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and photosynthetic
performances of a green tide
alga Ulva prolifera
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Ruijie Wu1,2,3, Chuang He1,2,3, Jinguo Wang1,2,3, Yili Liu1,2,3,
Wei Zhou1,2,3*† and Juntian Xu1,2,3*†

1Key Laboratory of Coastal Salt Marsh Ecosystems and Resources Ministry of Natural Resources,
Jiangsu Ocean University, Lianyungang, China, 2Jiangsu Key Laboratory of Marine Bioresources and
Environment, Jiangsu Ocean University, Lianyungang, China, 3Co-Innovation Center of Jiangsu
Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
With the impact of fossil fuel burning and industrialization, atmospheric CO2

concentration will reach about 1000 ppmv in 2100, and more and more CO2 will

be absorbed by ocean, resulting in ocean acidification. The Chinese coastal

waters are showing unexpectedly high levels of acidification due to a

combination of global ocean acidification and severe regional eutrophication,

which is caused by natural accumulation or human activities such as aquacultural

tail water input, potentially affecting macroalgal blooms. However, little is known

about the combined effects of ocean acidification and entrophication on the

eco-physiology of bloom-forming macroalgae. This study investigated Ulva

prolifera, a dominant species causing green tide in the South Yellow Sea, and

explored its growth and physiological responses under the combination

conditions of ocean acidification and enriched nutrients. In this study, U.

prolifera thalli were cultured under two CO2 conditions (air and 1000 matm)

and two nutrient conditions (High Nutrient, HN, 135 mmol L-1 N and 8.5 mmol L-1

P; Normal Nutrient, NN, 27 mmol L-1 N and 1.7 mmol L-1 P). The results showed

that eutrophication conditions obviously enhanced the relative growth rate and

photosynthetic performance of U. prolifera. Elevated pCO2 had no significant

effect on U. prolifera growth and photosynthetic performance under normal

nutrient conditions. However, under eutrophication conditions elevated pCO2

inhibited U. prolifera growth. Moreover, eutrophication conditions markedly

improved the contents of chlorophyll a, chlorophyll b and nitrate reductase

activity and inhibited the soluble carbohydrate content, but elevated pCO2 had

no significant effect on them under nutrient-replete conditions. In addition,

elevated pCO2 significantly reduced the carotenoid content under

eutrophication conditions and had no effect on it under normal nutrient

conditions. These findings indicate that seawater eutrophication would greatly

accelerate U. prolifera bloom, which may also be suppressed to a certain extent
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by ocean acidification in the future. The study can provide valuable information

for predicting the future outbreaks ofU. prolifera green tide in nearshore regions.
KEYWORDS
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photosynthetic performance
1 Introduction

Green tides are mainly caused by excessive algal growth and

blooms of Ulva spp. in a suitable natural environment, which can

lead to environmental degradation and have a negative ecological

impact (Wu et al., 2018). Ulva spp. have thin sheet-like thallus with

two cell layers and a large surface area to volume ratio, which

provide an easier ability to obtain nutrients and light (Reidenbach,

2017). As a group of opportunistic macroalgae, Ulva spp. have a

wide range of environmental tolerances and are able to grow and

reproduce rapidly in nutrient-rich waters (Tan et al., 1999). They

had 594 species listed on AlgaeBase and could be found worldwide

including coastal aquaculture, fishing, and coastal tourism and

other ecological services.

The geographical distribution of green tide caused by Ulva spp.

is mainly in the north temperate zone and involves more than 37

countries and 114 regions, such as the United States, Europe and

Asia (Ye et al., 2011; Kang et al., 2021). When the green tide breaks,

thalli decompose into the water column and change the chemical

characteristics and biological community structure, which impacts

the cultural landscape and mariculture (Franz and Friedman, 2002).

In Asia, Japan firstly reported the green tide caused by Ulva spp. in

1995, and the green tide area reached 27.1 hectares in 2002 (Yabe

et al., 2009). The green tide in the Yellow Sea of China was firstly

reported in 2007, and in 2010 the green tide covered an area of 400

km2 (Zhang et al., 2013). In 2016, the total biomass of green tide was

as high as 1.17 million tons (Xiao et al., 2019). Some studies have

reported that the seaweed cultivation area in the northern Jiangsu

shoal had a significant contribution to the original biomass

accumulation of floating U. prolifera. When the culture raft frame

and cables were cleaned, about 62.3% of the green algae biomass

would float on the sea surface and become the initial green tide

floating plaque (Wang et al., 2015).

Based on classical morphological methods and molecular

techniques, it is concluded that U. prolifera is the main dominant

species causing green tide in the Yellow Sea. It has a complex life

history and a variety of reproduction modes, which is the important

reason for becoming the dominant species of green tide in the

Yellow Sea (Cui et al., 2018; Huo et al., 2021). In addition, natural

environment changes, such as global warming, greenhouse effect

and nearshore eutrophication, are also potentially important

driving factors for green tide outbreaks since 2007 in China (Xu

et al., 2017).

Carbon dioxide concentration in the atmosphere, which

increased by more than 40% since the beginning of Industrial
02
Revolution in the 1760s, reached 415 matm in 2021 and will reach

nearly 1000 matm by the end of this century (Hoegh-Guldberg et al.,

2007; Feely et al., 2009; Gattuso et al., 2015). Nearly one-third of the

anthropogenic CO2 in the atmosphere has been absorbed in the

surface waters of ocean, resulting in a decrease in surface seawater

pH, a process known as ocean acidification. (Hoegh-Guldberg et al.,

2007; Doney et al., 2009).

Studies have shown that elevated pCO2 increased the growth

rates of U. fasciata (Barakat et al., 2021) and U. lactuca (Olischläger

et al., 2013). However, elevated pCO2 had no significant effect on

the growth of U. linza under nutrient-rich conditions, at elevated

pCO2, higher temperature reduced the growth of U. linza (Gao

et al., 2018; Gao et al., 2019a). The above studies showed that the

effects of elevated pCO2 on Ulva spp. might be species-specific.

Moreover, elevated pCO2 increased the photosynthetic quantum

yield of U. prolifera under low light levels but induced higher non-

photochemical quenching (NPQ) under high light levels (Liu et al.,

2012). Ocean acidification also affected the photosynthetic pigment

contents of Ulva spp. The chlorophyll a and chlorophyll b synthesis

of U. lactuca and U. linza were inhibited under high CO2 level and

long photoperiods (Olischläger et al., 2013; Yue et al., 2019), and the

carotenoid content of U. prolifera was significantly reduced under a

high CO2 level (Sun et al., 2021).

The Ulva spp. undergoes a physiological transition from almost

exclusive bicarbonate utilization to predominant carbon dioxide

utilization under high CO2 concentration conditions (Young and

Gobler, 2016; Reidenbach, 2017). It has been reported that the

growth rates of Ulva spp. were significantly increased by the

interaction of ocean acidification and eutrophication. High CO2

level significantly increased the growth rates of Ulva spp. and

promoted the accumulat ion of a lga l b iomass under

eutrophication conditions. However, these studies of elevated-

CO2 were conducted indoors, without consideration of natural

l ight and the interactive influence of CO2 and other

environmental factors (Cruces et al., 2019). The nearshore

eutrophication of Jiangsu Province in China may be related to the

input of a large amount of fermented chicken manure (FCM) since

2005. It was estimated that at least 50,000 tons of FCM were used

for rotifer culture in ponds every year. Mariculture tail water

discharged to the nearshore waters through canals, resulting in

eutrophication (Liu et al., 2013). Until now, research regarding the

effect of ocean acidification on harmful macroalgae has focused on

laboratory studies or single-factor experiments. Relatively little is

known about how U. prolifera grown under nearshore

eutrophication conditions respond to ocean acidification.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1145048
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cai et al. 10.3389/fmars.2023.1145048
Therefore, here we actually simulated the nearshore eutrophication

and ocean acidification outside to study the synergistic effects of

global climate change and seawater eutrophication on U. prolifera,

which will provide important theoretical guidance for

understanding the coping strategies of U. prolifera green tides in

the future.
2 Materials and methods

2.1 Sample collection and
culture conditions

U. prolifera was collected from the offshore area of Qingdao,

Shandong Province (119°54′00″ E, 35°42′00″ N), in April 2022.

The thalli were brought back to the laboratory in an incubator (4-

6°C) with some ice packs and washed with filtered natural

seawater to remove contaminants on the surface. The schematic

diagram of the experimental design was shown in Figure 1. The

algae were cultured under two nutrient levels (High Nutrient,

HN: 135 mmol L-1 N and 8.5 mmol L-1 P; Normal Nutrient, NN:

natural seawater collected from 24 nautical miles offshore, 27

mmol L-1 N and 1.7 mmol L-1 P) and two CO2 conditions

(HC:1000 matm; LC: air, 425 matm). Adding N (NaNO3) and P

(NaH2PO4) to natural seawater to make a HN medium (135

mmolL -1 N and 8.5 mmol L-1 P). LC was maintained by bubbled

with ambient air, and HC was achieved from a CO2 enricher. The

experiment materials were cultured in the flasks (500 mL), and

then carried out outdoor in the 500 L stainless steel water tank.

The incubation temperature was controlled at 20°C ( ± 0.5°C) by

using a chiller. The initial weight of algae was 0.05 g in each

treatment group and three parallels were set for each treatment

group. The seawater medium was changed every two days. The

total alkalinity (TA) was measured by the method of hydrochloric

acid titration and the pH value was measured using a pH meter

(Zhou et al., 2022). The other chemical parameters of the
Frontiers in Marine Science 03
carbonate system were calculated by the CO2SYS software

according to the TA and pH values (Lewis et al., 1998).
2.2 Measurement of environment
solar radiation

The real-time solar radiation in the natural environment was

regularly monitored and recorded every minute through an outdoor

solar radiation receiver (ML-020P, EKO, Japan).
2.3 Measurement of growth

The algae were taking out from the culture bottles and the water

on the surface was removed using dry paper towels, the fresh algae

were then weighed with an electronic balance every two days, the

relative growth rate (RGR) was calculated by the following formula

(Wu et al., 2010):

RGR( % day−1) = ln(Wt=W0)=t � 100: (1)

where t represents the number of culture days; Wt represents the

fresh weight of the algae after culturing for t days;W0 represents the

fresh weight of the algae at the beginning.

After measurement, the fresh weight of algae restored to the

initial weight (0.05g) and placed in a culture flask to

continue culturing.
2.4 Measurement of chlorophyll
fluorescence

Chlorophyll fluorescence parameters were determined using a

handheld chlorophyll fluorometer PAM (Aquapen AP 100, Czech

Republic). Effective quantum yield (Yield) was recorded every 2 h

from 8:00 am to 6:00 pm. Actinic light was set with 8 different light
FIGURE 1

The schematic diagram of the experimental design. HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P.
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intensity gradients (0, 10, 20, 50, 100, 200, 500 and 1000 mmol

photons m−2 s−1). The saturation pulse was set to 5000 µmol

photons m−2s−1 (0.8 s). Relative electron transfer rate (rETR) was

calculated by the following formula (Genty et al., 1989):

rETR(mmol photons m−2 s−1) = Yield � 0:5� PAR (2)

where Yield is the photosynthetic effective quantum yield; 0.5

represents the ratio of absorbed light energy to total incident light

energy; PAR is the actinic optical density (mmol photons m−2 s−1).
2.5 Measurement of photosynthetic rate

Net photosynthetic oxygen evolution of the algae was measured

using a Clark-type oxygen electrode (YSI Model 5300A, USA). The

algae were cut into segments scissors of about 1 cm length and then

placed under culture conditions for more than 2 h to minimize

mechanical damage. The measurement temperature was

maintained at 20°C using circulating water system, which was

consistent with the growth temperature. About 0.04 g segments

were transferred to a reaction chamber with 8 ml of culture seawater

medium. 8 PAR levels (0, 10, 20, 50, 100, 200, 500 and 1000 mmol

photons m−2 s−1) were selected to measure the photosynthetic

oxygen evolution rate of the algae. Data were measured and

recorded every 30 s at each PAR level to analyze and obtain the

P-I curve of algae photosynthesis (Henley, 1993; Ralph and

Gademann, 2005).
2.6 Measurement of photosynthetic
pigments

About 0.04 g of fresh thalli were soaked in 5 ml methanol at 4°

C for 24 h in darkness. The absorbance values at the wavelengths

of 666 nm, 665 nm, 653 nm, 652 nm and 470 nm were measured

by a ultraviolet spectrophotometer. The formulas for calculating

the contents of chlorophyll a (Chl a), chlorophyll b (Chl b) and

carotenoids (Car) were calculated according to Wellburns’s

method (Wellburn, 1994; Kühl et al., 2005).
2.7 Measurement of soluble carbohydrates

The content of soluble carbohydrates was determined by an

anthrone sulfate colorimetric method (Deriaz, 1961).

Approximately 0.01 g of fresh thalli were ground in a mortar with

a 5 ml extraction solution (0.1 mol L-1 phosphate buffer, pH 6.8).

Grinding thalli were transferred to a boiling water bath for 1 h and

then centrifuged for 10 min at 5000 g. Approximately 1 ml

supernatant mixed with 4 ml 0.2% anthrone sulfate solution was

continued to boil in a water bath for 10 min and then cooled down

to room temperature. The absorbance value at 620 nm was

determined to calculate the soluble carbohydrate (SC) content of

the algae.
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2.8 Measurement of soluble protein

Approximately 0.01 g of fresh thalli were ground in a mortar

with 5 ml extraction solution (0.1 mol L-1 phosphate buffer, pH 6.8).

Grinding thalli were transfer to an ice bath and then centrifuged at

5000 g for 10 min at 4°C. According to Bradford assay (Bradford,

1976), 1 ml supernatant mixed with 5 ml Coomassie brilliant blue

staining solution were used to measure the absorbance value at 595

nm. The content of soluble protein (SP) was calculated with bovine

serum albumin as the standard.
2.9 Assessment of nitrate reductase activity

Nitrate reductase activity (NRA) of thalli was measured using a

nitrate reductase (NR) activity detection kit (Sangon Biotech

D799303-0050). Approximately 0.05 g of fresh thalli was ground

to obtain the nitrate reductase extract that mixed with the reaction

solution to measure the initial absorbance value A1 of the sample at

340 nm and then measure the absorbance value A2 at 340 nm after

30 mins at 25°C. The nitrate reductase (NR) activity was calculated

according to the following formula:

NR(U=g) = 5:359� dA=W : (3)

Where dA is the difference between the change of the absorbance

value of the sample and the change of the blank absorbance; W is

the fresh weight of the algae.
2.10 Data analysis

Origin 2019 and SPSS 24.0 softwares were used for statistical

analysis and chart drawing of the data in this experiment, and the

results were expressed as the means ± standard deviation of three

replicates. The experimental data conformed to a standard normal

distribution (P > 0.05), and homogeneity of variance was considered

equal (P > 0.05). Two-way analysis of variance (ANOVA) was used to

analyze the interactive effects of pCO2 and nutrient concentrations on

relative growth rate, carbonate system parameters, photosynthetic

rate, chlorophyll fluorescence parameters, chlorophyll a, chlorophyll

b, carotenoids, nitrate reductase activity, soluble protein and soluble

carbohydrates. One-way analysis of variance was applied when the

data complied with homogeneity of variance. Tukey’s honest

significant difference was applied to compare the mean values

between treatments groups. The significance level was set as P< 0.05.
3 Results

3.1 Ambient solar radiation

The variability of ambient solar radiation during the experiment

was shown in Figure 2. The maximum solar radiation was 1218.19

mmol photons m−2 s−1 at 11:58 am (Figure 2A). During the 2-weeks
frontiersin.org

https://doi.org/10.3389/fmars.2023.1145048
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cai et al. 10.3389/fmars.2023.1145048
culture duration, the average daily dose was 7.19 MJ m-2, and the

maximum and minimum values were 9.76 MJ m-2 on the ninth day

and 3.11 MJ m-2 on the second day, respectively (Figure 2B).
3.2 Carbonate system

The seawater carbonate systems of all treatments were recorded

(Table 1). pCO2 and nutrient conditions had a significant

interactive effect on seawater pH and CO2−
3 (P< 0.05). The pH

under HC conditions were lower by about 0.3 units compared to

that under LC conditions. Moreover, DIC, HCO−
3 , CO

2−
3 and CO2

were higher by 8.4%, higher by 11.7%, lower by 42.9%, and higher

by 119% compared to those under LC conditions, respectively.
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3.3 Growth

As shown in Figure 3, there was a significant interaction

between pCO2 and nutrient conditions on the relative growth rate

(RGR) of U. prolifera (P< 0.05). The RGR of U. prolifera in each

treatment group were 52.95% d-1 under HCHN, 55.91% d-1 under

LCHN, 32.87% d-1 under HCNN and 29.68% d-1 under LCNN.

Compared with NN, HN significantly improved the U. prolifera

growth both under HC and LC conditions (P< 0.05). Meanwhile,

the thalli RGR increased by 61.10% under HCHN and 88.39%

under LCHN compared to those under HCNN and LCNN,

respectively. Under HN, HC significantly decreased the U.

prolifera RGR (P< 0.05), which was lower by 5.30% compared to

that in LC condition.
TABLE 1 Seawater carbonate system parameters under different culture conditions.

Treatments pCO2

(matm) pH TA
(mmol Kg-1)

DIC
(mmol Kg-1)

HCO−
3

(mmol Kg-1)
CO2−

3
(mmol Kg-1)

CO2

(mmol Kg-1)

HCHN 1013.93 ± 39.67A* 7.84 ± 0.02A* 2305.60 ± 22.59A 2208.21 ± 19.44A* 2089.96 ± 17.86A* 84.60 ± 3.57A* 33.64 ± 1.32A*

HCNN 988.37 ± 26.43A* 7.85 ± 0.01A* 2324.33 ± 38.47A 2221.98 ± 38.49A* 2101.52 ± 36.75A* 87.67 ± 1.37A* 32.79 ± 0.88A*

LCHN 451.67 ± 22.96a 8.14 ± 0.02a 2254.40 ± 85.86a 2039.50 ± 79.10a 1872.16 ± 72.10a 152.36 ± 8.35a 14.99 ± 0.76a

LCNN 464.35 ± 3.10a 8.13 ± 0.01a 2256.92 ± 20.12a 2046.53 ± 16.28a 1881.54 ± 13.36a 149.58 ± 3.04a 15.41 ± 0.10a
Different capital letters indicate significant differences between HN and NN under HC, and different lowercase letters indicate significant differences between HN and NN under LC. HC=1000
matm; LC=air; HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P. Symbols (*) represent significant differences between LC and HC under the same nutrient conditions.
Data are presented as means ± standard deviation (n = 3).
A

B

FIGURE 2

The average daily variation of the outdoor solar radiation (A) and daily cumulative variation (B) for 15 days during the experiment.
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3.4 Chlorophyll fluorescence parameters

As shown in Figure 4, the fluorescence yield (Yield) of HCNN

was 0.48 ± 0.01 at 8:00, which was significantly higher than those in

the other treatments at the same time (P< 0.05). Yield of HCNN,

LCHN and LCNN reached the lowest value at 14:00. Yield of

HCHN had two minimum values of 0.21 ± 0.02 at 10:00 and 0.21

± 0.01 at 12:00 and reached the maximum value of 0.34 ± 0.01 at

14:00, which was significantly higher than those in the other

treatments at the same time (P< 0.05).

The photosynthetic properties of U. prolifera under different

culture conditions were shown in Figure 5 and Table 2. pCO2 and

nutrient concentrations had a very significant interactive effect on

chlorophyll fluorescence parameters a and rETRmax (P< 0.01), and

there was a significant interaction on Ik (P< 0.05). Compared with
Frontiers in Marine Science 06
LCNN, a significantly decreased by 39.13% under LCHN (P< 0.05).

The rETRmax of U. prolifera decreased by 14.51% under HCHN and

decreased by 21.43% under LCHN compared to those under HCNN

and LCNN, respectively. Nutrient concentrations had no significant

effect on Ik under HC or LC (P > 0.05).
3.5 Photosynthetic rate

Net photosynthetic rate (Pm) of U. prolifera under different

culture conditions was shown in Figure 6 and Table 3. There was no

significant interaction between pCO2 and nutrient concentrations

(P > 0.05). Under LC or HC, the maximum Pm of HN condition was

higher than that of NN condition. Compared with HCHN, the Pm
of HCNN was significantly increased by 48.69% (P< 0.05). HCHN
FIGURE 3

Relative growth rate (RGR) of Ulva prolifera during the first 8 days of the experiment. HC=1000 matm; LC=air; HN=135 mmol L-1 N, 8.5 mmol L-1 P;
NN=27 mmol L-1 N, 1.7 mmol L-1 P. Error bars represent standard deviation (n=3). Different capital letters indicate significant differences between HN
and NN treatments under HC condition, and different lowercase letters indicate significant differences between HN and NN treatments under LC
condition. The horizontal straight line indicates whether there is a significant difference between the HC and LC treatments within a nutrient
concentration treatment.
FIGURE 4

Diurnal variation of fluorescence yield (Yield) of HN and NN treatments in Ulva prolifera under different CO2 concentrations. HC=1000 matm; LC=air;
HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P. Error bars represent standard deviation (n=3).
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significantly increased light energy utilization rate (a) ofU. prolifera
(P< 0.05), the value of which higher by 25.71% compared to that

under HCNN. The Rd and Ic of HCHN were significantly increased

by 57.47% and reduced by 49.12% compared to those under HCNN

(P< 0.05), respectively. Moreover, the Ic ofU. prolifera under LCHN

decreased by 39.86% compared to that under LCNN.
3.6 Photosynthetic pigments

The contents of photosynthetic pigments in U. prolifera under

different treatments were shown in Figure 7, pCO2 and nutrient

concentrations had a highly significant interaction on the contents

of chlorophyll a and carotenoids (P< 0.01). There was a significant

interaction on the chlorophyll b content (P< 0.05). The chlorophyll

a contents were higher by 77.17% under LCHN and 37.02% under

HCHN compared to those under LCNN and HCNN (P< 0.05),

respectively. Under NN, HC significantly increased the chlorophyll

a content, which was higher by 17.81% compared to that under LC

(P< 0.05).

pCO2 and nutrient concentrations had a significant interaction

on the chlorophyll b content (P< 0.05). The chlorophyll b content

under LCHN increased by 108.40% compared to that under LCNN

(P< 0.05). Under NN, HC significantly increased the content of
Frontiers in Marine Science 07
chlorophyll b (P< 0.05), which was higher by 31.07% compared to

that in LC condition.

The effects of pCO2 and nutrient concentrations on the

carotenoid content were different from those on the above two

photosynthetic pigments. Under HC, HN significantly decreased

the carotenoid content compared with that under NN (P< 0.05).

Under LC, the carotenoid content in HN condition significantly

increased by 20.23% compared to that in NN condition (P< 0.05).

Under HN, HC significantly decreased the carotenoid content (P<

0.05), which was lower by 65.80% compared to that in LC condition.
3.7 Soluble carbohydrates

The variability of soluble carbohydrate contents in different

culture conditions was shown in Figure 8A. There was a significant

interaction between pCO2 and nutrient concentrations (P< 0.05).

The soluble carbohydrate content in HCHN condition was

significantly decreased by 46.94% compared to that in HCNN

condition (P< 0.05). Under LC, the soluble carbohydrate content

in HN condition was significantly reduced by 43.96% compared to

that in NN condition (P< 0.05). The soluble carbohydrate content

under HCNN was significantly increased by 26.73% compared to

that under LCNN (P< 0.05).
FIGURE 5

Relative electron transfer rate (rETR) for HN and NN treatments in Ulva prolifera under different CO2 concentrations. HC=1000 matm; LC=air;
HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P. Error bars represent standard deviation (n=3).
TABLE 2 Rapid light response curve chlorophyll fluorescence parameters of Ulva prolifera under different culture conditions.

Treatments a rETRmax Ik

HCHN 0.22 ± 0.02A* 83.27 ± 1.46B* 381.65 ± 37.27A

HCNN 0.22 ± 0.02A 97.40 ± 4.66A 457.04 ± 70.10A

LCHN 0.14 ± 0.03b 73.75 ± 0.17b 528.91 ± 125.87a

LCNN 0.23 ± 0.02a 89.56 ± 1.05a 396.12 ± 34.36a
Different capital letters indicate significant differences between HN and NN under HC, and different lowercase letters indicate significant differences between HN and NN under LC. HC=1000
matm; LC=air; HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P. Symbols (*) represent significant differences between LC and HC under the same nutrient conditions.
Data are means ± standard deviation (n = 3).
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3.8 Soluble protein

The contents of soluble protein in U. prolifera under

different culture conditions were relatively stable, ranging

from 39.84 ± 0.07 mg g-1 FW to 41.16 ± 0.06 mg g-1 FW.

pCO2 and nutrient concentrations had a significant interaction

(P< 0.05). As shown in Figure 8B, Under HC, HN significantly

increased soluble protein content (P< 0.05), which was higher

by 2.95% compared to that under NN. The soluble protein

content under HCNN decreased by 2.59% compared to that

under LCNN.
3.9 Nitrate reductase activity

There was no significant interaction between pCO2 and nutrient

concentrations on the nitrate reductase activity of U. prolifera (P >

0.05). As shown in Figure 9, the nitrate reductase activity of U.

prolifera under HN was higher than that under NN. HCHN

significantly increased the nitrate reductase activity (P< 0.05),

which was higher by 129.08% compare to that under HCNN.

Moreover, LCHN significantly increased the nitrate reductase

activity, which was higher by 159.89% compared with that under

LCNN (P< 0.05).
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4 Discussion

In eutrophic estuaries and nearshore regions, opportunistic

green algae have a high biomass, accounting for 68%, especially

Ulva spp., accompanied by a high drift rate (Potter et al., 2021). The

algae density affects the stability of seawater carbonate systems. To

maintain a stable carbonate system in the seawater, algae biomass

should be kept within a range of 2.0 ± 0.1 g L−1 (Liu et al., 2012). In

order to obtain a more ideal carbonate stabilization system, the

biomass of Ulva spp. in many studies was consistently controlled

below 0.4 g L-1 (Gao et al., 2012; Gao et al., 2016; Gao et al., 2017a;

Gao et al., 2018; Gao et al., 2019b). In this study, initial biomass

of U. prolifera was 0.1 g L−1 and the final harvested biomass was less

than 0.4 g L-1, which could meet the stability requirements of the

seawater carbonate system. The results of this study showed that the

relative growth rates of U. prolifera under HN conditions

were significantly increased under HC or LC condition, and the

amounts of Chl a and Chl b under HN treatment were significantly

higher than those under NN treatment. Under HN treatment,

the maximum net photosynthetic rate and light energy utilization

of U. prolifera were higher than those under NN treatment.

The increment of photosynthetic pigment content can promote

light energy absorption rate by algae and thus enhance the

photosynthetic rate (Zhou et al., 2022). In this experiment, a

significant improvement of the maximum photosynthetic
FIGURE 6

Net photosynthetic rate of HN and NN treatments in Ulva prolifera under different CO2 concentrations. HC=1000 matm; LC=air; HN=135 mmol L-1 N,
8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P. Error bars represent standard deviation (n=3).
TABLE 3 Net photosynthetic rate parameters of Ulva prolifera under different culture conditions.

Treatments Pm a Rd Ik Ic

HCHN 188.79 ± 10.18A 0.44 ± 0.02A -10.37 ± 1.09A 432.50 ± 13.28A 23.75 ± 2.15B

HCNN 126.97 ± 4.48B 0.35 ± 0.02B -16.33 ± 1.42B 364.43 ± 32.22A 46.68 ± 1.79A

LCHN 172.08 ± 24.42a 0.44 ± 0.01a -10.24 ± 1.02a 392.66 ± 49.86a 23.39 ± 2.13b

LCNN 129.35 ± 12.63b 0.35 ± 0.05a -13.81 ± 3.24a 368.76 ± 19.15a 38.89 ± 5.07a
Different capital letters indicate significant differences between HN and NN under HC, and different lowercase letters indicate significant differences between HN and NN under LC. HC=1000
matm; LC=air; HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P. Data are means ± standard deviation (n = 3).
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rate under HN treatment also confirmed that algae can adapt to

environmental changes by adjusting the contents of photosynthetic

pigments (Gao et al., 2018). It was proved that eutrophication

treatments remarkably increased the photosynthesis rate of U.

prolifera and further promoted algae growth. A similar

phenomenon had also been reported in U. rigida (Gao et al.,

2017a). This may be due to an increment in the phosphate

absorption rate. In addition, the increased phosphorus

concentration had a obvious promotion effect on the nitrate

absorption rate, which was a favorable influence on macroalgae

growth (Wang et al., 2019).

Interestingly, here elevated pCO2 significantly inhibited the

relative growth rate of U. prolifera under eutrophication

conditions (P< 0.05). The results showed that the amount of

carotenoid in U. prolifera was significantly decreased under

HCHN conditions. The carotenoid content under LCHN was

65.80% higher than that under HCHN. Macroalgae cultivated

outdoors was inevitably exposed to high light intensity and was

affected by highlight stress. In this study, solar radiation at noon

reached the maximum range throughout the day (Figure 2A), and

Yield of U. prolifera under HCHN reached the minimum range,

which were significantly lower than that under LCHN (Figure 4). It

might be due to the photodamage caused by the downregulation of
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high light intensity or carbon dioxide concentration mechanism

(CCMs) (Xu and Gao, 2010; Gao et al., 2016; Van Alstyne, 2018).

Moreover, in light harvesting complex, carotenoids play a very

important role in preventing photodamage caused by excess light

intensity (Fu et al., 2013). However, the results showed that elevated

pCO2 was not conducive to carotenoid synthesis of U. prolifera

under eutrophication conditions, which potentially enhanced the

chance of thalli photodamage and further aggravated the inhibition

of algae growth. It may also be one of the important reasons that

elevated pCO2 inhibited the growth rate of U. prolifera. A similar

phenomenon has been found in many marine macroalgae, such as

the intertidal red macroalgae Gracilaria tenuistipitata (Vega et al.,

2020), G. lemaneiformis (Qu et al., 2017) and Neopyropia yezoensis

(Sun et al., 2021), the intertidal green macroalga Bryopsis corticulans

(Giovagnetti et al., 2018) and the brown macroalgae Lessonia

spicata (Zúñiga et al., 2020) and Cystoseira tamariscifolia (Celis-

Plá et al., 2017). The amounts of Chl a and Chl b in U. prolifera

increased significantly with increasing CO2 under NN condition

(P< 0.05), but the relative growth rate did not change significantly,

which may be due to photoinhibition caused by high light intensity.

In addition to the physiological parameters of photosynthesis,

the amounts of SC and SP in U. prolifera were varied under different

conditions. The results of this experiment showed that the SC under
A B

C D

FIGURE 7

The contents of Chlorophyll a (A), Chlorophyll b (B), Carotenoid (C) and the ratio of chlorophyll a to chlorophyll b (D) in Ulva prolifera under
different culture conditions. HC=1000 matm; LC=air; HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1P. Error bars represent
standard deviation (n=3). Different capital letters indicate significant differences between HN and NN treatments under HC condition, and different
lowercase letters indicate significant differences between HN and NN treatments under LC condition. The horizontal straight line indicates whether
there is a significant difference between the HC and LC treatments within a nutrient concentration treatment.
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HN was significantly lower than that under NN, which may be

related to the higher relative growth rate under HN than that under

NN. Under NN, the soluble carbohydrate content of U. prolifera in

HC condition was significantly increased compared with that in LC
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condition. This may be related to the higher Yield and rETR under

HCNN condition. It is different from U. compressa, the total SC

level of which significantly decreased by about 19% under

acidification (Vinuganesh et al., 2022). The reason may be that
A

B

FIGURE 8

The contents of soluble carbohydrate (A) and soluble protein (B) of Ulva prolifera under different culture conditions. HC=1000 matm; LC=air;
HN=135 mmol L-1 N, 8.5 mmol L-1 P; NN=27 mmol L-1 N, 1.7 mmol L-1 P; Error bars represent standard deviation (n=3). Different capital letters indicate
significant differences between HN and NN treatments under HC conditions, and different lowercase letters indicate significant differences between
HN and NN treatments under LC condition. The horizontal straight line indicates whether there is a significant difference between the HC and LC
treatments within a nutrient concentration treatment.
FIGURE 9

Nitrate reductase activity (NR) of Ulva prolifera under different culture conditions. HC=1000 matm; LC=air; HN=135 mmol L-1N, 8.5 mmol L-1 P; NN=27 mmol
L-1 N, 1.7 mmol L-1 P. Error bars represent standard deviation (n=3). Different capital letters indicate significant differences between HN and NN treatments
under HC condition, and different lowercase letters indicate significant differences between HN and NN treatments under LC condition. The horizontal
straight line indicates whether there is a significant difference between the HC and LC treatments within a nutrient concentration treatment.
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other substances involved in soluble carbohydrates are altered in

response to acidification (Sun et al., 2021). In this study, HNHC

significantly increased the SP amount of U. prolifera compared with

NNHC treatment. This is consistent with the result that HN

significantly increased the nitrate reductase activity of U. prolifera

compared with NN under HC conditon. It can be attributed to the

increase of protein synthesis caused by the stimulation of NR under

HC (Gordillo et al., 2001). The higher NR also matched the higher

RGR under HN condition in U. prolifera. In green algae, high

nitrate conditions were beneficial to the synthesis of proteins and

lipids (El-Sayed et al., 2022). It may lead to more severe green tides

when near-shore eutrophication is not effectively managed (Gao

et al., 2017b).
5 Conclusion

Due to the excessive use of fossil fuels, the atmospheric CO2

concentration is increasing year by year, and ocean acidification

is becoming increasingly serious. At the same time, the excessive

discharge of nutrients in the coastal waters leads to large areas of

eutrophication in nearshore waters. Eutrophication was the

main factor, which significantly increased the relative growth

rate and photosynthesis of U. prolifera. Acidification did not play

a driving role in promoting U. prolifera growth, and even

inhibited its growth under eutrophication conditions,

especially on sunny days. This suggests that seawater

eutrophication would greatly accelerate U. prolifera bloom,

which may also be suppressed to a certain extent by ocean

acidification in the future. The study can provide valuable

information for predicting the future outbreaks of U. prolifera

green tide in nearshore regions.
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