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See you somewhere in the
ocean: few-shot domain
adaptive underwater
object detection

Lu Han1,2, JiPing Zhai1,2, Zhibin Yu1,2* and Bing Zheng1,2

1Department of Electronic Engineering, College of Information Science and Engineering, Ocean
University of China, Qingdao, Shandong, China, 2Sanya Oceanographic Institution, Ocean University
of China, Sanya, China
The current data-driven underwater object detection methods have significantly

progressed. However, there are millions of marine creatures in the oceans, and

collecting a corresponding database for each species for similar tasks (such as

object detection)is expensive. Besides, marine environments are more complex

than in-air cases. Water quality, illuminations, and seafloor topography may lead

to domain shifting with visual instability features of underwater objects. To tackle

these problems, we propose a few-shot adaptive object detection framework

with a novel two-stage training approach and a lightweight feature correction

module to accommodate both image-level and instance-level domain shifting

on multiple datasets. Our method can be trained in a source domain and quickly

adapt to an unfamiliar target domain with only a few labeled samples. Extensive

experimental results have demonstrated the knowledge transfer capability of the

proposed method in detecting two similar marine species. The code will be

available at: https://github.com/roadhan/FSCW

KEYWORDS

computer vision, underwater object detection, domain adaptive, few shot,
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1 Introduction

In recent years, with the development of deep learning technology and the

deterioration of the marine ecological environment, underwater optical object detection

has attracted more and more attention. However, many problems still need to be solved in

underwater object detection. On the one hand, the underwater environment is complex

and changeable. Affected by the scattering and absorption of the water medium, the quality

of the images is usually poor (Fu et al., 2023). These underwater factors would inevitably

involve inconsistent visual features. On the other hand, underwater images are challenging

to collect and have limited reusability. Suppose we need more samples to boost a deep-

learning model to handle a detection task. Generally, a common method is to use another

large-scale dataset (e.g., Microsoft Common Objects in Context(MSCOCO) dataset Lin
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et al. (2014)) to boost the model and finetune the model with

limited samples with new categories (Cai et al., 2022). This method

can be particularly helpful for new dataset tasks if the large-scale

dataset contains similar target categories (Zhu et al., 2021a) (e.g., the

experience of motorbike detection can help bicycle detection in

another task). However, there are domain shifts between different

datasets due to differences in shots, environments, and objects

themselves (Li et al., 2022a; Yu et al., 2022). These domain shifts

prevent us from fully exploiting prior knowledge on large datasets.

Therefore, in-air adaptive object detection algorithms are designed

to solve such problems. Different underwater optical characteristics

can also easily cause domain shifts (Liu et al., 2020), resulting in hue

changes and discrepancies in visual features. Moreover, due to

changes in the ecological environment of the new waters, similar

species may also have different appearance characteristics.

Therefore, under these domain shifts, datasets collected in one

water body are unlikely to help detection tasks in another

water environment.

Similar to in-air domain adaptive object detection (Wang et al.,

2019), we can divide underwater domain shift into image-level

domain shift and instance domain shift. Image-level shift refers to

the shift of the image in terms of style, brightness, etc. As shown in

Figure 1, we attribute water transparency and chromatic aberration

to image-level shift underwater. Instance-level shift refers to the

shift of the target in appearance and size. We group organisms of

the same family or genus but different species as instance-level shifts

underwater. Any domain shift will have a significant performance

degradation on the underwater detection network. The green

bounding box represents the undetected target. Regarding results

in Figure 1, the detection network can hardly work well under

image-level and instance-level shifts.

Unsupervised domain-adaptive object detection based on deep

learning is generally considered a solution to this kind of problem

(Chen et al., 2018; Saito et al., 2019; Shen et al., 2019). However, the

current domain-adaptive object detection algorithms have several

apparent flaws. First, these methods always need a large amount of

target domain data for training (Wang et al., 2019), which is difficult

to obtain in underwater scenes. Second, due to the algal blooms or

river floods at different times, the environmental conditions of the

offshore and river outlets may change unexpectedly and cause a

changeable aquatic background.

Although many existing few-shot object detection methods can

work with a few data, their feature extraction ability on the new

domain will be significantly affected by the changeable aquatic

background. This is because most existing few-shot object

detection considered shared weights or a separately trained

feature extraction module to extract the feature map of the new

class. Since the model has yet to see the new domain, the feature

extraction ability on the new domain would be insufficient (Li et al.,

2022d). On the other hand, most domain-adaptive methods can

adapt to a new domain with sufficient retraining on the source

domain and target domain data (Wang et al., 2019). However, such

methods usually need a large amount of target domain data. The

lengthy retraining time also hinders further applications on

underwater vision.
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Inspired by the theory of few-shot learning (Kang et al., 2019)

and transfer learning (Sun et al., 2021), we propose a fast few-shot

domain-adaptive algorithm to tackle the challenge of underwater

cross-domain object detection. Our contributions can be

summarized as follows: 1) Aiming at the problem of insufficient

ability of the backbone to extract features, as shown in Figure 2, we

fused the two-branch algorithm into a single-branch object

detection algorithm with a channel-level feature correction

module to solve this problem. 2) Many existing domain

adaptation algorithms need a long time to adjust to a new

domain. We propose a two-stage domain adaptation training

strategy, which only takes a short time to adapt to the new target

domain. 3) We conduct exhaustive experiments on two datasets,

demonstrating that our algorithm performs excellently on few-shot

domain adaptation problems. Compared to other domain

adaptation algorithms, our algorithm has two key advantages:
1) Boosting the model with limited data. Compared with

unsupervised domain adaptation (UDA) object detection,

which requires many unlabeled samples, our model only

needs a small number of labeled samples to complete the

training and achieve excellent performance during the

target domain adaptation.

2) Adapting new tasks with less time. When our model

encounters unfamiliar environments, it no longer needs

to be trained on both the source and target domain data

simultaneously. Instead, it only needs to be fine-tuned on a

small number of labeled target domain data sets, which

reduces the adaptation time.
2 Related work

General Object Detection refers to finding the object we need

from the image and giving an accurate mark frame and category (Li

et al., 2022a). Current deep learning-based object detection can be

divided into two architectures: one-stage and two-stage methods.

The two-stage methods are mainly based on the region

convolutional neural network (R-CNN) series. They use a

convolutional neural network (CNN) to generate region proposals

where objects may exist and perform further category prediction

and bounding box regression in the detection head module. The

one-stage methods perform end-to-end bounding box regression

and category prediction through the neural network. The one-stage

methods include You Only Look Once (YOLO) (Redmon et al.,

2016; Zhu et al., 2021b), RetinaNet (Lin et al., 2017b), etc. Usually,

two-stage methods outperform one-stage methods in accuracy, but

they have poorer inference speeds. Both two architectures require

large datasets for training. Considering the real-time requirements

of underwater object detection, we use YOLOv5 (Zhu et al., 2021b)

as the baseline in this paper

Underwater Object Detection is a particular branch of object

detection. Compared with general object detection tasks,

underwater images often have problems such as blurring, color
frontiersin.org
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shifting, and costly data collection. To tackle these problems, (Lin

et al., 2020) proposed an augmentation method called the region of

interest mix-up (RoIMix), by fusing the proposed regions of

different images to enhance the generalization of the detection

network. (Fan et al., 2020a) proposed an underwater detection

framework with feature enhancement and anchor refinement,

which improves the ability of the detector to deal with

underwater images of different scales. (Liang and Song, 2022)

applying Self-Attention modules to the region of interest (RoI)

features to improve underwater detector performance. However,

the underwater objection detection methods often have to be

deployed in an unseen underwater environment, which can lead

to a domain shift. Unfortunately, the current underwater object

detection algorithms have not yet considered the problem of

adapting to different waters.

Domain Adaptation refers to reducing domain shift by training

neural networks on source and target domain datasets. The current

domain adaptive object detection is mainly based on unsupervised

domain adaptation. According to the domain adaptation theory

(Ganin et al., 2016), when performing neural network domain

adaptation, the features extracted by the backbone must have

domain invariant properties to adapt to a new domain. Ganin et al.

2016 used a gradient reversal layer with a domain classifier to

constrain the backbone to extract features without domain shift to

achieve this goal. This method is called domain adversarial training,

which is still adopted by most domain adaptation methods. (Chen

et al., 2018) divides domain shift into image-level and instance-level

domain shift, and two adaptive components are designed to adapt to

these two domain shifts, respectively. (Saito et al., 2019) designed a

weak alignment model using adversarial alignment loss to address

domain variance. (Kiran et al., 2022) proposes the domain transfer

module (DTM) to transform the source image according to different

target domain images, enabling the network to avoid catastrophic

forgetting when performing multi-domain adaptation. (Li et al.,

2022b) proposed a novel semantic conditional adaptation

framework to reduce the cross-domain misclassification problem.

The above works only focus on domain adaptation under large

unsupervised samples and do not consider the problems
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encountered in few-shot domain adaptation. In the case of only a

small number of samples, labeling samples do not add too much

labor overhead. (Wang et al., 2019) considers the domain adaptation

problem under the condition of small sample labeling. He proposed a

two-layer module to adapt to the domain adaptive object detection

problem under limited loose labeling. Loose labeling means that only

part of each image is labeled, and more images are used to improve

the target information of labeling. This method is promising for cases

when image acquisition is easy but labeling is complex. Nevertheless,

the reverse more or less applies in underwater object detection.

Collecting underwater data is always expensive and time-

consuming, but labeling objects is relatively easy. Unlike other

domain adaptation methods, our model can quickly adapt to the

target domain when there are only a few labeled samples in the

target domain.

Few-shot learning refers to learning new categories with

limited data. In the field of object detection, methods can be

divided into two main branches: dual-branch methods and single-

branch methods (Köhler et al., 2021). The dual-branch methods are

shown in Figure 3A, and an auxiliary feature extraction module is

used to extract the feature vector of the support set image. Support

set vectors are then channel-level interacted with query set vectors.

(Kang et al., 2019) use a pre-trained backbone on the basis of YOLO

to extract the support set feature vector which will reweight the

query set vector. (Fan et al., 2020b) on the basis of Faster-RCNN,

use the shared weight backbone to extract the support set feature

vector to complete the reweighting step and use the multi-relation

detector to classify the target. (Lee et al., 2022) propose a method to

refine the support information through an attention mechanism

among support data before aggregating the query and support data.

The single-branch methods are shown in Figure 3B. The single-

branch methods are mainly based on transfer learning. (Wang et al.,

2020) used the transfer learning theory to unfreeze the bounding

box regression and the classification layer of Faster R-CNN achieves

excellent performance. Sun et al. proposed a method (Sun et al.,

2021) by controlling the form of intersection over the union (IoU)

output with the Faster R-CNN of the unfreezing region proposal

network (RPN) and region of interest (ROI) pooling layers and
FIGURE 1

Two different underwater domain shifts and cross-domain performance degradation of detectors.
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achieved the best performance at that time. Generally, the single-

branch methods have only one backbone with fewer parameters and

converge faster. Since the dual-branch methods considered meta-

learning and more parameters, they can achieve better performance

on few-shot learning. But their training speed is lower than single-

branch cases. Since both two kinds of methods did not consider

domain shifts, they will lead to a dramatic drop in performance

when handling new samples from another domain. Our method

combines the advantages of both approaches. To address this issue,

we propose the feature correction module (FCM) (Figure 3C),

which plays a similar role on the backbone B of dual-branch

methods to enhance feature extraction ability with few samples.

Furthermore, we use a two-stage fine-tuning method to make our

model adjust itself to the features of the new domain.
Frontiers in Marine Science 04
3 Method

This section will briefly introduce our few-shot domain

adaptive object detection algorithm. Due to the insufficient

samples in the underwater target domain, the existing domain

adaptation methods cannot achieve good results. The main

reason for the poor performance in cross-domain object detection

tasks is that the feature extraction ability of the backbone can hardly

work in new domains (Li et al., 2022d). To solve this problem, we

propose a solution. Firstly, we can overcome the overfitting problem

of few-shot by introducing a two-stage training strategy. The

proposed strategy can also reduce the need for repeated training

on the source domain, shortening the time to adapt to the new

domain. Secondly, by introducing a feature correction module, we
FIGURE 2

Improve the dual-branch structure to a single-branch structure that is more suitable for domain adaptation problems.
B CA

FIGURE 3

The comparison among two typical few-shot learning structures and ours.
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further enhance the feature extraction ability of the backbone on

new domains. Since the feature correction module only contains

quite a few trainable parameters, it only takes a little for training.

When only a few labeled samples are in the target domain, our

method can quickly adapt to the target domain and achieve

excellent performance.
3.1 Problem definition

We follow and extend the definition of “n-shot learning” given

by (Kang et al., 2019). Suppose we have k images with labels in the

source domain. We can define these images and labels in the source

domain as Ds = f(Xs1,Ys1),…, (Xsk,Ysk)g. Similarly, we can define

the images and labels in the target domain as Dt = f(Xt1,Yt1),…, (

Xtm,Ytm)g. Since the target domain data is often less than the source

domain, we have k >> m. Here Ds and Dt represent the source

domain and target domain data, respectively. X and Y represent the

images and the corresponding target labels. Let num() denote the

number of instances in a domain. In Kang et al.’s work (Kang et al.,

2019), they defined n-shot (num(X) = n) as available samples

(instances) in a domain. In the case of instance-level domain

shift, the shape of the target will change significantly with the

region. Thus, we followed this definition to evaluate instance-level

domain shifts as n − shotinstance = num(Xt1) +… + num(Xtm), where

the num() is the number of instances of an image. Since the main

factor to cause image-level domain shifts is the environment (not

the objects), we further define n − shotimage = num0(Xt)), where the

num0() means the number of images.
3.2 Two-stage fine-tuning method

Most existing few-shot learning approaches consider only

adjusting the classification and the bounding Box regression

header without changing the parameters of the backbone (Wang

et al., 2020). Such an operation can correct new few-shot samples in

a short time. However, the underwater domain shifts will also affect

the backbone rather than the header. Inspired by Li et al.’s work (Li

et al., 2022d), which proposed a two-stage fine-tuning strategy to

correct a cross-domain classification task, we further extend the

fine- tuning method to so lve a cross -domain objec t

detection problem.

Since different layers of the backbone network can extract

different scales of features (Lin et al., 2017a), we focus on the
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domain correction of the backbone. Furthermore, to reduce the

fine-tuning cost and accelerate the re-training speed, we insert some

feature extraction modules (FCMs, please refer to Section 3.3 for

detail) into the backbone and only update these feature extraction

modules in the fine-tuning phase. As a result, our two-stage fine-

tuning strategy can reduce the number of trainable parameters to

solve the overfitting problem of few-shot. Our two-stage training

method reduces the number of parameters by 42% compared to

direct training YOLOv5, while our newly added FCM only increases

the number of parameters by 0.00278%. The training method is

shown in Figure 4. To overcome the underwater cross-domain

challenge, our method includes two stages:

Base training: Our first stage is only performed on the source

domain training dataset. In order to ensure a fair comparison,

except for the modification of the network module we will mention

in Section 3.3, the training hyperparameters remain the same as

those of YOLOv5. We did not perform any hyperparameter tuning.

The joint loss function is:

Ltotal = l1Lcls + l2Lobj + l3Lbox (1)

where l1, l2 and l3 is the custom hyperparameter. Among

them, both Lcls and Lobj using binary cross entropy (BCE) loss for

classification and foreground detection, respectively:

LBCE = −
w
N o

N

n=1
½yn · log F(x)x∼Ps(x) + (1 − yn) · log (1 − F(x)x∼Ps(x))�

(2)

where w is a hyperparameter, x and y represents different

images and labels. Ps/t represents our network to obtain data from

the source or target domain at different training stages. represents

the number of samples. F represents the model. Lbox uses CIoU loss

(Zheng et al., 2020):

LCIoU = IoU −
r2(bs, bsgt)

c2
+ av

� �
(3)

v =
4
p2 arctan  

wgt

hgt
− arctan  

w
h

 !2

(4)

a =
v

(1 − IoU) + v
(5)

where r represents the Euclidean distance between bs and bsgt , b
s/t

and bs=tgt represents the detected bounding box and ground truth on the
FIGURE 4

Our two-stage training approach.
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source domain dataset or target domain dataset. IoU represents the

intersection over the union.

Fine-tuning: Our second stage (fine-tuning) is performed on a

small amount of labeled target domain data. In this stage, we freeze

the neck and head modules of the detection network and only

perform gradient updates on the backbone, the function is:

∂ Ltotal
∂ nettb

=
∂ Ltotal
∂ netth

·
∂ netth
∂ nettb

(6)

W(netth) ≡ W(netsh) (7)

Among them, nett=sh represents the neck and head network

modules on the target domain dataset or source domain dataset,

and nettb represents the backbone module on the target domain

dataset. W represents the network weight.

Since the target domain dataset is adopted in the fine-tuning

stage, our BCE loss and CIoU loss function are changed accordingly

to:

LBCE = −
w
N o

N

n=1
½yn · log F(x)x∼Pt (x) + (1 − yn) · log (1 − F(x)x∼Pt (x))�

(8)

LCIoU 0 = IoU −
r2(bt , btgt)

c2
+ av

� �
(9)
3.3 Lightweight feature correction module

In the field of few-shot learning, feature reweighting for dual-

branch object detection is a popular solution (Köhler et al., 2021). In

dual-branch few-shot object detection, the channel reweighting of

the support set vector to the query set vector plays a key role in few-

shot learning. Following this idea, we aim to build a reweighting

module in our single backbone to help our model quickly adapt to
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new samples. However, since the backbone has yet to see this new

category, it cannot accurately extract information. Therefore, we

design a channel-level feature rectification module that can replace

the feature interaction stage in two-stage few-shot training. We

insert it into the backbone so the backbone can perform channel

correction on the generated feature vector according to the image

domain information in the new domain during the training process.

In the backbone network, a common view is that we can extract

the different scales of features from different layers (Lin et al., 2017a;

Li et al., 2022d). Inspired by this point, we uniformly insert the FCM

into the backbone network to address the instance-level and image-

level domain shifts.

The Feature Correction Module (FCM) we designed is shown

in the lower part of Figure 5, and then we insert it into

CSPDarknet53, which is the backbone of YOLOv5, as shown in

the upper part of Figure 5. In each FCM, there are two branches.

The first branch saves the raw input feature maps, and the second

generates a reweighting vector to correct the feature maps of the

first branch. Suppose the input feature map size is h*w*c. In the

second branch, the feature map will first go through a global avg-

pooling operation to obtain a 1*1*c vector followed by c groups

depthwise convolution. Next, we feed the output 1*1*c vector to a

sigmoid activation layer to normalize and reweight vectors. At

last, the reweighted vectors will multiply the feature maps of the

first branch to obtain the final outputs
4 Experiment

In this section, we will introduce the experimental results of our

method and other methods in different scenarios. The experimental

results are represented by the mean average precision (mAP) with

an IOU threshold of 0.5. The mAP is determined by Precision and

Recall. Precision represents the accuracy of the detected samples,

and Recall represents the proportion of correctly detected samples

among all correct samples.
FIGURE 5

Our model structure and the specific implementation of the feature correction module.
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Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Among them, TP refers to the true positive, which means the

detected real samples; FN refers to the false negative, which means

the correct samples that were not detected; and FP refers to the false

positive, which means the falsely detected samples. The AP is

determined by the area under the Precision-Recall (PR) curve,

and we use the interpolation method to calculate it:

AP = o
n−1

i=1
(Recalli+1 − Recalli) · Precisioninterp(Recalli+1) (12)

Here mAP refers to the average value of each type of AP:

mAP =o
k

i=1
APi (13)

The mAP50 used in the following experiments means that the

mAP score with an IOU threshold of 0.5. The adaptation time refers

to the time required for each method to achieve the optimal effect in

the target domain, and the time unit is hours (h).
4.1 Datasets

S-UODAC2020: This dataset was processed by Song et al. (Song

et al., 2021). They used the style transfer model WCT2 (Yoo et al.,

2019) to process the original UODAC2020 dataset into seven

common underwater domains for evaluating domain adaptation,

and each domain type has 791 images. type1-type6 is the source

domain, and type7 is the target domain.

URPC20221: URPC contains 9,000 images. The original dataset

contains four categories, such as starfish. Here we only take the

starfish category for analysis.

Aquarium2: The dataset consists of 638 images collected from

two aquariums in the United States, which also contain the starfish

class. Since the paired categories in the two data sets only include

the starfish category, we use the starfish class from these two

datasets (URPC and Aquarium) for cross-domain testing, in

which URPC2022 is the source domain and Aquarium is the

target domain.
4.2 Implementation details

Our code is based on official YOLOv5x(PyTorch)3 with COCO

dataset pre-training weights. Except for our proposed FCM, we do

not adopt any other modules to modify the network. We adopt the

Stochastic Gradient Descent (SGD) optimizer with a 0.01 learning

rate and a 16 batch size. We set the picture size to 640 on the long
2 https://universe.roboflow.com/data-science-day-dry-run/aquarium-

6cfzm/dataset/1.

1 http://www.urpc.org.cn/
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side. All training time statistics are performed with a graphic card of

GTX1080ti (11G).
4.3 Benchmark comparison

In Table 1, we compared two UDA methods including SCL

(Shen et al., 2019) and SCAN (Li et al., 2022b) on the S-

UODAC2020 dataset. The four columns (holothurian, echinus,

scallop and starfish) in Table 1 represent the AP50 values of each

category in the dataset, and mAP50 represents the average value of

all categories. The time column represents the adaptation time of

the algorithm when encountering a new domain, and the unit is

hours. For the baseline, we used the network freeze strategy (freeze

backbone) recommended by YOLOv5 to solve the few-shot

problem (YOLOv5 w/ft). Since the dataset mainly includes image-

level domain shifts, the number of targets in each picture is large, we

adopt shot = num (Xt), and the performance results under ten shots

are shown in Table 1. We can find that the UDAmethods have poor

accuracy under 10-shot. The two UDA methods also take a long

time to adapt to each domain. Our method overcomes this problem

with the only additional cost of labeling a few samples, which does

not consume too much human effort.

In Table 2, we also compared methods such as SCL, SCAN, and

SIGMA (Li et al., 2022c) on the URPC2022 and Aquarium dataset

settings. The number of targets in the images of these datasets is

relatively balanced, and there are image-level and instance-level

domain offsets at the same time, so we strictly use the method to

count. We provide the results under 3-shot and 10-shot in Table 2.

The experimental results of “YOLOv5 w/ft” shown in Table 2

freezing the backbone module and fine-tuning the header module

are better than “YOLOv5 w/o ft” but worse than our results. That

means freezing the backbone module and fine-tuning the header

module (YOLOv5 w/ft) can correct the domain shift to a certain

extent, but the efficiency is lower than ours (freezing the head

module and updating the backbone).

It can be seen that the classic UDA methods (SCL, SCAN, and

SIGMA) cannot work with a small number of samples, and their

time to adapt to the unfamiliar domain is much longer than our

method, so they cannot quickly adapt to the unfamiliar domain.
4.4 Ablation analysis

To validate each component of our method, we design an

ablation study on the S-UODAC dataset, as shown in Table 3.

The “bb-ft” represents our migration learning strategy, and the

“FCM” denotes the feature correction module. The four columns

before the mAP column in Table 3 represent the AP50 values of

each category in the dataset, and mAP50 represents the average

value of all categories. Both the feature correction module and the

migration learning strategy can significantly improve the
3 https://github.com/ultralytics/yolov5
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performance of the baseline model. We achieve the best result when

these two components work simultaneously.

In Table 4, we tested with the activation functions in FCM and

found that the sigmoid function performs slightly better than

rectified linear unit (ReLU) in performance. For the three

challenging categories, the sigmoid function leads to significant

improvements. We conclude that this is because the sigmoid

normalizes the vector between 0 and 1, which helps the final

reweighting of our feature correction module. We also found that

the FCM module with the sigmoid function converges faster than

the case with the ReLU function. The result also verifies the point of

attention mechanisms in recent years (Vaswani et al., 2017).

We visualize the results of the ablation experiments. The green

bounding box in the figure refers to the correct sample missed by

the detector. Figure 6A results from the benchmark training only on

the source domain. The model missed many instances when we
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performed a cross-domain test. The results in Figure 6A also show

the shortcomings of current detectors in cross-domain detection

performance. Figure 6B shows the two-stage training method’s

result. We can see that the fine-tuning process can significantly

reduce the number of missed samples, but some samples are still

undetected. Figure 6C is the result of using the two-stage training

method and FCM at the same time. It can be seen that our method

has only one missed target and no false detections. Based on the

result in Figure 6, we can conclude that both the proposed two-stage

training method and FCM can efficiently resist the performance

degradation from the cross-domain detection task.

To further verify the attention improvement, Figure 7 shows

some examples using the Gradient-weighted Class Activation

Mapping (Grad-CAM) (Selvaraju et al., 2017) image under

different datasets. Gradient-weighted Class Activation Mapping

can reflect which part of the image the neural network pays
TABLE 1 Our comparison results with other methods on the S-UODAC dataset.

method holothurian echinus scallop starfish mAP50 Time

SCL 0.491 0.725 0.589 0.345 0.546 13.2h

SCAN 0.399 0.745 0.469 0.252 0.466 6.9h

YOLOv5 w/ft 0.604 0.780 0.707 0.587 0.669 0.19h

Ours 0.613 0.804 0.722 0.685 0.706 0.19h
frontie
TABLE 3 Our ablation experiments on the S-UODAC dataset.

method bb-ft FCM holothurian echinus scallop starfish mAP50

Benchmark 0.425 0.803 0.647 0.519 0.599

Ours ✓ 0.621 0.783 0.703 0.617 0.681

✓ 0.580 0.798 0.725 0.608 0.678

✓ ✓ 0.613 0.804 0.722 0.685 0.706
✓ represents the training method using the column.
TABLE 2 Our comparison results with other methods on the URPC2022 and Aquarium dataset.

method 3-shot 10-shot

mAP50 Time mAP50 Time

SCL 0.349 14.3h 0.478 15.6h

SCAN 0.545 5.1h 0.607 6.2h

SIGMA 0.636 6.6h 0.652 6.5h

YOLOv5 w/o ft 0.516 – 0.516 –

YOLOv5 w/ft 0.685 0.1h 0.714 0.14h

Ours 0.710 0.09h 0.736 0.11h
TABLE 4 Performance of different activation functions on the S-UODAC dataset.

activation holothurian echinus scallop starfish mAP50

ReLU 0.596 0.814 0.697 0.683 0.698

Sigmoid 0.613 0.804 0.722 0.685 0.706
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attention to when detecting and recognizing a certain type of object.

The redder the color of the heat map, the more the network pays

attention to this part. Figure 7A contains three raw images;

Figure 7B shows the results of YOLOv5 trained only on the

source domain. We can see that many target areas are inactivated

during the detection process. In other words, the network has not

paid attention to these areas. Figure 7C represents the Grad-CAM

results of our method. All target regions are accurately activated

after fine tuning with our approach. The heat map visualization

results indicate that our method can better locate the object in the

new domain. The heat map visualization results can also prove the

above point of view. Figure 7B (freezing the backbone module and
Frontiers in Marine Science 09
fine-tuning the header module) performs worse than Figure 7C

(freezing the header module and fine-tuning the backbone module).

Our network paid attention to these targets without missing the

original detected samples, indicating that the extracted features are

offset from the actual feature space when the backbone is not

adapted to the target domain.

When we select the final weight, we adopt the “early stop”

strategy, which allows us to obtain the training weight when the loss

of the verification set is the smallest. Figure 8 is the loss curve image

during our fine-tuning process. In the “early stop” strategy, a

commonly used parameter is “patience”. Assuming its value is n,

it means that if the result of the kth epoch training is still the best
B CA

FIGURE 6

Visualization results of ablation experiments.
B CA

FIGURE 7

Our Grad-CAM images under different datasets.
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after n epochs, stop the training. The weight of the kth epoch is

selected as the final weight. We set n to 250. From Figure 8, we can

find that our method quickly converged in about 30th epoch. Then

the curve gradually grew up. Since the lowest point is clear, a large

enough can easily locate the lowest point.

We also test our model in a short underwater video to prove the

superiority of our method for object detection in unfamiliar waters.

Figure 9 shows the detection result of one frame. The left side is our

method, and the right is the fine-tuning results after pre-training on

a large-scale dataset (COCO) of YOLOv5. Our approach is

significantly ahead of the comparison method in both recall and

precision, and our fine-tuning uses the first frame of the video.

More details can be found in our GitHub project.
5 Discussion

Currently, deep learning has achieved remarkable results in

computer vision and has also produced good results in underwater

computer vision, such as underwater observation and underwater

image processing. However, its data-driven models also have

limitations. As discussed in the article, deep learning models

have shown a significant performance drop in test scenarios in

an unfamiliar environment with different data distributions from
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the training set. Previous works Chen et al. (2018); Ganin et al.

(2016) have shown that the main reason for cross-domain

performance degradation in tasks such as classification and

object detection is that the backbone cannot extract domain-

invariant features.

In the field of underwater vision, we have an urgent need for

domain adaptation algorithms:
• Underwater images are affected by plankton and river

flooding disasters, often resulting in large changes in

image colors.

• In different water domains, due to environmental influences,

biological morphology often has certain changes.

• Many different species of the same family have certain

differences in appearance, which also brings about

domain shifts.
Regardless of the data domain in which the target category

appears, humans can accurately capture the invariant features in

different domains to complete classification and labeling. Inspired

by this point, many researchers trained the backbone through

domain adversarial training and other strategies, which can make

the backbone extract domain invariant features. However, this

training method requires a large number of target domain

samples, which is very difficult to obtain in underwater scenarios.

Unfortunately, we often need more training samples to adapt to the

test scenario, especially when underwater data collection

is challenging.

We propose a few-shot domain adaptation object detection

algorithm based on a two-stage training strategy and an FCM

module, which can quickly adapt to the target domain with only

a small number of annotated samples, not only solving the defects of

previous domain adaptation work under few-shot but also being

more suitable for underwater scene applications. However, our

method still has some drawbacks. When the algorithm adapts to

the target domain, it does not consider catastrophic forgetting.

Because we only use target domain samples to fine-tune the

network rather than jointly training with source domain samples,

this inevitably leads to a performance drop in the source domain.
FIGURE 8

Our loss curve chart.
FIGURE 9

Demo on a YouTube video, the confidence threshold is 0.4 and the IOU threshold is 0.45.
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Our current solution to this problem is to retain weight files for each

domain so that they can be used at any time.
6 Conclusion

This paper proposes a novel few-shot domain adaptive object

detection framework. Our algorithm can transfer the object

knowledge information from the source domain to the target

domain, achieving a situation where only a small number of

annotated target domain samples are used. At the same time, our

algorithm also inspires unsupervised few-shot domain adaptive

object detection, such as exploring the use of an image-to-image

translation model to generate a small number of target domain

samples for training using our method.
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