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of small copepods in
mesozooplankton as prey
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The mullet Liza haematocheila is widely distributed in low-salinity waters around

the world and has high economic value. However, details regarding the foraging

ecology of mullet larvae remain unclear. Larvae of L. haematocheila were

sampled in Laizhou Bay of the Bohai Sea, China, in May 2016, and diet

composition was detected using gut content analysis to compare differences

in feeding parameters and diet shift in dominant prey during ontogeny. The

results showed no linear relationship between gape size (GS) and standard length

(SL) at larva length <7 mm (flexion larvae, FL), but linear increase was observed for

SL >7 mm (post-flexion larvae, PFL). Maximum prey size (MPS) overlapped with

GS during the FL stage but was never higher than GS during the PFL stage. Trends

of increasing MPS and prey size range (PSR) during the PFL stage were lower than

those during the FL stage, but prey number (PN) increased significantly during the

PFL stage. Diet composition analyses in mullet larvae showed a total of 10

mesozooplankton species (or categories), of which 8 species were copepods

(including copepods nauplii and copepodites), and showed the dominance of 4

small copepods (<1 mm). Analyses of the numerical proportion of dominant

copepods showed that the largest prey (Paracalanus parvus) gradually increased

as GS increased; conversely, the smallest prey (nauplii of Calanus sinicus)

decreased. Collectively, these results suggest that PFL tends to exhibit

increased PN but not prey size or size range, and diet shifts from smaller to

larger prey during ontogeny inmullet larvae. All these indicate that PFL has higher

prey selection ability compared with FL, specifically switching the diet to include

larger small copepods during the PFL stage and increasing the prey number

instead of increasing prey size. These determine the importance of small

copepods in mesozooplankton as dominant prey and facilitate predictions of

the impact of climate change on mesozooplankton and fish larvae.
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1 Introduction

Knowledge of the foraging ecology of fishes is fundamental both

to understanding the processes that function at the individual,

population, and community levels and for the management and

conservation of fish populations and habitats (Nunn et al., 2012).

Fish food habits research seeks to predict the composition of the fish

diet given the size, morphological, and behavioral characteristics of

the fish species in order to clearly define their feeding preferences

and assess the available food resources and their growth. Feeding

and foraging successfully during the larval stage is critical to fish

survival (Devries et al., 1998; Skrzypczak et al., 1998). Many factors

affect the success of larval predation, including the ability of the

predator to consume its prey, morphological constraints during

ontogeny, and prey size and abundance (Furgała-Selezniow et al.,

2014). It has been reported that fish larvae are gap-limited

predators, and they usually swallow prey whole when foraging.

Several researchers have documented the relationship between gape

size (GS) and prey selection of juvenile fish (Nunn et al., 2007), but

few studies have examined this relationship in larval fish. Generally,

fish larvae prefer to consume larger prey as their body length and

GS increase (Economou, 1991; Pepin and Penney, 1997; Llopiz and

Cowen, 2009), and increases in GS along with ontogeny often lead

to shifts in diet composition (Nunn et al., 2012). However, prey size

is not the only factor that affects prey selection of fish larvae. The

taxonomic identity of potential prey, especially copepods, can also

affect prey selection by fish larvae (Simonsen et al., 2006; Voss et al.,

2006; Catalán et al., 2007). At the onset of exogenous feeding, many

fish species are zooplanktivorous, and their survival, growth, and

ultimately, their recruitment, is often strongly linked with the

availability of zooplankton during early life stages (Mamcarz

et al., 1998; Nunn et al., 2007). Calanoid copepods, including

their various developmental stages (eggs, nauplii, copepodites,

and adults), are important prey for fish larvae, especially in

marine ecosystems (Ferrari and Chieregato, 1981; Thiel et al.,

1996; Montagnes et al., 2010; Nunn et al., 2012).

Mugilidae species are widely distributed, and they play

important ecological roles in coastal systems as well as in fisheries

in some parts of the world. These species also have value as

biomarkers for monitoring the health of coastal habitats (Ferreira

et al., 2004; Ferreira et al., 2005; Waltham et al., 2013; Ouali et al.,

2018; Ge et al., 2020). As a typical fish in coastal areas, the foraging

ecology of this species, especially larvae and juveniles, can reflect the

mesozooplankton situation as prey and environmental conditions

in estuarine and coastal zones, as well as the direct/indirect effects of

climate change on early recruitment of typical fish resources. Mullet

larvae are planktonic feeders with a standard length between 10 and

20 mm (Zismann et al., 1975; Brownell, 1979; Gisbert et al., 1996;

Inoue et al., 2005), and they may exhibit changes in diet, initially

feeding on small invertebrates and later primarily feeding on

benthic organisms (Suzuki, 1965; Blaber and Whitfield, 1977).

Calanoid copepods are the first important component of the diet

of mugilidae species. Cyclopoid copepods also feature strongly in

the diet of late larvae and early juveniles among Mugil species, and

Ciripedia nauplii, Polychaeta, and Harpacticoida are other common
Frontiers in Marine Science 02
diet components in juveniles of Liza species (Blaber and Whitfield,

1977; Ferrari and Chieregato, 1981; Whitfield, 1985; Eggold and

Motta, 1992; Gisbert et al., 1995). However, knowledge about the

foraging ecology of earlier larval stages of these organisms after the

exogenous feeding stage remains limited, and whether there are

differences in diet between the flexion and postflexion stages is

unclear. Apart from the similarity in early diet between mullet fry

(Pisarevskaya and Aksenova, 1991), there does not appear to be a

universal pattern in predator-prey size relationships for fish larvae

(Peck et al., 2012).

The mullet Liza haematocheila (Mugiliformes, Mugilidae) is

widely distributed in low-salinity waters around the world (Wang

et al., 2018), and it is common in all of the Chinese seas, from the

Bohai Sea to the South China Sea (Yang et al., 2012). This species

has become an economically important fish in China due to its

rapid growth, high survival rate, and economic value. Studies in

feeding, breeding and physiology of L. haematochelia were mainly

based on aquaculture (Yang et al., 2015; Liu et al., 2021),

accordingly, proteomics (Janson et al., 2019) and immunology

(Kim et al., 2019; Omeka et al., 2019; Qiao et al., 2019;

Sandamalika et al., 2019) were further studied. Studies of the in

situ foraging ecology of L. haematocheila, however, are rare and

even no research is available regarding the foraging ecology of

larvae (Dolganova et al., 2008). Recent research on the egg and

larval distribution of L. haematochelia in the Bohai Sea, a region

similar to the one we studied, has highlighted the importance of

resource conservation and protecting the spawning grounds of this

species (Niu et al., 2022).

In this study, the foraging ecology of larvae of mullet L.

haematocheila was studied by examining the gut contents.

Selective parameters related to feeding during ontogeny were

analyzed, and the prey selection was described during the

ontogeny of mullet larvae. The aims of this study were to

characterize the foraging ecology of L. haematocheila larvae,

analyze prey selection during ontogeny, assess the importance of

dominant mesozooplankton as prey, and predict the impact of

climate change on mesozooplankton and eventually on early

replenishment of fishery resources.
2 Material and methods

2.1 Study area and sampling

Fish larvae were collected at 5 stations in Laizhou Bay of the

Bohai Sea, China, in May 2016 (Figure 1). Laizhou Bay is one of

the three bays of the Bohai Sea, and also includes the estuary of the

Yellow River, Xiaoqing River, Jiaolai River and other rivers. With

abundant baits, Laizhou Bay is the main spawning and feeding

grounds for various economic fish in the Yellow Sea and the Bohai

Sea. Therefore, Laizhou Bay is chosen as the sea area for this study.

All fish larvae were captured using a 500-mm mesh zooplankton

net (mouth diameter: 50 cm). The net was towed horizontally at a

speed of 2 miles per hour for 10 minutes. Samples were preserved

in 4% formalin and transported to the laboratory.
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2.2 Samples analysis

The dynamics of feeding success and diet composition of fish

larvae were almost exclusively evaluated based on gut content

analysis, which is essentially the only technique available for

investigating the specific types of prey that fish larvae consume

(Peck et al., 2012). In the laboratory, L. haematocheila larvae were

sorted from captured samples. Mullet larvae that had a

gastrointestinal tract full of food were examined, as they could be

used to detect freshly ingested zooplankton. Standard length (SL) of

each sample was measured under a microscope (ZEISS Stemi 508)

equipped with a camera and measurement software. Gape size (GS)

was measured from the anterior-most tip of the premaxilla to the

anterior-most tip of the dentary with the mouth opened so the

upper jaw formed a 90° angle with the lower jaw. The gut was

dissected using fine needles, and prey zooplankton in the gut

contents were identified; copepods were identified to the species

level if possible. The body length of prey zooplankton (including

copepod nauplii) and the prosome length of copepodites

were measured.

Many methods can be used to examine fish stomach contents,

such as the occurrence method, numerical method, volumetric

method, and gravimetric method (Hyslop, 1980). In this study,

the numerical method was used, in which F% and N% as prey were

determined to assess the prey importance. N% refers to the

percentage of prey number, and F% refers to the frequency at

which each prey species occurs:

F% = Ai=N� 100

N% = Ni=Ntotal � 100

where Ai is the number of fish in which the stomach contained

type i prey item, N is the number of fish containing food in the

stomach, Ni is the number of prey type i, and Ntotal is the total

number of prey items in all food categories.

For the purpose of comparing prey selection during the

ontogeny of L. haematocheila, various feeding parameters were

studied, such as maximum prey size (MPS), prey size range (PSR,

calculated as the maximum prey size minus minimum prey size in
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each fish larva), prey number (PN), as well as diet composition and

shifts in dominant prey types.

According to the developmental stage criteria of larval and

juvenile fish (Kendall and Vinter, 1984), there have three larval

stages in the early life of fish: periods-preflexion larva, flexion larva

(FL), and postflexion larva (PFL). Studies of L. haematocheila larvae

shown that the standard length of FL is approximately 3-7 mm, and

the PFL is approximately 7-14 mm (Jiang et al., 2007). Accordingly,

the SL of mullet larvae captured in our study area was sorted to FL

and PFL.
2.3 Data analyses

All statistical analyses were performed using IBM SPSS 22.0.

The relationships between larval SL and fish larval GS and feeding

parameters were determined by regression analysis. Differences in

size of prey copepod species were analyzed using ANOVA. Levene’s

test was used to test the assumption of homogeneity of variance.

When this assumption was violated, square root transformation was

performed to obtain homogeneity of variance. For multiple

comparisons of means, Tukey’s test was used. All data were

presented as the mean ± standard deviation, and statistical

significance was defined as P<0.05.
3 Result

3.1 Relationships between gape size (GS)
and standard length (SL)

A total of 142 fish larvae collected from Laizhou Bay were

measured; the SL of L. haematocheila ranged from 3.95-13.03 mm,

and the GS ranged from 0.34-1.48 mm. A positive linear correlation

was found between GS and SL of mullet larvae (Figure 2); moreover,

a significant difference was found between FL stage (<7 mm) and

PFL stage (>7 mm). There was no significant positive linear

correlation when SL was less than 7 mm (R2 = 0.076); however,

the GS increased significantly with SL after ~7 mm (R2 = 0.508), and
FIGURE 1

Location of sampling sites in Laizhou Bay, Bohai Sea, China.
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the regression equation showed that GS increased approximately

0.075 mm with each 1-mm increase in SL.
3.2 Relationships between feeding
parameters and standard length (SL)

A total of 103 mullet larvae that had full contents were sorted

out, and a total of 2896 zooplankton prey items were identified and

measured. Feeding parameters, including MPS, PSR, and PN, were

examined for each mullet larva. The MPS in each fish larva varied

from 0.37 mm to 0.96 mm, and the PSR varied from 0.02 mm to

0.74 mm. The largest PN in a single fish larva was 116 individual

items per fish larva (ind. FL−1).

The relationship between MPS and SL in mullet larvae is shown

in Figure 3; the relationship between the GS and SL of the 103

dissected fish larvae is also shown in parallel. Both GS and MPS

increased with SL, but with different rates. The MPS overlapped

with GS when SL was less than ~7 mm (FL stage), but there was a

statistically significant separation with SL increase when SL was

greater than 7 mm (PFL stage). Accordingly, the MPS was generally

less than the GS and never exceeded 65% of the GS, as indicated by

the observation that the maximum value of y4 was approximately

65% of that of y3. Moreover, the rate of increase in MPS varied

during ontogeny (Figure 3B). The rate of the increase in MPS

declined during the PFL stage (y6) compared with that in the FL

stage(y5).

The relationship between PSR and SL in mullet larvae is shown

in Figure 4. The rate of increase in PSR was lower during the PFL

stage (y8) than in the FL stage (y7), similar to the trend of

increasing MPS.

The relationship between PN and SL of mullet larva is shown in

Figure 5. The rate of increase in PN was lower during the FL stage

(y9) than the PFL stage (y10), in contrast to the increasing trends in

MPS and PSR. There was no significant linear increase (R2 = 0.068)
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in PN during the FL stage, and the PN remained low (<46 ind.

FL−1); however, the PN increased at a significantly higher rate (R2 =

0.4015) during the PFL stage.
3.3 Prey species, size and
numerical percentage

The prey species consumed by the mullet larva are listed in

Table 1. In total, 10 zooplankton prey species were consumed, of

which eight species were copepods (including copepodites and

nauplii). According to the F% and N% values, four copepod

species constituted the primary prey items: Paracalanus parvus,

Acartia bifilosa, Oithona similis, and Calanus sinicus nauplius.

These four copepod species represented 98.1% of the total N%,

and the total F% was >66%.

The prosome length of P. parvus, A. bifilosa, O. similis, and total

body length of C. sinicus nauplius consumed by mullet larvae were

determined, and the data are shown in Figure 6. The mean size of P.

parvus was 0.50 ± 0.14 mm, and statistically, this was the largest

prey item for mullet larvae (Tukey’s test, P<0.0001). The mean size

of C. sinicus nauplius was 0.25 ± 0.08 mm, and statistically, this was

the smallest prey item for mullet larvae (Tukey’s test, P<0.0001).

The mean prosome length of A. bifilosa and O. similis varied from

0.34-0.38 mm, but the difference was not significant (Tukey’s test, P

= 0.14). The numerical percentages of the four primary copepods

consumed as prey during ontogeny were compared (in terms of

different GS), and the results are shown in Figure 7. According to

the original data, four GS groups could be distinguished (0.5-

0.7 mm, 0.7-0.9 mm, 0.9-1.1 mm, and 1.1-1.3 mm) in the

mullet larvae.

Inter-comparisons of the four prey copepods in each GS group

revealed that the percentage of C. sinicus nauplius was significantly

greater than that of P. parvus in the 0.5-0.7 mm GS group (P<

0.001), but opposite results were obtained for both the 0.9-1.1 mm
FIGURE 2

Relationship between standard length and gape size of L. haematocheila larva during the flexion larvae stage and post-flexion larvae stage, collected
in Laizhou Bay, Bohai Sea, China.
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FIGURE 3

Relationship between maximum prey size (mm) and standard length (mm) of L. haematocheila larvae. (A): scatter diagram of maximum prey size (y3)
and gape size(y4); (B): scatter diagram of maximum prey size during the flexion larvae stage (y5) and post-flexion larvae stage (y6).
FIGURE 4

Relationship between prey size range (mm) and standard length (mm) of L. haematocheila larvae during the flexion larvae stage (y7) and post-flexion
larvae stage (y8).
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and 1.1-1.3 mm GS groups (P<0.001, respectively). No significant

differences in percentages were found between A. bifilosa and C.

sinicus nauplius in each GS group, except for the 0.5-0.7 mm GS

group, in which the percentage of A. bifilosa was significantly lower

than that of C. sinicus nauplius (P<0.001). Highly similar results

were found when comparing the percentages of A. bifilosa and O.

similis. There were no significant differences between O. similis and

C. sinicus nauplius among all four GS groups (P>0.05).

When comparing the change in each prey copepod during

larval ontogeny, the percentage of C. sinicus nauplius significantly

decreased in the latter two GS groups (meaning the PFL stage);

conversely, the percentage of P. parvus significantly increased

during larval ontogeny. No significant trends were found in terms

of the percentages of A. bifilosa and O. similis with respect to

increasing GS. The percentages of F% and N%, four copepods were

the primary prey items, such as Paracalanus parvus, Acartia bifilosa,

Oithona similis and Calanus sinicus nauplius. These four copepods

contented 98.1% in total N%, and total F% was larger than 66%.
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4 Discussion

4.1 Prey selection during ontogeny of
mullet larvae

Fish larvae are considered gape-limited consumers that typically

swallow their prey whole. How prey size changes during larval

ontogeny are important to both the population ecology of fish

larvae and aquaculture practices. Feeding studies commonly relate

prey size to some metric associated with ontogenic development,

usually either a proxy for consumption capacity (e.g., mouth width or

jaw length) or simply larval fish length (Nunn et al., 2012). The mean

size of prey ingested by larval fish increases with larval growth

(Economou, 1991; Pepin and Penney, 1997; Llopiz and Cowen,

2009). Similarly, in our study in L. haematocheila, GS also increased

with increasing SL (Figures 2, 3A), and the MPS, PSR, and PN all

increased during larvae ontogeny (Figures 3, 4), suggesting that mullet

larvae have a higher capacity for prey selection during ontogeny.
TABLE 1 Prey species in L. haematocheila larvae and N% and F% values.

Taxa Prey species N% F%

Copepoda Calanoida Paracalanus parvus * 36.03 90.57

Acartia bifilosa* 16.03 87.74

Calanus sinicus nauplius 22.2 79.16

Cyclopoida Oithona similis* 23.84 66.82

Calanoida Calanus sinicus copepodies 0.22 6.67

Cyclopoida Corycaeus affinis* 0.16 4.09

Harpacticoida Harpacticoida sp.* 0.05 0.76

Other copepoda nauplius 0.92 7.41

Cirripedia Balanus nauplius 0.37 3.70

Gastropoda Gastropod larvae 0.18 1.85
frontier
N% refers to the percentage of prey number, and F% refers to the frequency at which each prey item occurs. *Prey species includes copepodites and adults.
FIGURE 5

Relationship between prey number (individuals per fish larva, ind. FL−1) and standard length (mm) of L. haematocheila larvae during the flexion larvae
stage (y9) and post-flexion larvae stage (y10).
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Moreover, fish do not necessary consume the largest prey

possible (Scott, 1987). For example, juvenile roach and common

dace (Lecuiscus leuciscus Cyprinidae) favor prey that is

approximately 60% of their maximum GS. In our study, mullet

larvae in the PFL stage exhibited similar feeding characteristics, and

although there was overlap between MPS and GS during the FL

stage, these values clearly separated during the PFL stage, with a

lower MPS that never exceeded 65% of GS (Figure 3A), indicating

that GS is not a limiting factor for PFL. Furthermore, the rate of

increase in both MPS and PSR during the FL stage was higher than

that in the PFL stage (Figure 3B), further indicating that PFL have

greater ability to select prey size compared with FL. Conversely, the

rate of increase in PN was significantly higher in PFL than FL

(Figure 5), confirming the higher prey selection ability. Thus, the

rate of increase in both MPS and PSR decreases during ontogeny of

mullet larvae, and the PN increases during the PFL stage, indicating

that PFL have higher prey selection ability than FL. PFL can choose

suitable prey items that are smaller than its GS and tend to increase

PN instead of prey size.

Studies in other fish larvae also confirm that the size of the prey

rarely approaches the maximum capacity for ingestion as indicated
Frontiers in Marine Science 07
by mouth size (Arthur, 1976; Economou, 1991; Pepin and Penney,

1997). Prey size is unrelated to larval length for larger larvae

(>16 mm), and larger sprat larvae have shown a smaller average

niche breadth (Voss et al., 2009). The reason larvae do not

necessarily consume the largest prey during ontogeny is probably

related to the increased handling time associated with larger prey

(Wanzenböck, 1995). It is becoming clearer that prey consumption

by fish larvae is not solely a function of prey size, but rather, a

variety of factors that underlie both the size and the taxonomic

identity of potential prey play an important role (Peck et al., 2012).

Therefore, in addition to prey size and PN, prey type in terms of

taxonomic species and prey shifts must be considered in order to

clarify the details of prey selection by mullet larvae.
4.2 The importance of small copepods in
diets composition and shift

Zooplankton species, especially copepods, occupy an important

position as prey of fish larvae, and these organisms are of great

significance in terms of the survival and growth of larvae (Rasdi and
FIGURE 7

Numerical percentage (%) of four dominant copepod species consumed as prey in different gape-size groups.
FIGURE 6

Prosome length of Paracalanus parvus, Acartia bifilosa, and Oithona similis and body length of Calanus sinicus nauplius consumed by L.
haematocheila larvae in Laizhou Bay, Bohai Sea, China.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1147886
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2023.1147886
Qin, 2016). Some studies have examined the diet of mugilidae

juveniles but rare in their larvae (Blaber andWhitfield, 1977; Ferrari

and Chieregato, 1981; Eggold and Motta, 1992), so our analysis of

the feeding habits of L. haematocheila larvae could be useful for

ecology studies examining early recruitment of this species. The

results of our analysis of diet composition are consistent with those

of Lin et al. (1985), who reported that mullet fry<20 mm in total

length feed mainly on zooplankton, especially nauplii and small

copepods. Moreover, the eight categories of copepods as prey type

were all small in size (<1 mm) and included various early

developmental stages of larger copepods, indicating the

importance of small copepods. Nunn et al. (2012) summarized

the diets of larvae in European inshore marine and transitional

waters and demonstrated the importance of small copepods as the

dominant prey in larval diets.

Both marine and estuary feeding were observed in mullet larvae.

Calanoida copepods are normally the first dominant zooplankton

category for fish larvae in inshore marine and transitional waters

(Nunn et al., 2012). In our study, three-fourths of copepods among

mullet larvae prey were calanoida copepods, indicating marine

feeding by mullet larvae. Besides Calanoida, another dominant

copepod as prey in our study was cyclopoida, among which O.

similis was the dominant species (Table 1). The absence of any

significant differences between O. similis and C. sinicus nauplius as

prey among the four GS groups or differences between O. similis

and A. bifilosa, except in the smallest GS group (Figure 7), indicate

that O. similis, as a cyclopoida species, is as important as calanoida

species during ontogeny of mullet larvae. Cyclopoida copepods are

usually important in the diet of fish larvae species in fresh water

(Hyslop, 1980; Welton et al., 1983; Easton et al., 1996; Declerck

et al., 2002; Garcıá-Berthou, 2002); accordingly, the prevalence of

cyclopoida copepods in the gut contents of mullet larvae indicates

they primarily inhabit estuaries. Indeed, Laizhou Bay is a typical

nearshore area of the Bohai Sea and a typical estuary ecosystem

affected by fresh water from the Yellow River. The zooplankton

community structure in this Bay also confirm the feeding

characteristics of mullet larvae, in that calanoida and cyclopoida

are both dominant copepods (Sheng et al., 2001).

Diet shifts in fish larvae have a theoretical basis, as although

small-size preys are easier to capture than large-size prey, larvae

need to catch more small-size prey to meet their nutritional needs;

thus, they must expend more energy to catch more prey, which

affects larval development (Riley et al., 2012). Therefore, the best

choice for mullet larvae is to switch their diet composition from

small-size to large-size prey. The results of our analysis of the body

length of the dominant prey species showed that the largest

dominant prey was P. parvus (Figure 6). The results of our

analysis of numerical percentage during ontogeny (Figure 7)

showed that the largest prey (P. parvus) gradually increased as GS

increased, whereas the smallest prey (nauplii of C. sinicus)

decreased, indicating that mullet larvae tend to switch their diet

composition from smaller to larger prey. Furthermore, our results

also showed that diet shifts mainly occur from the flexion to

postflexion stages of ontogeny. The numerical percentage of
Frontiers in Marine Science 08
smaller C. sinicus nauplius decreased significantly beyond the 0.7-

0.9 mm GS group (Figure 7), which is the period when mullet larvae

develop from flexion to postflexion. These diet shifts also confirm

our hypothesis that mullet PFL have higher prey selection ability.

These observations confirm that specific larger prey such as P.

parvus are selected first by mullet PFL, followed by smaller nauplius

of C. sinicus. Another study suggested that fish larvae select specific

sizes of prey until the stomach is full, whereafter smaller prey are

selected (Gill and Hart, 1998).
5 Conclusion

A significant positive linear correlation was observed between

GS and SL during the PFL stage of mullet larvae, and regression

analysis showed that the GS increased approximately 0.075 mm

with each 1-mm increase in SL. The MPS overlapped with GS

during the FL stage when the SL was less than ~7 mm, but the MPS

separated from GS during the PFL stage. The rates of increase in

both MPS and PSR slowed during the PFL stage compared with the

FL stage, and the MPS was generally less than the GS and never

exceeded 65% of the GS during the PFL stage. Instead of consuming

prey of larger size, PFL choose to increase the PN, indicating that

PFL have greater prey selection ability compared with FL and can

choose suitable prey items that are smaller than its gape size,

thereby tending to increase the PN instead of prey size during the

PFL stage. The composition of the stomach contents of mullet

larvae showed that 10 categories of zooplankton constituted the

primary prey items, among which eight categories were small

copepods. Diet shift analyses showed that the largest prey (P.

parvus) gradually increased, whereas the smallest prey (nauplii of

C. sinicus) decreased as ontogeny progressed, indicating that mullet

larvae tend to switch their diet composition from smaller to larger

prey items. This diet shift occurs during ontogeny from the flexion

to postflexion stages. Collectively, these diet characteristics confirm

that mullet PFL have a greater ability to select prey than FL, and

small copepods especially P. parvus are their primary favorite

prey items.
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