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turtle nesting grounds
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Introduction: Microplastics (i.e., plastic debris smaller than 5mm) found in

coastal areas can impact the marine habitat used by endangered species since

they may alter sand properties including temperature and permeability. Such

alterations may pose a significant threat to marine turtle populations as nest

productivity, sexual development, and hatchling fitness are dependent on

conditions within the nest, which incubate in the sand. Given that there is a

record of microplastic presence at marine turtle nesting sites, this study was

conducted to explore the potential influence of microplastics on the thermal

profile of sediment typical of marine turtle nesting habitat.

Methods: The experiment was conducted at the Florida State University Coastal

and Marine Laboratory where the temperatures of containers of sand mixed with

5-30% v/v of either black or white microplastics were recorded from July to

September 2018.

Results: The addition of microplastics in the sand resulted in an increase in

temperature – 0.017°C for each 1% v/v increase in microplastic. However, the

color of the microplastic did not have a significant effect on sand temperature.

Overall, the container with 30% v/v black particles had the highest mean

temperature increase of 0.58°C (± 0.34°C) over the control.

Discussion: The results obtained from this study indicate that extreme

concentrations of microplastics could be an issue for marine turtles as any

changes in sand temperature may affect the sex ratio of hatchlings and/or alter

nest productivity.
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1 Introduction

A substantial amount of debris has accumulated in the marine

environment over the past decades as a result of anthropogenic

activities with 80% of the debris stemming from land-based sources

(Barnes, 2002; Gregory, 2009; Lebreton et al., 2012; Lavers and

Bond, 2017). The most common debris type found in coastal and

marine environments is plastic (Derraik, 2002; Carson et al., 2011;

Wessel et al., 2016; Garrison and Fuentes, 2019; Thushari and

Senevirathna, 2020). Plastics are being produced at approximately

381 million metric tons per year to meet human demands and

roughly 10% of that is making its way into the ocean (Mendenhall,

2018; Royer et al., 2018). Being extremely durable, plastics take

decades or longer to break down (Law et al., 2010), resulting in

accumulation in terrestrial and marine environments (Andrady,

2011). Plastics can be made in a wide range of sizes, shapes, and

colors, with sizes smaller than 5mm referred to as microplastics and

anything larger referred to as macroplastics (Arthur et al., 2009;

Wessel et al., 2016; Lahens et al., 2018; Frias and Nash, 2019; Chen

et al., 2021). Microplastics are typically manufactured for consumer

products or created by the breakdown of larger plastic pieces into

smaller ones (Andrady, 2011; Hidalgo-Ruz et al., 2012; Ceccarini

et al., 2018).

Macro- and microplastics can impact marine life in multiple

ways including entanglement, ingestion, and as a barrier (Derraik,

2002; Rios et al., 2007; Law et al., 2010; Andrades et al., 2018; Wilcox

et al., 2018; Cartraud et al., 2019). The entanglement of marine

species in macroplastics can lead to drowning, strangulation, loss of

blood flow, reduced fitness, and ability to find food, and higher

probability of predation (Gregory and Andrady, 2003; Gall and

Thompson, 2015). Ingesting large pieces of plastic can cause

intestinal blockage, internal puncture, loss of appetite, endocrine

disruption, failure to reproduce, and toxicity to vital organs

(Gregory, 2009; Gall and Thompson, 2015). Plastics can contain

hydrophobic organic contaminants that dissociate after they have

been ingested, leading to biological issues such as abnormal cell

growth which may be transferred to offspring (Kanu and Anyanwu,

2005; Cole et al., 2013; Shim and Thomposon, 2015). The ingestion

of microplastics by lower trophic level species can result in the

bioaccumulation of discharged toxicants through predator-prey

interaction (Auta et al., 2017; Sun et al., 2017; Williams, 2017;

Rios-Fuster et al., 2022). In addition, macroplastics can impact

beach-dwelling or -nesting species by causing habitat destruction,

entanglement, or obstruction of emergence, nesting, or movement

(Nelms et al., 2016; Aguilera et al., 2018; Gündoğdu et al., 2019).

This makes plastics extremely threatening to marine animals

because they are found throughout all the oceans and in coastal

areas (Fendall and Sewell, 2009; Graham and Thompson, 2009;

Imhof et al., 2013; Shim and Thomposon, 2015; Wessel et al., 2016;

Beckwith and Fuentes, 2018).

Plastic can also alter the sediment of coastal areas used by

beach-nesting species, such as marine turtles and seabirds (Carson

et al., 2011; Nelms et al., 2016; Lavers et al., 2021). Recent studies

have found macro- and microplastics at seabird and marine turtle

nesting grounds in the northern Gulf of Mexico (Beckwith and
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Turkey (Gündoğdu et al., 2019), the coastline of Cyprus (Duncan

et al., 2018), northern New Zealand (Buxton et al., 2013), northwest

Denmark (Hartwig et al., 2007), the east coast of Australia (Verlis

et al., 2018), in Galapagos (Jones et al., 2022), Sir Bu Na’ir Island,

United Arab Emirates (Yaghmour and Al Marashda, 2020) and in

China (Zhang et al., 2021; Zhang et al., 2022), among others. The

largest abundance of plastic in beach sediment has been reported

along dunes – the preferred habitat for several beach-nesting species

(Meager et al., 2012; Šilc et al., 2018; Beckwith and Fuentes, 2018;

Ceccarini et al., 2018). It has been speculated that the presence of

microplastics in the sediment of coastal areas can cause changes to

the thermal profile and permeability of that sediment (Carson et al.,

2011; Beckwith and Fuentes, 2018; Duncan et al., 2018; Lavers et al.,

2021). Since microplastics have a higher specific heat than the

sediment, increased microplastic concentrations in coastal

sediments may alter the temperature of the sediment (Wen, 2007;

Andrady, 2011; Lavers et al., 2021). This could be an issue to several

species (Carson et al., 2011), particularly for marine turtles since the

environment in which their eggs incubate can influence hatchling

development, sex ratio, and morphology (Yntema and Mrosovsky,

1982; Davenport, 1997). Successful incubation of marine turtle eggs

only occurs within a thermal range of ~24 to 35°C (Mrosovsky and

Yntema, 1980; Matsuzawa et al., 2002; Howard et al., 2014).

Additionally, marine turtles have temperature-dependent sex

determination with warmer temperatures producing females and

colder temperatures producing males (Georges et al., 1994).

Given the growing presence of microplastic in coastal areas and

the potential impacts that it might have on beach-dwelling and

-nesting species, it is crucial to understand how the presence of

microplastic affects the thermal profile of the sediment. To address

this, we conducted preliminary experiments to examine the effects

that microplastic abundance and color may have on the thermal

profile of beach sediment.
2 Materials and methods

The effect of microplastics on beach sediment was explored

within an experimental setting at the Florida State University

Coastal and Marine Laboratory in St. Teresa, Florida in the

northern Gulf of Mexico from July 16th to July 26th and August

20th to September 3rd, 2018, which aligns with the marine turtle

nesting season in the northern hemisphere (Fuentes et al., 2016;

Silver-Gorges et al., 2021; Ware et al., 2021). The experimental

design consisted of seven 55-gallon white polyethylene drums

(Uline Model No. S-10757NAT) with the tops removed and filled

with 40 gallons of silicate beach sand comparable to that from a

typical nesting beach in the region (Figures 1, 2). To avoid the

accumulation of rainfall, three holes were made down three sides of

the drums approximately 20cm, 40cm, and 60cm below the sand

surface to provide drainage. Each hole was covered with a piece of

small mesh screen (diameter = 0.011mm; mesh count = 18 x 16)

and glued on using silicon.
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One drum was used as a control with no microplastic added.

The remaining six containers had either black or white polyethylene

microplastics, created by shredding polyethylene plates using a

micro-cut shredder, mixed into the sand in different quantities

using a concrete mixer. Polyethylene was used as this type of

microplastic is commonly found in the marine environment (Ng

and Obbard, 2006; Fries et al., 2013; Wessel et al., 2016; Tiwari et al.,

2019). The amount of sand added to the mixer decreased as

microplastics increased to keep the total volume of the sand/

microplastics mixture at 40 gallons. During the first experiment

(July 16th to July 26th, 2018), the microplastic concentrations were

5%, 10%, and 15% of microplastic by volume (Figure 1A), and 25%

and 30% by volume in the second experiment (August 20th to

September 3rd, 2018, Figure 1B), respectively. Microplastic

concentrations are often reported in the literature as pieces per

square meter (pc m-2) or per cubic meter (pc m-3). Supplementary

Table 1 provides a conversion between microplastic concentrations

used in this experiment for reference.

Two iButton temperature data loggers (DS1922L-F5, accuracy ±

0.5°C) per drum were each placed at 40cm below the sand surface

and 30cm from the drum wall to record sediment temperature. This

depth is typical for loggerhead marine turtle egg chambers

(Montero et al., 2018). Note that the drums were stored on a
Frontiers in Marine Science 03
wooden deck and not directly on the ground. Two loggers per drum

were used to provide redundancy in case one of the loggers failed

during deployment. The temperature was recorded every 30

minutes during each deployment. As mean differences between

the paired iButtons were small (0.16°C ± 0.14°C), the temperature

readings from both loggers were averaged at each sampling interval

to generate one dataset per treatment. The black 30% treatment

during the second experiment was an exception as one of the

iButtons in the treatment failed, so only the temperature data from

the functioning logger was used for analysis. Local atmospheric data

(i.e., daily mean air temperature, daily mean solar radiation, and

daily accumulated rainfall) during each deployment were

collected by the Florida State University Coastal and Marine

Laboratory’s weather station (data available from https://

franklin.weatherstem.com/data). A linear regression (Equation 1)

was conducted in R (version 4.2.2) to determine whether these

environmental variables, as well as color and concentration of

microplastic were significantly related to daily mean sediment

temperature through both hypothesis testing and a stepwise AIC

comparison (Burnham and Anderson, 2002). All numerical

explanatory variables were scaled to a mean of 0 and a standard

deviation of 1 due to the large discrepancies in scale between such

variables.
A

B

FIGURE 1

Treatment containers with different colors and concentrations of microplastics: (A) First experiment, July 16th to July 26th, 2018, (B) Second experiment,
August 20th to September 3rd, 2018.
FIGURE 2

Containers with microplastic in the sand at the experiment site: (A) top view of container, (B). container with screen over holes and, (C). sampling design.
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Tempsed =   b0 +   b1Tempair +   b2Radsolar +   b3Tempair :Radsolar

+   b4Rain +   b5Color +   b6Concentration

+   b7Color :Conc +   ϵ
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3 Results

Between the first and second experiments, there was no

significant difference in air temperature (Experiment 1: 27.52°C ±

0.11°C, Experiment 2: 27.27°C ± 0.10°C, p = 0.087) nor solar

radiation (Experiment 1: 204.72 Wm-2 ± 13.68 Wm-2, Experiment

2: 202.10 Wm-2 ± 11.58 Wm-2, p = 0.884). There was a significant

difference in daily rainfall (Experiment 1: 0.12 cm ± 0.01 cm,

Experiment 2: 0.54 cm ± 0.07 cm, p<< 0.001).

Treatments with higher concentrations of microplastic tended

to have larger temperature differences relative to the control

treatment (Figures 3, 4, see Supplemental Material for analysis

specifics). The largest average temperature difference within the

black microplastic treatments was found in the containers with 30%

of microplastic (0.58°C ± 0.34°C) followed by the 25% (0.45°C ±

0.24°C). Similarly, within the white microplastic treatments, the

largest average temperature difference was in the container with

30% (0.43°C ± 0.37°C) followed by the 25% (0.25°C ± 0.19°C). The

black microplastic treatments tended to have greater temperature

differences than the white treatments; however, model evaluation

was ambiguous as to its significance. Hypothesis testing suggested

the inclusion of color as a significant variable (p<< 0.001), but its

removal resulted in an improved AIC score (DAIC = -1.22). A

similar pattern was observed for the interaction between

microplastic color and concentration: hypothesis testing suggested

inclusion (p<< 0.001) while AIC comparisons suggested exclusion

(DAIC = -1.78).
FIGURE 4

A model of the daily mean sediment temperature (°C) based on the
concentration of microplastics (solid red line). The red dashed lines
indicate the 95% confidence interval of the model.
A B

DC

FIGURE 3

Hourly temperature differences (°C) between the control and treatment [(A) white microplastics, Deployment 1; (B) black microplastics, Deployment
1; (C) white microplastics, Deployment 2; (D) black microplastics, Deployment 2]. Daily rainfall measurements are provided on the secondary y-axis
for reference.
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The best performing model by AIC (Equation 2) included air

temperature (°C), solar radiation (Wm-2), their interaction, daily

rainfall (cm), and microplastic concentration (% v/v). Each of these

variables was highly significant in hypothesis testing (p<< 0.001)

with the exception of rainfall (p = 0.058) but its removal reduced

AIC performance (DAIC = +1.21), as did removing the other

variables in the reduced model (DAIC > +10 each). The reduced

model is described below including a scale conversion for each term.

Both the reduced and the full model explained 70.8% of the

variation in daily mean sediment temperature. As the

concentration of microplastics increased by 1% v/v, there was an

increase in temperature by 0.017°C (Figure 4).

Tempsed = 30:340 + 0:708(Tempair−27:351)
1:002

h i
+ 0:333(Radsolar−205:188)

51:677

h i

                − 0:364(Tempair−27:351)(Radsolar−205:188)
51:780

h i

                − 0:114(Rain−0:643)
1:612

� �
+ 0:220(Concentration−15:391)

11:094

� �
4 Discussion

The concentration of microplastic in the sediment had a greater

influence on the sediment’s temperature than the color of the

microplastic. Sediment with higher microplastic concentrations

had greater increases in temperature relative to the control, with

the black 30% v/v treatment having the highest mean difference in

temperature at 0.58°C – an increase which could significantly alter

sea turtle hatchling sex ratios, physiological performance, and

embryonic mortality (Fuentes et al., 2011; Santidrián Tomillo

et al., 2015; Patrıćio et al., 2019; Patrıćio et al., 2021). The

difference in the thermal profile of the sediment between the

control and each treatment may be due to the specific heat (i.e.,

the amount of heat required to change the temperature of a unit

mass by one degree) of polyethylene. Polyethylene has a higher

specific heat than that of silicate sand, causing heat in the sediment

to be gained or lost more slowly (Wen, 2007; Andrady, 2011). This

thermal inertia would prevent high-microplastic trials from losing

heat at night to the atmosphere or ground as rapidly as low-

concentration or control trials, resulting in a relative net increase

in mean temperature.

In contrast, the color of the microplastic had an ambiguous

effect on sand temperature. As the microplastics in this experiment

were well mixed within the sediment, there were only minor

changes in overall color – and, therefore, potential absorption of

solar visible and infrared radiation – at the sediment surface,

limiting the potential for additional surface-generated heat (Shaw

and Day, 1994; Andrady, 2011). Microplastics are commonly

concentrated in the top few centimeters of the sediment (Carson

et al., 2011; Yu et al., 2016; Duncan et al., 2018). Changes in

sediment surface temperature may thus be greater under such

distributions compared to a uniform distribution as used in this

study, which could affect several species including crustaceans,

mollusks, polychaetes, and shorebirds (Dexter, 1992; Booth and
Frontiers in Marine Science 05
Astill, 2001; Carson et al., 2011; Verlis et al., 2018). With respect to

sea turtle clutches and other subterranean fauna, if the microplastics

were concentrated on the surface, additional heat generated as a

result of the darker color could have the potential to conduct into

deeper sediment layers throughout the day, although significant

temperature changes due to the presence of surface macroplastics

were not recorded at depth lower than 30cm in a study conducted

by Lavers et al. (2021).

Only one other study (Carson et al., 2011) explored how

microplastic affects sediment temperature, finding that the

presence of microplastics may cause the sediments to warm more

slowly and reach lower maximum temperatures. This is likely a

result from increased permeability and reduced bulk density as

plastic fragments increased the mean grain size of sediment samples

(Carson et al., 2011; de Souza Machado et al., 2018). A potential

reason for the difference between Carson et al. (2011) lab-based

study and this study is the time period over which the temperature

was recorded and the construction of the experimental treatments.

The experiments performed by Carson et al. (2011) utilized 5x20cm

artificial cores with microplastics concentrated in the top 5cm and

subjected to heat lamps for four hours. This study was conducted

outside over consecutive days using large volumes of silicate sand

well-mixed with microplastics throughout, so that any differences in

temperature during each part of the day and under different weather

conditions could be recorded. The large volume of each trial used in

this experiment increased the volumetric heat capacity and thermal

inertia of each replicate which could support greater mean

temperatures at increasing microplastic concentrations. Diurnal

patterns in thermal sources and sinks paired with large-volume

observations support this study as a closer model for in situ effects

of microplastic concentration on temperature profiles.

However, caution is advised considering the concentrations of

microplastics necessary to induce the temperature changes observed

in this study (Burns and Boxall, 2018; Bucci et al., 2020; Weis and

Palmquist, 2021). The maximum concentration of microplastics

here (30% v/v) equates to over 9,788,000 pc m-3/53,000 pc m-2. No

studies have reported concentrations this high. Extreme values

currently reported in the literature include 42,560 pc m-3/851 pc

m-2 in Taiwan (Kunz et al., 2016), 131,939 pc m-3/2,639 pc m-2 in

Cyprus (Duncan et al., 2018), 782,000 pc m-3/3,128 pc m-2 at

Qilianyu, China (Zhang et al., 2022), and 1,750,500 pc m-3/17,505

pc m-2 in Guangdong, China (Fok et al., 2017). Microplastics at

nesting sites have only recently been explored and could be higher

in locations that haven’t been studied yet. As human populations

increase, so will the demand for plastic and potentially the

abundance of plastics in the marine environment (Browne et al.,

2011; Cózar et al., 2014). With a possible increase of microplastics at

marine turtle nesting grounds, the temperature change due to the

addition of microplastics at extreme concentrations could be

problematic for the marine turtle reproductive cycle.

A successful loggerhead marine turtle egg incubation

temperature ranges between ~24 to 35°C with warmer

temperatures producing more females and cooler temperatures

producing more males (Mrosovsky and Yntema, 1980; Matsuzawa

et al., 2002; Howard et al., 2014). Above 29°C, mainly females are
frontiersin.org
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produced while incubation below this temperature produces mainly

males (Yntema and Mrosovsky, 1982). Linear modeling suggested

that as the amount of microplastics increased by 1% v/v, sand

temperature increased by 0.017°C, meaning that populations

currently approaching critical thermal thresholds (e.g., pivotal

temperature, upper physiological thermal limit) could be

particularly sensitive to changes in microplastic concentration. An

increase in temperature by 0.58°C as observed in the black 30% v/v

treatment could significantly affect the recovery of this endangered

species, particularly in combination with climate change and

increases in atmospheric temperatures (Fuentes et al., 2011;

Santidrián Tomillo et al., 2015; Patrıćio et al., 2019; Patrıćio

et al., 2021).

Further, the methods presented here did not take into consideration

the change in temperature caused by incubating turtle eggs themselves.

During the incubation period, the temperature of the clutch increases due

tometabolic activity (Kaska et al., 1998; Zbinden et al., 2006). This change

can cause a temperature increase in the nest that is higher than the normal

beach sediment (Kaska et al., 1998; Garcıá-Grajales et al., 2019). The

increase in temperature due to the concentration of microplastics and

clutch temperature could potentially cause the nest to reach a temperature

higher than observed during this experiment.

Additional studies should be conducted to understand both the

mechanisms (e.g., heat capacity, conductivity, diffusivity, density, and

infrared absorption of the resulting mixture) and consequences of

microplastic-linked changes in sediment characteristics (Burns and

Boxall, 2018; Bucci et al., 2020; Weis and Palmquist, 2021). Such

studies should record the sediment temperature over a longer period

than what was conducted here (25 days), such as a full nesting season. To

record the temperature of the sand, this study used iButtons which have

an accuracy of ±0.5°C and could have contributed to slightly different

temperature readings than that of the environment. Future studies should

use a more sensitive temperature logger to obtain a more precise result as

this study indicates that sand temperature changes may beminor at more

realistic concentrations of microplastic contamination.

Despite these limitations, this study provides baseline information on

the effects of microplastics on the thermal profile of sand and the

implications it could have to a marine turtle nesting site. Additional

research should be conducted to examine how different types of polymers

and sediment can influence the thermal profile of sand, as well as how the

potential exposure to toxicants could affect the nesting environment. This

experiment forms the basis for future studies and brings awareness to the

effects that microplastics have on coastal environments and

endangered species.
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