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Sound speed distribution, represented by a sound speed profile (SSP), is of great

significance because the nonuniform distribution of sound speed will cause

signal propagation path bending with Snell effect, which brings difficulties in

precise underwater localization such as emergency rescue. Compared with

conventional SSP measurement methods via the conductivity-temperature-

depth (CTD) or sound-velocity profiler (SVP), SSP inversion methods leveraging

measured sound field information have better real-time performance, such as

matched field process (MFP), compressed sensing (CS) and artificial neural

networks (ANN). Due to the difficulty in measuring empirical SSP data, these

methods face with over-fitting problem in few-shot learning that decreases the

inversion accuracy. To rapidly obtain accurate SSP, we propose a task-driven

meta-deep-learning (TDML) framework for spatio-temporal SSP inversion. The

common features of SSPs are learned through multiple base learners to

accelerate the convergence of the model on new tasks, and the model’s

sensitivity to the change of sound field data is enhanced via meta training, so

as to weaken the over-fitting effect and improve the inversion accuracy.

Experiment results show that fast and accurate SSP inversion can be achieved

by the proposed TDML method.

KEYWORDS

sound speed profile (SSP) inversion, artificial neural networks (ANN), few-shot learning,
task-driven meta-learning (TDML), over-fitting effect
1 Introduction

Underwater acoustic wave has become the most popular signal carrier in underwater

wireless sensor networks (UWSNs) because of its smaller attenuation and better long-

distance propagation performance compared with radio or optical signal by Erol-Kantarci

et al. (2011). However, unlike terrestrial radio, underwater sound speed has significant

spatio-temporal variability due to the influence of temperature, salinity, pressure by Jensen

et al. (2011). This variability will lead to significant Snell effects, which is reflected in the

bending of signal propagation path. The bending path brings difficulties for accurate sonar
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ranging according to Dinn et al. (1995) and localization according

to Isik and Akan (2009); Carroll et al. (2014); Liu et al. (2015); Wu

and Xu (2017) in underwater applications such as target detection

and rescue. Nevertheless, if the sound speed distribution is

obtained, the signal propagation trajectory can be estimated for

correcting ranging and positioning errors, which is of great

significance for localization applications.

The sound speed distribution of a certain region is usually

represented by a sound speed profile (SSP), which is intuitively

expressed as a function of sound speed with depth. During the past

decades, SSP inversion methods have been widely adopted in

underwater wireless sensor networks for estimating sound speed

distribution by leveraging sound field information such as time of

arrival (TOA) and received signal strength indication (RSSI). The

research of novel SSP inversion methods is very promising because

they are more automatic and less labor-time-consuming than direct

measurement of sound speed by sound velocity profiler (SVP) or

conductivity-temperature-depth (CTD) systems refer to Zhang

et al. (2015); Huang et al. (2018).

The SSP inversion is a difficult work because the classical ray

tracing theory by Munk and Wunsch (1979) and normal mode

theory by Munk and Wunsch (1983); Shang (1989) only establish

the one-way mapping from ocean environmental information to

sound field information, while to the best of our knowledge, there

has been no empirical formula for the reverse mapping.

Representative works of SSP inversion includes matching field

processing (MFP) by Tolstoy et al. (1991), compressed sensing

(CS) by Choo and Seong (2018); Li et al. (2019) and artificial neural

networks (ANN) by Stephan et al. (1995); Huang et al. (2018). With

the same degree of inversion accuracy when there are enough

training data, the ANN outperforms MFP and CS in real-time

performance due to the fact that after ANN converges, the SSP can

be obtained through only once forward propagation by feeding

measured sound field information, while iterative processes are

ineluctable in MFP and CS based methods for searching the

coefficients of principal components decomposed by the empirical

orthogonal function (EOF).

For learning-based SSP inversion methods such as ANN, two

conditions need to be satisfied: 1) training data and testing data

should be taken from a same domain that is independent and

identical distribution (i.i.d.) refer to Weiss et al. (2016); 2) there

should be enough training data to avoid over-fitting problem.

However, these two conditions are hard to be met at the same

time because of two reasons. First, there are obvious spatio-

temporal differences in the distribution and shape of SSPs as

shown in Figures 1, 2, so SSPs sampled in different regions and

time periods can not be used together as training data for a certain

task. Second, due to the high labor and economic cost in measuring

SSPs through SVP or CTD systems, SSPs are collected non-

uniformly in different regions and time periods, leading to

insufficient training SSPs in the spatio-temporal intervals that

those tasks belong to. When training the learning model on a

small dataset, which is called few-shot learning, there would be

over-fitting problem (weak generalization performance), so that the

inversion accuracy can not be guaranteed.
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For accurately estimating the sound speed distribution in a

random ocean area, there are still two important problems to be

solved: how to maintain good generalization ability of the inversion

model especially in few-shot learning situations, and how to select

appropriate reference SSPs for an inversion task to satisfy the i.i.d.

condition without knowing the actual sound-speed distribution of

the task. Many approaches have been proposed to deal with the

overfitting problem, such as regularization by Goodfellow et al.

(2016), training dataset expanding with generative adversarial

networks by Jin et al. (2020), and meta-learning approach by

Finn et al. (2017). Regularization establishes a way to limit the

model scale by narrowing down the values of weight parameters (L2

norm) or making the model parameters sparse (L1 norm). By this

way, the ability of fitting complex relationships of the model is

weaken so that overfitting problem could be reduced. Training

dataset expanding aims to enrich the training dataset that could

represent the whole situation of target domain, however, if the

original training data concentrates on a small region, the expanded

training dataset will not be uniformly distributed in the target

domain, thus the model is still prone to be overfitting. Although

training dataset expanding could be achieved artificially to balance

the distribution of training data, it usually needs a heavy workload.

Meta-learning (ML) is a newly emerging machine learning

method that is very suitable for few-shot learning by Vanschoren

(2018); Hospedales et al. (2020). Though ML, a learning model

gains experience over multiple learning episodes that covering a

distribution of related tasks, and uses the experience to improve its

future learning performance for a designated task. The ‘learning to

learn’ feature of ML could lead to a variety of benefits such as data

and computing efficiency. Currently, many ML frameworks and

algorithms have been established in typical fields such as

classification by Snell et al. (2017), object detection by Pérez-Rúa

et al. (2020) in computer vision, exploration policies by Alet et al.

(2020) in robot control, domain adaptation by Cobbe et al. (2019),

hyper–parameter optimization by Finn et al. (2017), neural

architecture search summarized by Elsken et al. (2019), etc. The

model-agnostic meta-learning (MAML) for fast adaptation of deep

networks proposed by Finn et al. (2017) establishes a fast training

method for deep learning models on few-shot learning tasks, which

becomes almost the most famous work of hyper–parameter

optimization. Though MAML provides an idea of model

optimization, it has inspired the solution of few-shot learning

problems in many fields such as meta-reinforcement learning

framework by Alet et al. (2020) for exploration issues. Due to the

fact that historical SSPs are usually not accompanied by sound field

data, the labeled data composed of sound field data and SSPs need

to be constructed through ray theory, resulting in the inability to

directly adopt meta learning frameworks from other fields into

construction of underwater sound speed field. Therefore, it is

necessary to establish a more applicable meta learning SSP

inversion framework based on the practical problems in

underwater SSP inversion.

In this paper, we propose a meta-deep-learning framework for

few-shot spatio-temporal SSP inversion named as task-driven meta-

learning (TDML), which provides a training strategy that is suitable
frontiersin.org
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for multiple types of few-shot dataset learning. The core idea of

TDML is to learn the common feature of different kinds of SSPs via

a series of base learners, which forms a set of initialization

parameters of the task learner. By this means, the convergence

rate of the model could be accelerated and the sensibility to the

input data could be retained, so that the model will not be over

trained on few-shot task samples. The ability of fitting complex

relationship or the training dataset is not changed by meta-learning

itself, and it could be combined with regularization or training

dataset expanding for solving overfitting issues in different

applications. To guarantee that the distributions of reference SSPs

and the inversion task meet the i.i.d. condition, all historical SSPs

are first classified into different clusters by a proposed Pearson-

correlation-based SSP local density clustering (PC-SLDC)

algorithm, then the cluster which the task belongs to is decided

by a proposed spatio-temporal-information-based K-nearest

neighbor (STI-KNN) mapping algorithm. The contribution of

this paper is summarized as follows:
Frontiers in Marine Science 03
• To accurately obtain sound-speed distribution in a random

ocean area under few-shot learning situations, we propose a

task-driven meta-deep-learning framework for spatio-

temporal SSP inversion.

• To reduce negative transfer effect and deal with the over-

fitting problem, we propose a task-driven meta-deep-

learning SSP inversion algorithm, in which the updating

rate of neuron connection weights could be dynamically

adjusted and the convergence of inversion model could be

accelerated.

• To satisfy the i.i.d. condition and select reference SSPs that

possibly has the most similar distribution to the inversion

task, we first propose a Pearson-correlation-based SSP local

density clustering algorithm for historical SSPs clustering,

then propose a spatio-temporal-information-based K-

nearest neighbor algorithm for mapping the inversion

task to a proper cluster leveraging the spatio-temporal

information.
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FIGURE 1

Historical SSPs sampled in different months from 40–50°C N and 150–160°C E of the North Pacific.
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The rest of this paper is organized as follows. In Sec. 2, we

briefly review related works about SSP inversion and few-shot

learning. In Sec. 3, the source of input data during training and

inversion phase is provided. In Sec. 4, we first propose a TDML

framework for spatio-temporal SSP inversion, then present an SSP

clustering algorithm and task mapping algorithm to find proper

reference SSPs for a specified inversion task. Simulation results are

discussed in Sec. 5, and conclusions are given in Sec. 6.
2 Related works

2.1 Underwater SSP inversion

MFP, CS and ANN are three classical SSP inversion methods. In

Tolstoy et al. (1991), the MFP technique is first introduced in SSP

inversion with four steps: empirical orthogonal decomposition,
Frontiers in Marine Science 04
candidate SSPs generation, simulated sound field calculation and

sound field matching, the candidate SSP corresponding to the

optimal matching sound field will be recorded as the final

inversion result. Instead of reverse mapping from sound field

information to sound speed distribution, the purpose of MFP is to

find matching principal component coefficients. However, the high

time complexity debase the real-time performance of MFP. In Li and

Zhang (2010), the coefficient searching space was reduced first, then a

traversal method was used to find the optimal solution, while in Li

et al. (2015) a parallel grid searching algorithm was proposed to

reduce the time consumption. However, the searching accuracy

depends on the scanning step, so that the time overhead increases

as the accuracy of SSP inversion improves. Heuristic optimization

algorithms were introduced in Zhang (2005); Tang and Yang (2006);

Zhang et al. (2012); Sun et al. (2016); Zheng and Huang (2017) to

speed up the searching process of the optimal EOF coefficients,

such as the simulated annealing algorithm in Zhang (2005),
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FIGURE 2

Historical SSPs sampled from different regions of the North Pacific Ocean in June (including historical periods).
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geneticalgorithm in Tang and Yang (2006); Sun et al. (2016), and

particle swarm optimization (PSO) algorithm in Zhang et al. (2012);

Zheng and Huang (2017). However, to get the optimal result with a

high probability, multiple iterations are necessary in these heuristic

algorithms. Consequently, the time overhead of SSP inversion can not

be reduced to a desired level.

In Li et al. (2019), a mapping relationship is established as a

dictionary to describe the effect of small perturbation of principal

component coefficients on the change of sound field data. Because

the principal component coefficients can be solved directly by the

dictionary and sound field data with a few iterations of the least-

squares calculation, it can achieve better real-time performance

than MFP. Nevertheless, the first-order Taylor expansion

approximation for the nonlinear mapping relationship is adopted

in the design of the dictionary, so the inversion accuracy is sacrificed

to some extent.

Recently, Bianco et al. (2019) presented a detailed review of

machine learning applications in the field of acoustic, showing that

machine learning technologies have become very promising in

ocean parameter estimation, such as seafloor characterization by

Michalopoulou et al. (1993), range estimation by Komen et al.

(2020), geoacoustic inversion by Piccolo et al. (2019), and SSP

inversion by Bianco and Gerstoft (2017). A dictionary learning

method is proposed in Bianco and Gerstoft (2017) for SSP inversion

that can better explain sound speed variability with fewer

coefficients compared with classical EOF decomposition, however,

it still requires a lot of time for searching the related dictionary

elements and coefficients.

Inspired by the ability of deep neural networks to fit nonlinear

functions, we have proposed an ANN-based SSP inversion method

in our previous works (Huang et al., 2018; Huang et al., 2021).

Through off-line training, the ANN is able to learn the mapping

relationship from signal propagation time to sound speed

distribution; and during the inversion stage, the SSP can be

estimated via once forward propagation by feeding the measured

signal propagation time into the SSP inversion model, so the time

overhead can be reduced. With enough training data, the ANN can

hold a good inversion accuracy while significantly outperforms the

MFP and CS in time overhead performance during the inversion

stage, which indicates that the deep neural networks are very

promising in the SSP inversion fields. However, due to the

difficulty of SSP measurement and spatial-temporal distribution

of SSP, the neural network model needs to be trained on small

dataset in some cases, which is prone to be over-fitting. Therefore,

how to deal with the over-fitting problem in few-shot learning is

well worth studying.
2.2 Few-shot learning

Conventional deep neural networks are trained from scratch for

a given task with lots of training samples. However, in some fields

such as SSP inversion, historical data is scarce because of the

difficulty in measuring SSPs by CTD or SVP systems, so the

model should be able to learn the distribution features of data

with only a small amount of samples, which is commonly known as
Frontiers in Marine Science 05
few-shot learning. In this case, the conventional deep neural

network will easily fall into over-fitting problem.

To solve the over-fitting problem in few-shot learning, some

studies have been done recently as surveyed in Vanschoren (2018);

Hospedales et al. (2020). Aiming at few-shot learning on specific

tasks, multi-task learning jointly learns several related tasks, and

benefits from the effect regularization due to parameter sharing

refer to Rich (1997); Yang and Hospedales (2016). Transfer learning

(TL) has been developed for few-shot learning in the past decade as

surveyed in Weiss et al. (2016); Pan and Yang (2010). TL uses past

experience of a source task to improve learning on a new task by

transferring the model’s parameter prior in Chang et al. (2018) or

the feature extractor from the solution of a previous task in Yosinski

et al. (2014). Because the TL model is first trained on a specific task,

features of the task are memorized in the model, which would affect

the learning rate and accuracy for a new task.

Recently, ML surveyed by Vanschoren (2018); Hospedales et al.

(2020) has become a promising method for few-shot learning.

Different from MTL and TL, a meta-objective is usually defined

in ML to evaluate how well the base learner performs when helping

to learn a new task. In Ravi and Larochelle (2017), a long short-term

memory meta-learner is used to learn an update rule for training a

neural network learner. During the training phase, the base learner

provides the current gradient and loss to the meta learner, which

then update the model parameters. In Finn et al. (2017), a model-

agnostic meta-learning algorithm is proposed to learn a model

parameter initialization which achieves better generalization

performance to similar tasks. The Hessian matrix is illustrated in

Finn et al. (2017) for gradient descent, which enhance the sensitivity

of the model to the input data. The work of Nichol et al. (2018)

further improves the learning rate of model on a new task by

executing stochastic gradient decent for several iterations.

The concept of ML would be suitable for dealing with the over-

fitting problem of underwater sound speed inversion with only a

few reference samples. However, the negative transfer effect caused

by training with different kinds of SSPs still needs to be solved so as

to improve the inversion accuracy.
3 Preliminary

The SSP inversion is to establish the mapping from signal

propagation time to the sound speed distribution. For clearly

illustrating the inversion model, it is important to know more

about the source of input data. In this section, we will present the

signal propagation time measurement method for SSP inversion,

and derive the simulated signal propagation time by ray tracing

theory corresponding to each historical SSP for training

inversion model.
3.1 Signal propagation time measurement

For SSP inversion, accelerating the measurement of signal

propagation time is of great important to improve the real-time

performance. Thus, the autonomous underwater vehicle (AUV)
frontiersin.org
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assisted signal propagation measurement system proposed in our

previous work Huang et al. (2021) is adopted in this paper, which

has the advantages of stability and mobility compared with

traditional ship-towed or seafloor fixed arrays in Zhang et al.

(2015); Choo and Seong (2018); Li and Zhang (2010); Li et al.

(2015); Zhang (2005); Tang and Yang (2006); Zhang et al. (2012);

Zheng and Huang (2017); Zhang (2013).

The AUVs are able to suspend in the water. One AUV sailing at

the bottom of the ocean act as the source node to start the

measurement process, the other three AUVs are receivers that sail

approximately in the same vertical plane with the bottom AUV and

keep a fixed horizontal distance Dph from each other. During once

time measurement, the signal travels a round trip, then the clock

asynchronization error can be reduced via the bidirectional TOA

technology. The idea of virtual anchoring is introduced to increase

the amount of measured time data. After one turn of

communication, the three AUVs move forward with the distance
Dph
P and start a new turn of measurement. After moving P − 1

times, a signal propagation time sequence containing 3*P items can

be obtained as the measurement result.
3.2 Signal propagation time simulation

The learning model of SSP inversion is usually trained offline, so

the required input signal propagation time can not be measured at the

model training stage. Therefore, the classical ray tracing theory is

introduced to provide signal propagation time information as input

data corresponding to a given SSP for inversion model training.

Assume the preset horizontal distance series of the AUV system

is P = ½p1, p2,…, pm�,m = 1, 2,…, 3P that forms totally M = 3P
transceiver pairs, then for a given SSP S = ½(s1, 1),…, (sd , d)�T , the
relation between P and S can be expressed according to our

previous derivation Huang et al. (2021) as:

pm = s1
cos   ϑ1,m o

D−1

d=1

Dzd
sd+1 − sd

(
ffiffiffiffiffiffiffi
ϒm
d

p
−

ffiffiffiffiffiffiffiffiffi
ϒm
d+1

p
)

����
����,

ϒm
d = 1 − cos   ϑ1,m

s1

� �2
(sd)2,

(1)

where D is the total depth of the SSP, ϑ1,m is the initial grazing

angle at depth of the first speed point s1 from source to the mth

receiver, and Dzd is the depth difference of the linear SSP at the dth

layer with depth boundaries of d and d + 1. Referring to (1), the pm

is actually a function of the initial grazing angle ϑm, which is not a

prior parameter but can be obtained through searching algorithms.

The ideal signal propagation time can be simulated according to our

previous derivation Huang et al. (2021) by:

tm = o
D−1

d=1

Dzd
sd+1 − sd

ln  
sd(1 +

ffiffiffiffiffiffiffiffiffiffi
ϒm

d+1

p
)

sd+1(1 +
ffiffiffiffiffiffiffi
ϒm

d

p
)

 !�����
����� (2)

where the tm is also a function of the initial grazing angle ϑ1,m.

Actually, the peak detection error of arrival signal, and the

position error of AUV will affect the measurement result of signal
Frontiers in Marine Science 06
propagation time refer to Huang et al. (2021), so these errors should

be considered to make the simulated signal propagation time more

appropriate to the actual situation. Affected by clock

asynchronization, environmental noise and multipath effect, the

time detection of arrival signal will fluctuate around the real

propagation time. It is shown that the measurement errors of

signal propagation time are usually converted into range

measurement errors that following normal Gaussian distribution

according to Zhou et al. (2010); Thomson et al. (2018), with real

distance as mean values and standard deviations to be one percent

of real distances. The error level is reasonable that can be easily

satisfied by existing underwater distance measurement technologies

according to Kussat et al. (2005), and the location error could be

further reduced by using ray tracing technique in Huang et al.

(2019). However, the original time measurement error is adopted in

this paper that following normal Gaussian distribution wc ∼
W(mc = 0,sc), where mc is the mean value and sc is the standard

deviation. The noisy signal propagation time that fluctuates around

the real time value is equivalent to the superpositon of time

measurement error with normal distribution on the real signal

propagation time, thus the simulated signal propagation time tmw
will be:

tmw = tm + wc : (3)

For the distance scale about 400-500 meters of the AUV-assisted

signal propagation time measurement system, the standard deviation

sc will be a few miliseconds (500(m)*0:01=1500(m=s)).

According to Misra and Enge (2006), the position error of any

surface AUV can be expressed as Gaussian distribution wm
sp ∼

W(msp,ssp), where msp is the mean error and ssp is the standard

deviation. When the geometry topology of satellites is

symmetrically and uniformly distributed relative to target at the

ocean surface and the system bias of satellites has been corrected,

the mean error will follow msp = 0. To reduce the impact of

positioning error of the bottom AUV, there will be a position

correction process of the bottom AUV before signal propagation

time measurement, which is assisted by the surface AUVs forming a

symmetrical topology such as equilateral triangle. In this case, the

positioning error of the bottom AUV will also follow a normal

distribution wbp ∼ W(mbp = 0,sbp) according to Thomson et al.

(2018), where mbp is the mean error and sbp is the standard

deviation. However, if the trajectory of the bottom AUV deviates

too much, the mean positioning error will not be statistical zero

because the surface AUVs could not form a symmetrical

distribution relative to the bottom AUV, and the distance

measurementerrors caused by using empirical sound speed value

will not be spatial averaged.

Considering the positioning errors of AUVs, the simulated

horizontal distance series will be Pw = ½p1
w , p2

w ,…, pm
w �,m = 1, 2,…,

3P, where pm
w = pm + wbp + wm

sp . By putting pm
w into (1), the initial

grazing angle ϑmw that considering position errors of AUVs can be

searched. Then the signal propagation time tmw considering

positioning errors can be calculated by (2).
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4 Task-driven meta-learning
framework for SSP inversion
1 For SSP with fixed number of sampling points, Euclidean distance is

equivalent to mean square error Choo and Seong (2018) and root mean

square error Zhang et al. (2015) in describing vector difference, and they are

positively correlated.
Due to the high labor and time costs of SSP measurement with

CTD or SVP system, there are usually a few reference SSPs that are

similar to the potential distribution of the inversion task. In this

case, the learning model is prone to be over-fitting when it is trained

on a small dataset, resulting in weak generalization ability and low

SSP inversion accuracy. To fast and accurately estimate the regional

sound speed distribution with a few reference SSP samples, we

propose a TDML framework for spatio-temporal SSP inversion as

shown in Figure 3. We aim to learn the common features of

different SSP groups through meta learning, that is, to train

several base learners on multiple few-shot SSP datasets to

collaboratively update the parameters of a global learner, so as to

find a good set of initialization parameters for the target task

learner. Thereafter, merely a few iterations of training is required

to make the task learner converge on the few-shot dataset;

meanwhile, the model retains the memory of common features.

Considering the spatio-temporal difference of SSP distribution,

the ocean region is divided according to spatio-temporal

information. A base learner is established for each region, and

different types of SSPs obtained by clustering are also allocated to

each spatio-temporal interval according to the spatio-temporal

information of the cluster center, which could be used as training

data. The spatio-temporal division scales are usually in varied

forms, however, in this paper, the space is divided by 1 degree

and time is divided by month.

In the proposed TDML framework, several kinds of learning

models could be used as the base learner or task learner such as

neural networks in Benson et al. (2000); (Huang et al., 2018; Huang

et al., 2021) and Gaussian process in Yin et al. (2020). In order to

guarantee a good robustness performance, the auto-encoding
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feature-mapping neural network (AEFMNN) proposed in our

early work Huang et al. (2021) is utilized as the base and task

learners. When the measured signal propagation time is fed into the

trained task learner, the inversion SSP could be quickly obtained

with once forward propagation.
4.1 SSPs clustering and task mapping

4.1.1 Pearson-correlation-based SSP local
density clustering

The difference of SSP behaves in the variation trend of sound

speed values with depth. To obtain SSP clusters with similar

distribution, we propose a PC-SLDC algorithm, the structure of

which is given in Figure 4. The SSPs distribution in the ocean is

continuous, if the clusters of SSPs are divided without overlapping,

the task SSP whose real distribution is at the margin of the cluster

domain may not be accurately estimated because the reference data

in this cluster is not uniformly or symmetrically distributed around

the task SSP (as shown in Figure 4), which may lead to overfitting

problem. Therefore, its better to cluster SSPs with partly

overlapping. In this case, the SSP sample that lays at the margin

of a cluster domain may belong to another cluster at the same time.

Euclidean distance has been widely adopted to describe the

difference between two SSPs such as Choo and Seong (2018);

Zhang et al. (2015)1, but it can not reflect whether the variation

trends with depth of two SSPs are consistent or not, especially for

shallow-water SSPs that their gradients may be positive or negative.
FIGURE 3

Task-driven Meta-learning Framework for SSP inversion.
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Therefore, a correlation check process is first established, in which a

standard SSP with negative gradient is introduced as a reference to

calculate the Pearson correlation coefficient between each historical

SSP data and the reference one. Assume the reference SSP is Sr =

½(s1r , 1), (s2r , 2),…, (sdr , d)�T , and the ith original SSP is Soi = ½(s1oi , 1), (
s2oi , 2),…, (sdoi , d)�T , where d is the depth of corresponding sound

speed in meters2, the Pearson correlation coefficient rr,oi can be

calculated by:
2 The sampling depth interval of original SSP data from world ocean

database 2018 (WOD’18) is meter
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rr,oi =
o
D

d=1

sdr − ur
� �

sdoi − uoi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
D

d=1

sdr − ur
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
D

d=1

sdoi − uoi

� �2s , (4)

where ur =
1
Do

D

d=1

sdr is the average sound speed of SSP Sr , and uoi =
1
Do

D

d=1

sdoi

represents the average sound speed of SSP Soi . With equation (4), all

historical SSP data SO = fSo1 , So2 ,…, Soig, i = 1, 2,…, I will be

divided into two group: the SSP group SO− with negative gradient

or the SSP group SO+ with positive gradient.

After the correlation check, the SSPs in each subset could be further

clustered into different groups based on the Euclidean distance. If So−1 =

½(s1o−1 , 1),…, (sdo−1 , d)�Tand So−2 = ½(s1o−2 , 1),…, (sdo−2 , d)�Tare both SSPs in

SO− , the Euclidean distance eo−1 ,o−2 is calculated as:
FIGURE 4

SSP Local density clustering method based on Pearson correlation test.
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eo−1 ,o−2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oD

d=1 sdo−1 − sdo−2

� �2r
: (5)

Similarly, for So+1 = ½(s1o+1 , 1),…, (sdo+1 , d)�
T and So+2 = ½(s1o+2 , 1),…, (

sdo+2 , d)�
T in SO+ , the Euclidean distance eo+1 ,o+2 can be calculated as:

eo+1 ,o+2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oD

d=1 sdo+1 − sdo+2

� �2r
: (6)

For classical K-means clustering algorithm or density-based

spatial clustering (DBSCAN) algorithm, one sample is usually

classified into one class. However, repetitive clustering of SSP is

allowed in PC-SLDC algorithm, the details of which is given in

Algorithm 1.
Fron
Input: historical SSPs:

SO = fSo1 , So2 ,…, Soig, including I SSPs;

reference SSP with Negative Gradient: Sr;

euclidean distance threshold: ψdis;

neighbor number threshold: ψnum.

Output: SSP cluster set:

Sc = fSC1
,…, SCp

,…, SC(p+1)
,…, SC(p+q)

g,
including P clusters with negative gradient

and

Q clusters with positive gradient

Step 1 Initialization:
SSP set with negative gradient SO− = ∅;

SSP set with positive gradient SO+ = ∅;

euclidean distance matrix Med;

candidate cluster center SSP set SCt = ∅;

neighbor SSP set SNbr = ∅;

SSP cluster set SC = ∅;

Step 2 Correlation check:

foreach SSP sample Soi in SO do
calculate the Pearson correlation coefficient

ρr,oi between Sr and Soi according to (6);

If ρr,oi > 0 then

Add Soi to SO;

else

add Soi to SO+.

Step 3 Local density clustering of SSPs with

negative gradient:
assign SCt = SO and label the elements as

SCt = fSct1 , Sct2 ,…, Sctag;
calculate the Euclidean distance among SSPs

in SCt by (7) and store the results in Med;

While SCt ≠ ∅ do
Randomly pick an SSP sample Scta ∈ SCt;

Reset SNbr = ∅;

foreach SSP SSP So−â ∈ SO−do

Check the Euclidean distance ecta ,o−â
if ecta ,o−â < Ydisthen

add So
â
�to SNbr

if SSPs in SNbr ≥ ψnum then

add a new cluster SCp
¼ SNbrto SC;

remove SSPs from Sct that are also contained in
tiers in Marine Science 09
SCp

else

remove Scta from SCt

Step 4 Local density clustering of SSPs with

positive gradient:
repeat Step 3 by replacing SO with SO+,

a with b, - with +, equation (7) with (8),

and SCp
with SCðpþqÞ.
ALGORITHM 1
Pearson-correlation-based SSP local density clustering algorithm

At the beginning, all unclassified SSPs in SO− have the opportunity to

become a new class center and they form a candidate cluster center

set SCt . The Euclidean distance between each other is calculated

through (5) and stored in an Euclidean distance matrixMed . An SSP

sample Scta ∈ SCtr is randomly picked up, if the Euclidean distance

between any SSP So− ∈ SO− and the current candidate center Scta is

less than a threshold Ydis, then the former will be a neighbor of the

latter and added to a neighbor SSP set SNbr . If the number of SSPs in

SNbr exceeds a certain threshold Ynum, the current candidate point

Scta will be taken as the true center to establish a group SCp
, and all

neighbors are added into SCp
. Otherwise, Scta will be removed from

SCt and a new candidate center SSP will be chosen to repeat theabove

process. The whole process will be done again for SSPs in SO+ .

4.1.2 Spatio-temporal-information-based target
task mapping

For a specified SSP inversion task, those historical sampled SSPs

having the similar distribution with the target task is suitable for

training the task inversion model. However, the sound speed

distribution of the target task is not a prior information, thus the

potential training SSPs can not be found according to the

distribution features of SSPs. Since that the distributions of SSPs

are similar when these SSPs are sampled with close spatio-temporal

information, the search of suitable training data can be realized

based on the similarity of spatio-temporal information.

For target task mapping, we propose an STI-KNN task mapping

algorithm to find proper reference data for the task inversion model,

and the prior SSP clusters SC is obtained by Algorithm 1. When an

inversion task is assigned, we define a spatio-temporal distance

parameter f to describe the similarity between the sampling regions

of a reference SSP and the task, which can be expressed as:

f = l*fa + (1 − l)*fb , (7)

where fa is the sampling time difference, fb is the sampling

location difference, and 0 ≤ l ≤ 1 is a factor to balance fa and

fb .
The fa is calculated by:

fa =
at − aoj j, if at − aoj j < 183

365 + min  (at ,ao) −max  (at ,ao), otherwise

(
(8)

where at and ao are the time information of SSP inversion task and

a random SSP in SO (Algorithm 1), respectively. Due to the high

similarity of SSPs sampled at the same period in different years
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within a certain area, it is not necessary to distinguish the year

differences, thus the sampling time information is defined in days. If

an SSP is collected on February 1, the sampling time value equals to

32, because the 1st day on February is the 32th day of the year.

However, it should be noted that the time difference will not exceed

half a year (183 days), because the time code is cyclic. For instance,

assume two SSPs are sampled on October 1 in the last year (the

244th day of a year) and January 1 in the current year (the 1st day of

a year), the actual time difference is 365 + 1 − 244 = 122, but not

244 − 1 = 243. This is because the 1st day of the last year is equal to

the 1st day of the current year, which could be virtually regarded as

the 366th day of the last year (without lose of generality, the leap

year is taken as an example).

The space information is defined by the latitude and longitude

coordinate of an SSP. The fb is calculated by:

fb =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bx

t − bx
o )

2 + (by
t − by

o )2
q

, (9)

where subscript t and o have the same meaning as (8), bx and by

represent the longitude and latitude coordinates of SSP sampling

space after coding, respectively. As we focus on the distribution of

sound speed in the Pacific Ocean of the Northern Hemisphere, the

coded by equals to the SSP’s latitude coordinate, while bx is defined

as:

bx =
b̂ x
��� ��� − 180, if 0∘E < b̂ x < 180∘E

180 − b̂ x
��� ���, if 0∘W < b̂ x < 180∘W

8><
>: (10)

where b̂ x is the original longitude coordinate of the SSP.

After comparing the spatio-temporal distance between all

historical SSPs and the target SSP, the cluster which contains

most of the k nearest SSPs will be determined as the mapping

result of the target task. The factor l in (7) is determined through

random verifications, which is conducted based on real sampled

SSP data from WOD’18 in the Pacific Ocean with different kinds of

distribution. Through these random verifications, the accuracy of

mapping the target task to the exact cluster, that has similar SSP

distribution with the task, will be statistically tested under different

l values, and the most appropriate l will be determined according

to the highest mapping accuracy.

The training data for an SSP inversion task can be artificially

provided or automatically selected by machine learning algorithms.

For automated SSP inversion system with much less human cost,

the lambda will affect the probability of providing suitable training

data for the task learner. Since the SSPs with different distribution

compared with those of the task area will mislead the learning

process of task learner, the inversion accuracy will decrease when

the SSP cluster of the task is wrongly mapped. Therefore, the task

mapping accuracy that corresponding to the factor l indicates the

confidence coefficient of an inverted SSP result. The STI-KNN

algorithm is given in Algorithm 2.
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Input: historical SSPs:

SO = fSo1 , So2 ,…, Soig;
SSP clusters:

Sc = fSC1
,…, SCp

,…, SC(p+1)
,…, SC(p+q)

g;
spatio-temporal information of historical SSPs:

F = f(ao1 , b
x
o1 , b

y
o1 ),…, (aoi , b

x
oi , b

y
oi )g;

spatio-temporal information inversion task:

j = (at , bx
t , b

y
t );

number threshold of neighbors: κ.

Output: SSP cluster of the target task: Sct.

Step 1: calculate the spatio-temporal distance

between target task and historical SSPs by (9);

Step 2: sort the spatio-temporal distance;

Step 3: choose κ SSPs from SO with the lowest

spatio-temporal distance;

Step 4: select the cluster SCp
or SCðpþqÞ containing

the most of the κ SSPs as the mapping result of the

target task.

ALGORITHM 2
STI-KNN task mapping algorithm
4.2 Task-driven meta-learning

To solve the over-fitting problem and increase the SSP inversion

accuracy with few-shot reference samples, we propose a TDML SSP

inversion model as shown in Figure 5 that includes a meta-training

phase and an SSP inversion phase. There is a global learner, several

base learners and a task learner in the proposed model. Through K

base learners each trained with V-shot SSPs from different clusters,

which is called K-way V-shot learning, a good set of initialization

parameters for the global learner is found, so that the task learner

initialized by the global learner could converge quickly with a few

training times on the task SSP training set.

According to the SSP clustering result by the proposed PC-

SLDC algorithm, the SSP distribution of the target task is either

positive or negative, and the base learner trained by SSPs with the

opposite gradient will contribute negatively to the global learner,

which will slow down the convergence progress of the task model,

even decrease the inversion accuracy. To diminish the negative

transfer, the SSP clusters that having the same gradient direction

with that of the task SSP set are chosen as the candidate training sets

for base learners. Moreover, if the distribution of SSPs learned by

the base learner k is more similar to that of the task training SSPs,

the base learner k will have more influence on the parameter

updating of the global learner, which is achieved by adjusting the

gradient learning rate. Thus, the negative transfer could be further

weakened, and the task learner could converge faster so as to avoid

over-fitting on few-shot reference samples.

Concretely, we propose a TDML SSP inversion algorithm to

illustrate the model training and application process. The neuron

connection parameter of global learner is randomly initialized as
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W1
g while updated iteratively. At the beginning of the nth batch3, all

the K base learners are initialized by the global learner Wn
g ,

meanwhile, K SSP clusters are randomly chosen from the P

available training SSP clusters (K ≤ P) for training the K base

learners respectively, each of which consists of 1 testing and V

training samples. For base learner k, the V SSPs are used forone step

learning with the lose function defined as:

l(k) Wn
kð Þ = o

V

v=1

1
2o

D

d=1

sdv −~s
d
v

� �2
+ ‖Wn

k ‖1

 !
,Wn

k = Wn
g , (11)

where sdv is the sound speed of the vth training SSP at depth d,~s
d
v is the

corresponding inverted sound speed, and Wn
k 1 is the regularization

item of the base learner k. Next, the local parameters are updated with

back propagation (BP) algorithm by Rumelhart et al. (1986):
3 During each iteration, the base learner is trained and updated by one

batch, so the total number of batches is equal to the number of iterations
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_Wn
k = Wn

k − h∇Wn
k
l(k)(Wn

k ), (12)

where h is the learning rate of base learners. Then, the base learner

is test on the left 1 SSP data Stst with lose function:

l(k) _Wn
k

� �
=
1
2o

D

d=1

sdtst −~s
d
tst

� �2
, (13)

where sdtst and ~sdtstare the sound speed of the testing and inverted

SSP, respectively. Finally, the parameters of the global learner are

updated by optimizing the performance L with respect to Wn
g

(Wn
g = Wn

k ) across all base learners. The global optimization

problem is expressed as follows:

min  
Wn

g

L = min  
Wn

g
o
K

k=1

l(k) _Wn
k

� �
: (14)

Note that the meta-optimization is performed over the initial

parameter Wn
g during current iteration, whereas the objective is

computed using the updated parameters _Wn
k . In this way, the
FIGURE 5

Task-driven meta-learning model for SSP inversion.
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sensitivity of the model could be enhanced so that one or a small

number of gradient updating steps on a new task will produce

maximally effective behavior on that task according to Finn

et al. (2017).

To further improve the quality of initialization parameters

learned by the global learner, a correlation coefficient ⋲k(k =

1, 2,…,K) is introduced into each base learner to adjust the

updating speed of model parameters, which is concretely the

Pearson correlation coefficient between the mean SSP of the kth

meta training cluster and the mean SSP of the inversion task

training SSPs. With the K-way V-shot training, the meta-

optimization is actually performed through stochastic gradient

descent, such that the global learner is updated by:

_Wn
g = Wn

g − x∇Wn
g o

K

k=1

⋲kl
(k) _Wn

k

� �
, (15)

where _Wn
g represents the global leaner after parameter updating,

and x is the global learning rate. If the meta training is not over, the

parameters of global learner in the (n + 1) th batch will be initialized

as Wn+1
g = _Wn

g .

After meta-training, the parameters of global learner _WN
g is

transfer as the initialization for the task learner, so that W1
t = _WN

g .

Then the task learner is trained on a few training SSPs by one or a

small number of steps, and the converged model is parameterized as
_Wt . When feeding measured sound field information such as signal

propagation time into model Wt , the inverted SSP ~Se can be

estimated via once forward propagation, thereby improving the

inversion efficiency. The detailed TDML algorithm for SSP

inversion is given in Algorithm 3.
Fron
Input: target task SSPs: STSK;

SSP clusters:

Sc = fSC1
,…, SCp

,…, SC(p+1)
,…, SC(p+q)

g;
task, global, base learners initialized by:

W 1
g ;

meta-training iterations: N;

target task training iterations: N̂ ;

Output: SSP inversion result: Se.

Step 1: preprocessing: get rid of SSP

clusters in Sc with negative or positive

gradient which is different from SSPs in STSK;

Step 2: meta-training:
foreach iterations n ≤ N do

SSPs preparation for K-way V-shot learning;

foreach base learner k dotrain with V-shot

SSPs and update the parameter by (13), (14);

test the base learner according to (15).

compute the global objective function by (16);

update the global learner via (17);

Step 3: task learner training:
assignment W 1

t = _WN
g ;

train task learner for N̂ times: W 1
t → _Wt;

Step 4: task SSP inversion:
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measure the signal propagation time �Tω;

invert SSP Se by feeding �Tω.
ALGORITHM 3
Task-driven meta-learning algorithm for SSP inversion

To reduce the impact of the time measurement error on the

inversion model, which is caused by inaccurate positioning of the

communication system, the joint AEFMNN and ray tracing model

proposed in our previous work Huang et al. (2021) is introduced as

the basic learning model for the base and task learner, and the anti-

noise performance of TDML is inherited. In Huang et al. (2021), the

robust feature extraction performance of the autoencoder has been

evaluated by comparing the variation trend of correlation coefficients

on the input signals and implicit features under different levels of time

measurement error, in which the positioning error of AUVs is set to

be zero for simulating a single error source. The signal propagation

time correlation coefficients are calculated by correlating the error-

influenced signal propagation time with the ideal one, and the

correlation coefficient of implicit features is obtained via

correlations between the implicit features extracted when the input

signal propagation time is influenced by the measurement errors or

without errors. Detailed anti-noise performance of AEFMNN can be

referred to Figure 12 in Huang et al. (2021).

The learning model of base and task learner is given in Figure 6.

There are total 7 layers in AEFMNN model that have been

described in detail by Huang et al. (2021): noisy time input layer

Tv,w , encoding hidden layer Fec , decoding hidden layer Fdc,

decoding time output layer ~Tv , translating hidden layer Ftr ,

translating output SSP layer ~Sv , and the hidden feature layer Fed
shared by the encoder, decoder and translation neural network.

In Figure 6, the signal propagation time with measurement

errors Tv,w is simulated to reflect the real situation, while the one

without errors ~Tv is computed to be the labeled time information

for updating the parameters of the auto-encoder. The auto-encoder

and the translation neural network are updated in turn during once

training. Through narrowing the gap between the estimated signal

propagation time ~Tv and the simulated time Tv , the auto-encoder is

first trained to extract the implicit features that reduces the impact

of measurement errors of the input data. Then by narrowing the gap

between the inverted SSP ~Sv and the labeled SSP Ŝ v , the translation

neural network is trained to establish the mapping relationship

from the implicit features to the sound speed distribution.

Taking the nth iteration (V-shot) for base learner k as an

example, the parameters of the auto-encoder is updated by BP

algorithm with the time lose function l(k)t (Wn
k ) expressed as:

l(k)t Wn
kð Þ = o

V

v=1

1
2 o

M

m=1

~tmv − tmvð Þ2+ ‖Wn
k,ec,dc ‖1

� 	
, (16)

where ~tmv is the estimated signal propagation time of the mth

receiver, tmv is the corresponding theoretical time information

without noise, and Wn
k,ec,dc is the regularization item related to the

parameters of the auto-encoder. Then, the translation neural

network transform the hidden features to sound speed

distribution with lose function (11) modified as:
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l(k) Wn
kð Þ = o

V

v=1

1
2o

D

d=1

~sd̂v − ŝ d̂v
� �2

+ ‖Wn
k,tr ‖1

 !
, (17)

where ~sd̂v is the inverted sound speed at depth d̂ , ŝ d̂v is the

corresponding labeled sound speed, and Wn
k,tr is the regularization

item related to the parameters of the translation neural network.

The forward propagation process of AEFMNN is done by following

equations:

f jec = G o
M

m=1
tmv,w · wn

ec,m,j

� �
+ binec,w · wn

ec,b,j

� 	
, (18)

f d̂ed = G o
J

j=1
f jec · w

n
ec,j,d̂

� �
+ bhidec · wn

ec,b,d̂

 !
, (19)
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f jdc = G o
D̂

d̂ =1

f d̂ed · w
n
dc,d̂ ,j

� �
+ bindc · w

n
dc,b,j

 !
, bindc = bhided , (20)

~tmv = G o
J

j=1
f jdc · w

n
dc,j,m

� �
+ bhiddc · wn

dc,b,m

 !
, (21)

f jtr = G o
D̂

d̂ =1

f d̂ed · w
n
tr,d̂ ,j

� �
+ bintr · w

n
tr,b,j

 !
, bintr = bhided , (22)

~sd̂v = G o
J

j=1
f jtr · w

n
tr,j,d̂

� �
+ bhidt · wn

tr,b,d̂

 !
: (23)
FIGURE 6

Joint Ray Tracing and AEFMNN SSP inversion model by Huang et al., 2021.
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where the special subscript b of the weight parameter w indicates

that the weight connects the bias neuron of current layer and the

neurons in next layer. Among (18) to (23), the leaky rectified linear

unit (LReLU) by Maas et al. (2013) is introduced as the activation

function, which is expressed as:

G(t) =
t t > 0

zt t ≤ 0

(
(24)

where z is a fixed constant between − 1 and 0 (0.25 in this paper).

The outputs of the translation neural network are the sound

speeds at different depth, so the number of output neurons depends

on the sampling depth of the SSP. If there are too many sampling

points in an SSP, the required parameters of the neural network will

increase significantly, thereby leading to the over-fitting problem

when trained on few-shot dataset. To reduce the model complexity,

an stratified-line SSP simplification algorithm proposed in our

previous work Huang et al. (2019) is introduced, by which an

original SSP Sv could be accurately approximated to be Ŝ v via a few

feature points.
5 Simulation and discussion

In this section, the performance of the proposed PC-SLDC

algorithm for SSP clustering, the accuracy of task mapping with

STI-KNN algorithm, the SSP inversion efficiency and accuracy

under TDML framework are verified by simulations on historical

SSP data in the shallow Pacific ocean with water depth of 400 m.

However, the application is not limited to the experimental area, but
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also applicable to shallow or deep ocean where the sound speed

distribution is consistent in a certain spatio-temporal range and the

sound speed at each depth layer approximately obeys Gaussian

distribution with the root-mean-square error (RMSE) on the order

of a few meters per second. The experiments are done via Matlab

“R2019a”, and all SSPs are real sampled in the Pacific Ocean that

come from the WOD’18 Boyer et al. (2021), the sonar data used for

SSP inversion is simulated through ray theory.
5.1 Accuracy of target task mapping

To guarantee the convergence performance of the learning

model, the i.i.d. condition of training and testing data needs to be

satisfied. Therefore, similarly clustering the empirical SSPs and

finding which cluster the target task belongs to become extremely

important. To evaluate the performance of proposed PC-SLDC and

STI-KNN algorithms, we first divide the SSPs into clusters base on

PC-SLDC, then test the target task mapping accuracy by STI-KNN,

finally compare the SSP similarity under different clustering criteria.

In Figure 7, the mapping accuracy of STI-KNN algorithm for

target task is tested on 391 historical SSPs sampled in the Northern

Pacific Ocean with each checking 7 neighbor SSP samples. When the

Euclidean density distance threshold is set to be Ydis ≤ 10 and the

element number of clusters is set to be Ynum ≥ 15 in PC-SLDC,

the accuracy of STI-KNN can be up to 96% with l = 0:02. When the

Euclidean density distance threshold is set to be Ydis ≤ 8 andthe

element number of clusters is set to be Ynum ≥ 12 in PC-SLDC,

the accuracy of STI-KNN can be up to 97.85% with 0:01 ≤ l ≤ 0:036
FIGURE 7

Mapping accuracy of SSP inversion task by STI-KNN algorithm.
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. The l is set to be 0:02 in our following simulations, and SSPs are

clustered with sidis ≤ 10,Ynum ≥ 15.

After target task mapping, we evaluate the clustering

performance by testing the error distances of 20 samples to the

mean SSP of the cluster that each sample maps to via STI-KNN as

shown in Figure 8, the cluster of which is obtained by PC-SLDC and

compared with clustering merely by SSP sampling month or

location. The SSPs of items 1, 2 and 3 are the same group with

negative gradients, while the SSPs of items 4, 5 and 6 are the same

group with positive gradients. The location threshold is 5 longitude

and latitude, and the month threshold is 1 month. From the result,

the SSPs clustered through PC-SLDC are more similar to their

cluster elements than SSPs clustered merely by month or location

information. In particular, the RMSE of test SSPs to the mean SSP of

the cluster obtained by month is much worse than the other two,

this is because the empirical SSPs within each month are sampled

dispersedly around the Northern Pacific Ocean, the distributions of

which are obviously different.

The average SSP of each cluster can be used for roughly estimating

the sound speed distribution of a certain area, however, the variation of

sound speed can not be reflected in different regions or sampling date,

and the estimation error of sound speed will increase with the area scale

or time interval expanding. Therefore, it is necessary to further improve

the accuracy of sound speed inversion by learning to establish the

mapping relationship from signal propagation time to sound

speed distribution.
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5.2 SSP inversion under TDML framework

The TDML framework proposed in this paper aim to improve

the SSP inversion accuracy while reduce the time as much as

possible. In this section, we test the accuracy and time efficiency

of the proposed TDML-based SSP inversion method compared with

some classical SSP inversion methods as base lines.

5.2.1 Base lines and parameter settings
5.2.1.1 MFP-EOF-PSO

There are four steps included in this classical SSP inversion

method: principal component extraction, candidate SSPs

generation, simulated sound field calculation and sound field

matching; the candidate SSP corresponding to the optimal

matching sound field will be recorded as the final inversion result.

Heuristic algorithms are widely used in searching for the matched

item, and PSO is adopted as an example in this paper.

5.2.1.2 CS

The CS-based SSP inversion is a new method that is combined

with EOF. In this method, the eigenvectors of EOF are utilized to

form the compressed sensing dictionary.

5.2.1.3 AEFMNN-based single learning model

The single AEFMNN SSP inversion model has the same model

structure with any base learner of TDML. Such a model is set up for

comparing to evaluate the anti-over-fitting performance of TDML.
FIGURE 8

Error distances of SSPs to the average SSP of the task cluster.
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5.2.1.4 TL

TL is a classical method that can be used for few-shot learning.

Two AEFMNNmodels having the same structure with base learners

of TDML are introduced. One model is trained on SSPs that are not

belong to the task cluster, while the other is trained by the task

cluster; the trained parameters of the former model are set to be the

initialization for the later model.

5.2.1.5 ML

The difference between ML and TDML for SSP inversion is that

all SSP clusters, excluding the task cluster, can be used for meta-

training in ML, while only SSP clusters having the same positive or

negative gradients with the task cluster can be used for meta-

training in TDML. By this means, we verify the performance of

TDML against the negative migration.

The parameter settings of TDML are shown in Table 1. As the

position error of the bottom AUV in Figure 9 is harmful for sound

field measurement, the location should be modified before the

measuring process. According to our previous work on ray-

tracing-based positioning correction Huang et al. (2019), the

bottom AUV can be relocated with the help of those surface

AUVs according to the average sound speed distribution of the

task area. Under 10000 times simulation tests, the location error

can be reduced through ray tracing technique based on average

empirical SSP distritbution Huang et al. (2019), and follows the

Gaussian distribution with average error 0m and standard

deviation less than 0:1m under the time measurement error level

sc = 3ms (three surface AUVs form a equilateral triangle with 100

m between each other, and the position errors of surface AUVs are

not considered). In reality, the location error of bottom AUV may

be larger than simulated due to the topology chaning of surface

AUVs and the movement of underwater flow. Since the AEFMNN

is the basic inversion model introduced in this paper, the SSP

inversion accuracy of all these methods will be influenced when

the location error increases, however, the anti-overfitting

performance and the convergence performance will still be

different with these methods. Some specific parameter settings

of base lines are given in Table 2.

5.2.2 Accuracy comparison
To verify the effectiveness of task mapping based on spatio-

temporal information, the inversion average accuracy of TDML

with 100 testing times is compared with clustering criterion by

location or month in Table 3. Results show that the TDML trained

with clustering by month or location is hard to converge because the

training samples in every cluster may be far different from each

other, thus the inversion errors are much higher than the clustering

by spatio-temporal information.

To evaluate the accuracy performance of TDML, the RMSE results

of SSP inversion on two different clusters with negative or positive

gradients are tested as examples in Table 4 compared with other

inversion methods. The inversion results in Table 4 are average results

with 100 testing times. The results indicate that through leveraging

sound field information such as signal propagation time, the SSP

inversion accuracy behaves better than rough estimating by the average
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SSP of the cluster. Actually, the signal propagation time is a sensitive

function of sound speed changes, while with measured signal

propagation time, these changes can be seized to some extent by

those SSP inversion methods.

For evaluating the anti-over-fitting ability, both the SSP

inversion accuracy during task training and testing processes are

tested for deep-learning-based methods. Among these methods, the

TDML performs best for testing SSP samples. The accuracy of SSP
TABLE 1 Parameter settings of TDML.

TDML

Training SSP clusters Sc 18-/4+

Base learners K 3

SSPs for base learner training Sv 9

SSPs for base learner testing Stst 1

Meta-training episodes (batches) * 40

Task training episodes 40

Task training SSPs per episode 5

Maximum SSP depth 400 m

Points of simplified SSPs 8

Ideal horizontal distance (Figure 1) 80,120,…,440

m (10 items)

Bottom AUV’s location error mbp 0 m

Bottom AUV’s location error sbp 0.1 m

Surface AUVs’ location error msp 0 m

Surface AUVs’ location error ssp 0.1 m

Time measurement error mc 0 s

Time measurement error sc 0.003 s

Learning rate for base/meta learner hed =0.01

xed =0.01

htr =0.00003

xtr =0.00003

Learning rate for task learner ĥ ed = 0:01

ĥ tr = 0:0001

Input layer neurons 10

Hidden layer neurons 200

Hidden feature neurons 8

Output layer neurons of auto-encoder 10

Output layer neurons of translator 8

Training SSPs in the task cluster 60%

Validating SSPs in the task cluster 20%

Testing SSPs in the task cluster 20%
* One episode corresponds to a round of parameter updating, using 3 SSP clusters that is equal
to the number of base learners.
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inverted by CS is a little worse than MFP (combined with EOF and

PSO) due to the first-order Taylor linear approximation at the

dictionary establishing process. Because of the scarcity of training

samples after clustering by PC-SLDC, the SSP inversion via

AEFMNN is prone to be over-fitting, which is why the training

accuracy can be extremely high but the testing accuracy will be

greatly reduced, and reflected in large test-validation values. For TL,

ML and TDML, the anti-over-fitting capability is improved.

However, it should be noted that the inversion accuracy by TL is

not as good as ML or TDML, and this is mainly because the

initialization parameters of the task model are pre-trained in
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different ways. For TL, the model is pre-trained by another SSP

cluster, which makes it retain much characteristics of pre-training

cluster when transferring model parameters, thereby reducing the

ability to learn new SSP distribution. On the contrary, the ML or

TDML is pre-trained by meta models to learn more public features

among SSP clusters, and the second-order gradient descent by (15)

makes the model more sensitive to the changes of signal

propagation time. Therefore, the ML-based model is not likely to

be over-fitting on pre-training SSP clusters.

For cluster 1, the accuracy improvement of TDML is not

obvious compared with that of ML. In fact, this phenomenon is
B

A

FIGURE 9

Convergence comparison of different deep learning methods for SSP inversion. (A) Cluster 1with negative gradients. (B) Cluster 2 with positive gradients.
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related to the training SSP clusters. Among the 22 training SSP

clusters for ML, 18 clusters are distributed in negative gradient,

which is the same with the target task cluster. To verify the

resistance ability of TDML to negative migration, SSPs with

positive gradient are chosen to be the target task, and the

comparison of inversion accuracy with different methods is given

in cluster 2. For ML, most of pre-training SSP clusters are

distributed in negative gradient, so it is difficult for the ML model

to learn the common features of SSPs with positive gradient,

resulting in bad learning ability on the new task. On the contrary,

the pre-training clusters for TDML are all distributed in positive

gradient, the accuracy performance can be guaranteed.

To give a more intuitive understanding of the negative

migration in ML, the convergence of inversion tasks belonging to

cluster 1 and 2 are displayed in Figures 9A, B, respectively. It can be

noticed that with TDML, the model can converge after only 20

times of training, which is much faster than other methods. In few-
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shot learning, reducing the repeated training of samples is helpful to

deal with the over-fitting problem. For task cluster 1, the initial

parameters of TDML for task learner are closer to the optimal

solution than ML; while for task cluster 2, the negative migration of

ML is so obvious that the initial parameter is far from the optimal

solution, and the convergence rate is also significantly reduced.

However, for TDML in Figures 9A, B, there are decreasing

processes and exist turning points that the RMSE error (m/s)

becomes stable after a few of training episodes. Especially, the gap

between the beginning and the convergence stage of TDML is

smaller in Figure 9B, which indicates that the TDML does work and

forms a good set of initial parameters of the task model.

For intuitively expressing the inversion results, the SSP inversion

example through different methods is given in Figure 10. The result of

TDML has better fitting with the original SSP curve.

5.2.3 Time efficiency comparison
The time efficiency of inversion method is very important for

emergency tasks such as underwater rescue. As the training of

learning models could be finished offline before task assignment,

more attention should be paid to the time overhead on the inversion

stage, which is compared in Figure 11. The match sound field

information needs to be searched by heuristic algorithms in MFP,

which is very time-consuming. For CS-based method, several

iterations are needed to gradually reduce the residual. However,

for learning-based methods, only once forward propagation is

enough to obtain the inverted SSP with a well trained model, so

the time efficiency is enormously improved.
6 Conclusion

To satisfy the accurate and time-efficient requirements of

underwater localization applications such as emergency rescue,

we propose a TDML framework for fast and accurately estimating

the regional SSP that is beneficial for positioning correction. The

TDML can be competent for most ocean SSP inversion tasks,

especially in few-shot learning scenarios. By simultaneously

learning different kinds of SSPs with several base learners, the

common features of SSPs can be captured and transferred to the

task learner, and the sensitivity of the task learner to the unique

characteristics of task SSPs can also be maintained. Thus, the model

can converge quickly in the face of new SSP inversion tasks, so as to

reduce the over-fitting effect in few-shot learning.
TABLE 2 Parameter settings of base lines.

ML

Training SSP clusters 22

TL

Pre-training episodes 40

Local training episodes 40

Learning rate 0.01 for auto-encoder

0.00003 for translator

AEFMNN

Training episodes 40

Learning rate 0.01 for auto-encoder

0.0001 for translator

CS

EOF feature vectors 6

CS orders 4

MFP-EOF-PSO

EOF feature vectors 5

PSO iterations 18

PSO particles 20
TABLE 3 RMSE OF SSP inversion by TDML based on different clustering criterion.

Result (m/s)

Cluster 1 2

Criterion Validation Test Validation Test

Location 13.945 14.894 11.723 22.603

Month 14.605 13.621 14.617 13.633

STI-KNN 1.178 1.235 0.998 1.036
The physical meaning of bold characters mainly reflects the generalization ability of the model.
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TABLE 4 RMSE of SSP inversion by different methods.

Cluster Result (m/s)

1 Cluster mean 1.335

1 EOF 1.320

1 CS 1.330

V1 T2 Gap3 Space4 Ratio Space Ratio

1 AEFMNN 1.112 1.402 0.290 < 0.12 0% > 0.12 100%

1 TL 1.130 1.317 0.188 < 0.12 6% > 0.12 94%

1 ML 1.183 1.266 0.083 < 0.12 72% > 0.12 28%

1 TDML 1.178 1.235 0.058 < 0.12 97% > 0.12 3%

Cluster Result (m/s)

2 Cluster mean 1.241

2 EOF 1.211

2 CS 1.217

V1 T2 Gap3 Space4 Ratio Space Ratio

2 AEFMNN 1.028 1.448 0.420 < 0.09 4% > 0.09 96%

2 TL 1.219 1.263 0.044 < 0.09 73% > 0.09 27%

2 ML 1.304 1.284 -0.021 < 0.09 90% > 0.09 10%

2 TDML 0.998 1.036 0.038 < 0.09 94% > 0.09 6%
F
rontiers in Marine S
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 frontier
1 Validation mean error (m/s). 2 Test mean error (m/s). 3 Gap mean = Test mean error - Validation mean error (m/s). 4 Gap space (m/s).
The physical meaning of bold characters mainly reflects the generalization ability of the model.
FIGURE 10

Time overhead of SSP inversion.
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To guarantee the i.i.d conditions, we propose a PC-SLDC

algorithm for clustering the empirical SSPs with similar

distribution. Then we propose an STI-KNN algorithm to map the

target inversion task, so that proper training samples for the task

can be found. To address the negative learning problem in ML, only

clusters having the positive correlation with the task can be chosen

as training tasks, and the learning rates of different base learners

change with the similarity between the meta training data and the

task training data. The experiment results show that the TDML has

better generalization ability compared with other learning methods

for SSP inversion, that is, the good accuracy performance is not only

obtained in the model training stage, but also maintained in the SSP

inversion (testing) stage. Moreover, the TDML inherits the

advantage of time efficiency of ANN during the inversion stage.

Although TDML has better accuracy performance compared

with AEFMNN, TL, ML, there are still some factors that limit the

performance of TDML. 1)High noise level of signal propagation

time that beyond the bearing capacity of AEFMNN will affect the

SSP inversion accuracy. 2)The mapping accuracy of a given task to

the SSP distribution cluster it belongs to has great influence on the

confidence coefficient performance of SSP inversion result. 3)The

SSP inversion accuracy will be limited when the real SSP

distribution of a given task lays out of distribution coverage of

reference SSPs, though it is accurately mapped to a cluster. For

example, assume the time of SSP inversion task and most of its
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neighbor reference SSPs with least spatio-temporal distance is

ideally the same, however, the location of SSP inversion task is at

the external margin of the area constructed by the sampling location

of reference SSPs. In this case, the TDML will not able to accurately

invert the SSP of the task due to the spatial difference of SSP

distribution, the problem of which is also exist in other SSP

inversion methods.

In our future work, we are going to further verify the TDML in

both shallow and deep ocean experiments, and apply the TDML SSP

inversion method to underwater positioning and navigation systems.
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