The

range of the precision value is 0 to 1, and the larger the better.

The predicted front precision variation with the threshold taken

by fronts and the predicted number of days, using each module in
Frontiers in Marine Science 16
MCSTNet, is shown in Figure 10. Comparing Figures 10A, B, there is

an improvement in the predicted front precision using TTM over the

encoder-decoder structure. Especially for the medium-term front

prediction, the precision improvement is more obvious, indicating

that TTM learns information about the temporal variation

information in the sequence. By comparing Figures 10A, C, the use

of MCM can substantially improve the ability of sequence prediction.

In particular, the improvement is more pronounced for the short-

term front prediction but not for the medium-term front prediction.

When comparing Figures 10A-D, the values of the predicted front

precision by MCSTNet are significantly higher than those of using

only a single module. This is because the MCSTNet model combines

the medium- and long-term sequence prediction benefits of TTM

with the short-term, high-quality prediction capability of MCM,

making improvements for both short-, medium-, and long-term

prediction. The precision of the front prediction decreases as the

predicted time increases for all models, which is consistent with the

characteristics of the prediction task.

The fronts predicted byMCM and TTMwere evaluated objectively

using the MSE, MAE, PSNR, and SSIM evaluation indices, as shown in

Table 4. Both MCM and TTM have an enhancing effect on the
D

A

B

E

F

C

FIGURE 9

Visualization of the benefit of each module in MCSTNet on the SST data. The previous 10-day satellite SST sequences are used to predict future 10-
day fronts. (A) Input SST sequences on 17, 19, 21, 23, and 25 February, 2014. (B) Target fronts, and the predicted fronts by (C) MCSTNet,
(D) MCSTNet without TTM, (E) MCSTNet without MCM, as well as (F) encoder-decoder structure on 27 February, and 1, 3, 5, 7 March, 2014.
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prediction ability of fronts, and the enhancing effect of MCM is greater

than that of TTM. This is because TTM is only a temporal feature

information transfer model, while MCM transfers both temporal and

spatial information. The simultaneous use of both modules obtains the

best values in terms of all evaluation indices.
4 Conclusion and future work

Inspired by the virtues of the U-Net and ConvLSTM architectures,

this paper proposes a continuous spatiotemporal prediction model,

called MCSTNet, for predicting future spatiotemporal variation

sequences of SST and fronts based on continuous mean daily SST

data. The methodology of MCSTNet contains three components: the

encoder-decoder structure, the time transfer module, and the memory-

contextual module. The encoder-decoder structure consists of the data

encoder, feature decoder, and multi-task generation module. The rich

contextual and semantic information in SST sequences and frontal

structures from the SST data is extracted by the encoder-decoder

structure. The temporal information is transferred, and low-level fine-

grained temporal information is fused with high-level semantic
Frontiers in Marine Science 17
information to enhance the medium- and long-term prediction

precision of SST sequences and fronts by the time transfer module.

The low-level spatiotemporal information is fused with high-level

semantic information to improve the short-term prediction precision

of SST sequences and fronts using the memory-contextual module.

Combining the virtues of MSE loss and contextual loss collectively

guides MCSTNet for stability training during the training phase.

Qualitative and quantitative experimental results demonstrate that

the performance of MCSTNet is superior to the SOTA models on

the SST data, which include physical constraints-based PhyDNet,

RNNs-based ConvLSTM, PredRNN, PredRNNv2, as well as MIM,

and CNNs-based SimVP. This is because MCSTNet combines the

detail learning ability of the CNN module with the variation pattern

learning ability of the RNN module, which takes into account the

variation pattern and detail features of SST sequences. The above-

mentioned method, such as PhyDNet, still has room for improvement

in long-term spatiotemporal prediction. It is recommended to add skip

connections in the shallow encoder module of PhyDNet so that fine-

grained spatiotemporal information can be transferred to the deep

decoder module, similar to the time transfer module proposed in this

study. The time transfer module can be improved to transfer fine-
D

A B

C

FIGURE 10

The precision of fronts predicted by MCSTNet and its subnetwork. Precision of front for (A) the encoder-decoder structure, (B) MCSTNet without
MCM, (C) MCSTNet without TTM, and (D) MCSTNet.
TABLE 4 Quantitative comparison of the future 10-day fronts predicted using the modules, i.e., MCM and TTM in MCSTNet, concerning MSE, MAE,
PSNR, and SSIM on the SST data.

Modules

MSE ↓ MAE ↓ PSNR ↑ SSIM ↑TTM MCM

✕ ✕ 16.5 190.0 29.3 0.618

✓ ✕ 14.8 174.4 29.6 0.637

✕ ✓ 12.9 154.9 30.2 0.688

✓ ✓ 11.8 151.9 30.4 0.699
The best results are highlighted in boldface. The down/up arrow indicates the lower the better/the higher the better. The ‘x’ means not using this module, while the ‘√’ means using this module.
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grained spatiotemporal information, thus improving the long-term

prediction ability of PhyDNet. Moreover, the SSS data are applied to

verify the performance and generalization ability of MCSTNet, and the

results show that the predicted SSS sequences and fronts by MCSTNet

are authentic and reasonable. Ablation studies demonstrate the

effectiveness of each module in MCSTNet, including the excellent

feature extraction capability of the encoder-decoder structure, the

short-term prediction capability of the memory-contextual module,

and the medium- and long-term prediction benefits of the time

transfer module.

Due to the limitations of computer computing power, fronts in

the Oyashio current region have been studied. DL methods have the

ability of transfer learning, where the knowledge learnt from one

dataset can be applied to another dataset, making them ideal for

training on SST data in one region and then being applied to other

regions. The model’s prediction effectiveness can be enhanced by

including data from the target area during training. In the future, we

will expand our work to a larger scale or even a global scale to

predict global SST sequences and fronts. Furthermore, we intend to

add self-attention modules (Vaswani et al., 2017) to further improve

the performance of MCSTNet. The DL methodology holds the

promise of guiding the exploration of next-prediction “smart” SST

sequences and fronts by harnessing our observational and

theoretical knowledge to promote the development of this field.
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