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Better or worse food: Nutrition
value of the prey fishes and the
potential health implications for
Indo-Pacific humpback dolphins

Jianqing Lin, Yan Liang, Hancheng Zhao, Qilin Gutang,
Zonghuan Wu, Yan Gao, Sailan Liu, Kunhuan Li, Yinglin Wu,
Zonghang Zhang, Ping Li and Wenhua Liu*

Guangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key
Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, Shantou
University, Shantou, China
Introduction: Overfishing and climate change have combined to cause fishery

stocks to decline and fish community composition to change, further

threatening the predation and nutritional health of marine mammals.

Methods: In this study, we collected potential prey fishes catched by fishermen in six

habitats of Indo-Pacific humpback dolphins and analyzed their proximate

composition (moisture, water, fat and protein), the fatty acid composition and the

amino acid composition to evaluate the possible health effect on humpback dolphins.

Results: The results showed that the nutritional composition varied significantly

with species and locations. Fishes in the families Sciaenidae and Engraulidae

displayed richer fatty acid composition, while those in the family Clupeidae had

the highest value of amino acid quality index. In Zhuhai, home to the largest

Indo-Pacific humpback dolphin population, pelagic/neritic prey fishes possessed

lower energy density, PUFA content, PUFA/SFA ratio, DHA content, and EAA

content compared to demersal fish, suggesting nutritional stress when there is a

dietary switch from demersal to pelagic/neritic fishes in Zhuhai population.

Discussion: Our study provided a framework, with energy density and fatty acid

composition as its most important indicator, for assessment of the marine top

predators based on the nutritional composition of their prey fishes and revealed

the potential threats. Data here is expected to facilitate the development of

scientific programs for successful conservation of not only the Indo-Pacific

humpback dolphins, but also other marine top predators, possibly through

reconstructing their prey fish’s quantity and quality.
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1 Introduction

The rapid development of coastal economy and human

disturbances pose severe effects on the inshore and estuarine

environment (Cheung et al., 2013; Breitburg et al., 2018; He and

Silliman, 2019), leading to not only the collapse of fishery resources

(Myers and Worm, 2003; Mullon et al., 2005; Dadswell et al., 2021)

but also the alteration of fishery structure (Perry et al., 2005;

Essington et al., 2006), with a gradual transition from long-lived,

high trophic level, piscivorous demersal fish toward short-lived, low

trophic level planktivorous pelagic fish (Christensen, 2015). These

could further threaten the predation and nutritional health of

marine mammals (Avila et al., 2018). Mammals suffering from

nutritional stress typically exhibit reduced body size, reduced

productivity, high mortality in pups and juveniles, altered blood

chemistry, and specific behavioral modifications, because of less

fishery resources and the relatively low quality of available prey

(Trites and Donnelly, 2003; Österblom et al., 2008).

The Indo-Pacific humpback dolphin (Sousa chinensis) is a

coastal mammal that primarily inhabits in warm-temperate

estuaries. It is assessed as Vulnerable on the IUCN Red List,

where the sum of available abundance estimates adds up to about

5,700 individuals worldwide, with a declining population trend

(Jefferson and Smith, 2016; Jefferson et al., 2017). There are around

4000 individuals (70%) inhabited in Chinese waters, with

apparently fragmented distribution ranging from Taiwan Strait to

Beibu Gulf (Jiulongjiang estuary in Xiamen, Hanjiang River-

Rongjiang River estuary in Shantou, the Pearl River estuary

(PRE), Dajin Island area in Jiangmen, Jianjiang estuary in

Zhanjiang and Sanniang Bay in Qinzhou).

The Indo-Pacific humpback dolphin appears to be

opportunistic feeders, consuming a wide variety of nearshore,

estuarine, and reef fishes, with preference for shoaling and meaty

fishes, such as the spiny head croaker (Collichthys lucida), the

flathead grey mullet (Mugil cephalus), croaker (Johnius spp), and

anchovies (Thryssa spp) (Jefferson and Smith, 2016; Lin et al., 2021).

Most of the humpback dolphin’s prey fish are commercial fish and

have been overfished. The total amount of marine fishing in

Guangdong, home to the largest population of humpback

dolphins, showed a downward trend from 2003 to 2020,

according to China Fisheries Statistical Yearbook. While the total

number of spiny croakers has increased slightly, the populations of

some of the humpback’s other prey fish, including mullet, clupeoid

and anchovy, have declined over the last 20 years (Figure S1). In

most of the humpback dolphin’s habitat, heavy fishing activity and

climate change have combined to cause the fishery resources

collapse and fish community composition alteration (Teh et al.,

2019; Wang et al., 2022; Yuan et al., 2022). Stomach samples taken

from stranded humpback dolphin carcasses covering Lingding Bay

and the western Pearl River Delta during 2003 and 2017 indicate

not only a prey spectrum wider than those previously reported, but

also a dietary switch from primarily demersal to greater intake of

neritic and pelagic fish (Lin et al., 2021). Therefore, it is critical to

assess the health status of humpback dolphins based on the

nutritional status of their prey.
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In this study, we analyzed the proximate composition

(moisture, water, fat and protein), the fatty acids composition and

the amino acid composition of the prey fishes of humpback

dolphins and evaluated their nutritional status. The results may

facilitate the conservation of this marine mammal through

management of their habitat and food.
2 Materials and methods

2.1 Sample collection

A total of 14 species of Indo-Pacific humpback dolphins’ prey

fishes were collected from the fishermen in six sampling sites

between August 11, 2013, and December 15, 2013. We first

acquired their fishing route and area to make sure the fish were

caught in the corresponding offshore waters. The 14 fish species

studied were of 4 family: Sciaenidae (Pseudosciaena crocea, Johnius

amblycephalus, Johnius fasciatus, Johnius grypotus, Johnius

belangerii, Collichthys lucidus, Argyrosomus argentatus, Pennahia

anea), Mugilidae (Mugilcephalus linnaeus, Liza affinis, Liza

dussumieri), Clupeidae (Clupanodon thrissa, Konosirus punctatus)

and Engraulidae (Coilia mystus). The 14 fish species was classified

into three groups: pelagic/neritic, benthopelagic, and demersal

fishes (Sanganyado et al., 2018; Yu et al., 2020) (Table 1). Six

sampling sites were assigned in the South China Sea coastal waters

including Xiamen, Shantou, Zhuhai, Jiangmen, Zhanjiang, and

Qinzhou (Figure 1), which have been identified as the major

habitats for humpback dolphins (Jefferson and Smith, 2016).

At least four different fish species (n = 5) were collected from

each sampling site with a total of 165 fish samples. The samples

were stored in an ice chest before being transported to the

laboratory for further study. Fish samples were identified, and

then weighted and measured. After rinsed with ultrapure water,

the samples were stored at -80°C until further treatment.
2.2 Proximate composition analysis

Moisture determination. The moisture content of the fish was

determined through drying the sample at a lyophilizer for nine days

to a constant weight, according to the national standard of China

GB/T 5009.3 - 2010. The difference in weight before and after

drying was divided by the initial weight of the fish sample.
2.2.1 Ash determination
The ash content was determined following the GB/T 5009.4-

2010 national standard of China. Each homogenized sample (about

0.1 g) was weighed in a well-dried porcelain basin. The porcelain

basin with fish sample was placed into a muffle furnace with

temperature of 200°C for one hour until carbonized without

smoke. The temperature was raised to 550°C and kept for five

hours until there were no carbon granules. When it cools to 200°C,

remove the crucible and the sample from the muffle furnace to the

desiccator and cool to room temperature. The amount of ash was
frontiersin.org
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calculated considering the difference of weight after and before

this procedure.

2.2.2 Protein analysis
The crude protein was determined using the Kjeldahl method

according to the national standard of China GB/T 5009.5 - 2010.

Each homogenized sample (about 0.1 g) was heated to 400 °C with

0.7-0.9 g CuSO4 and 10 ml 98% H2SO4 in a digestive tube for 3-4 h.
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After cooling for 15-20 min, the digestive tube with completely

digested sample was subjected to FOSS 1035 automatic nitrogen

analyzer. The results were multiplied by the coefficient 6.25.

2.2.3 Fat analysis
The crude fat content was estimated using a Soxhlet extraction

method based on the national standard of China GB/T 14772 -

2008. Each homogenized sample was placed in an extraction
TABLE 1 The sample information in this study.

Site Family Latinname Common names Species niche length (cm) Weight (g)

Xiamen Sciaenidae Pseudosciaena crocea Large yellow croaker Benthopelagic 14.8—17.1 40.1—52.1

Johnius amblycephalus Bearded croaker Demersal 12.3—14.8 19.4—32.4

Johnius fasciatus / Demersal 18.2—20.4 76.5—103.6

Mugilidae Mugilcephalus Linnaeus Flathead grey mullet Benthopelagic 21.9—23.5 122.1—171.8

Liza affinis Keled mullet Pelagicneritic 14.5—17.0 41.1—57.9

Shantou Sciaenidae Pseudosciaena crocea Large yellow croaker Benthopelagic 14.0—17.5 27.0—56.1

Johnius grypotus / Benthopelagic 14.0—16.4 32.0—53.7

Johnius fasciatus / Demersal 22.5—25.1 137.5—175.1

Clupeidae Clupanodon thrissa Clupeidae Pelagicneritic 17.0—19.5 62.8—93.8

Zhuhai Sciaenidae Pseudosciaena crocea Large yellow croaker Benthopelagic 14.8—20.1 36.5—76.5

Collichthys lucidus Spiny head croaker Demersal 14.3—18.6 32.5—51.5

Johnius belangerii Belanger’s croaker Demersal 13.0—16.5 23.9—52.9

Argyrosomus argentatus Silver croaker Benthopelagic 13.5—18.5 30.8—86.2

Johnius fasciatus / Demersal 25.0—32.5 185.9—393.8

Engraulidae Coilia mystus Osbeck’s grenadier anchovy Pelagicneritic 13.1—19.1 9.3—24.5

Clupeidae Clupanodon thrissa Clupeidae Pelagicneritic 18.5—20.2 69.4—87.4

Mugilidae Liza affinis Keled mullet Pelagicneritic 15.0—18.5 34.4—56.3

Jiangmen Sciaenidae Pseudosciaena crocea Large yellow croaker Benthopelagic 27.5—28.2 241.1—278.4

Collichthys lucidus Spiny head croaker Demersal 7.5—9.2 5.3—8.0

Pennahia anea Donkey croaker Demersal 12.2—14.0 21.6—30.9

Engraulidae Coilia mystus Osbeck’s grenadier anchovy Pelagicneritic 8.2—19.4 2.8—22.1

Clupeidae Clupanodon thrissa Clupeidae Pelagicneritic 22.0—24.3 90.2—108.2

Mugilidae Liza dussumieri Greenback mullet Demersal 16.2—18.3 43.4—55.7

Mugilcephalus Linnaeus Flathead grey mullet Benthopelagic 21.3—28.1 81.4—204.8

Zhanjiang Sciaenidae Pseudosciaena crocea Large yellow croaker Benthopelagic 19.5—20.5 155.5—170.5

Johnius grypotus / Benthopelagic 12.5—15.0 41.9—63.8

Clupeidae Konosirus punctatus Dotted gizzard shad Pelagicneritic 13.0—15.0 55.1—70.5

Mugilidae Liza dussumieri Greenback mullet Demersal 10.5—13.5 23—34.4

Mugilcephalus Linnaeus Flathead grey mullet Benthopelagic 11.0—21.5 26.2—171.1

Qinzhou Sciaenidae Johnius belangerii Belanger’s croaker Demersal 12.1—15.0 38.2—63.9

Johnius fasciatus / Demersal 19.0—20.5 141.7—168.4

Clupeidae Konosirus punctatus Dotted gizzard shad Pelagicneritic 13.1—16.2 41.8—68.5

Mugilidae Liza affinis Keled mullet Pelagicneritic 13.0—15.0 31.0—47.2
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cylinder added with petroleum ether. The extraction cylinder was

incubated at 65°C until the sample was completely extracted. Then,

the extraction cylinder was put into a rotary evaporator with

temperature at 50°C to volatilize organic reagents and dried at

105°C to constant weight. The crude fat content was calculated by

dividing the initial weight of the fish sample by the difference in

weight after and before this procedure.

2.2.4 Energy density
The energy densities of prey fishes were based on protein and fat

content, since the carbohydrates are considered negligible in fish.

Energy density (kJ/g) = (protein content × 5.96 + fat content ×9.50)

×4.2 (Payne et al., 1999).
2.3 Lipid extraction and fatty acid analyses

The lipid extraction was carried out using the method of Folch

et al. (Folch et al., 1957). In brief, about 0.1 g (w0) homogenized fish

sample was added to 4 mL chloroform: methanol (C-M) (2:1, v/v) in

tube A. The tube A was settled at rest at 4°C for 48 h. After

centrifugation at 11000 rpm and 4°C for 10 min, the supernatant

was transferred to tube B (w1). After 2 mL C-M was added to the

residue of tube A, and tube A was centrifuged at 11000 rpm and 4°C

for 10 min and the supernatant was transferred to tube B. Then, 1.2

mL of 1.6% CaCl2 was added to the supernatant and mixed. After

settling at rest for more than 12 h, the upper phase was removed

from tube B. The lower phase of tube B was dried under pure

nitrogen flux. The dried tube A was evaporated at 75°C and

reweighed (w2). Therefore, the fat content of the sample (%) is

calculated as (w2−w1)/w0×100.

Fatty acid methyl esters (FAME) were prepared using boron

trifluoride (BF3)-catalyzed methylation method (Ichihara and

Fukubayashi, 2010). Firstly, 2 mL of NaOH methanol solution

(0.5 M) was added to the pure lipid and the mixture was bathed at

68°C for about 1 h until the oil globule disappeared, then 2 mL

methanolic boron trifluoride (15%) was added to the mixture, and

bathed at 72 °C for 30 min. Four mL n-hexane was added

immediately followed by vigorous shaking for 30 s and bathed for

1 min. Lastly, 1 mL saturated NaCl solution was settled at rest; after
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stratification, the upper isooctane layer was filtered at 0.45 mm
membrane filters, and then diluted with n-hexane to 500 mL.

The fatty acid compositions were determined by gas

chromatography (Shimadzu GC-2010) using a flame ionization

detector (FID) and a HP-88 column (60 m × 0.25 mm × 0.25

mm). Nitrogen was used as the carrier gas at a flow rate of 30 mL/

min. Sample was injected (1 mL) with a split mode (ratio 10:1).

Injector temperature and detector temperature were set at 250 and

280°C, respectively. The oven temperature increased from 50°C

(1 min) to 175°C (5 min) at a rate of 40°C/min and was further

increased at a rate of 3°C/min to a final temperature of 230°C

(1 min). Fatty acids were identified with retention time obtained

from commercial FAME standards (Sigma Chemical, St. Louis,

MO). The relative amount of each fatty acid was calculated from the

integrated area of each peak and expressed as the percentage of the

total area of all peaks.
2.4 Amino acid analysis

The amino acid analysis was performed according to the

method of national standard of China GB/T 18246-2000. Frozen-

dried samples (0.05 g) were hydrolyzed with 10 mL of 6 M HCl

under reduced pressure at 110°C for 24 h. The hydrolysates were

cooled to room temperature and pipetted into 10 mL volumetric

flask and diluted to 10 mL using 0.02 M HCl. Two milliliters of

hydrolysates were pipetted into a 5 mL beaker and heated until dry.

Two milliliters of sodium eluent (NA-740) were added. After

filtering, the eluent as subjected to a SYKAM 433-D amino acid

analyzer. Amino acid contents were expressed as g per 100 g

dry sample.

The protein quality indices, such as amino acid score (AAS),

chemical score (CS), and essential amino acid index (EAAI), were

determined as follows (Wang et al., 2021):

AAS =
aa

AAðFAO=WHOÞ
� 100

CS =
aa

AAðEggÞ
� 100

EAAI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100A
AE

� 100B
BE

� 100C
CE

�⋯� 100I
IE

n

s

where n is the number of essential amino acids compared, A-I

represents the essential amino acid content in fish protein, and AE-

IE indicates the amino acids content of chicken egg protein.
2.5 Statistical analysis

The generalized linear model (GLM) was used to test the

difference among multiple groups. Duncan’s Multiple-Range Test

of a one-way analysis of variance (ANOVA) was used to test the

differences between each two groups when the data meet the
FIGURE 1

The sampling sites in this study.
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assumption of no difference in variance for ANOVA, otherwise,

nonparametric test (Kruskal-Wallis test) was used.The level of

significance was set at p< 0.05. The results are presented as mean

values with their standard errors (n = 5), and all above statistical

analyses were performed using IBM SPSS 26.0 Statistics

(IBM, USA).

The analysis of similarities (ANOSIM) was used to test the

difference of community structure of potential prey fishes among

provinces (Guangdong, Guangxi and Fujian provinces) and stages

(2018-2020, 2012-2014 and 2006-2008). The fishing amount data

was collected from China Fisheries Statistical Yearbook published

in corresponding year. The level of significance was set at p< 0.05

and R>0.75. The ANOSIM analyses were performed using the R

package vagen.
3 Results

3.1 Proximate composition of prey fishes

In this study, a total of 14 prey fish species of Indo-Pacific

humpback dolphins were collected from their major habitats in the

South China Sea (Figure 1; Table 1) and the proximate composition

of fishes was determined (Table S1).

The moisture contents of prey fishes varied significantly with

species (p< 0.001, GLM). For example, in Zhuhai, the spiny head

croaker (Collichthys lucidus) had the highest moisture contents

(82.28 ± 0.70%), which was significantly higher than those of other

prey fish species with lowest moisture content recorded for the

Keled mullet (Liza affinis) (65.32 ± 1.25%). Although the

generalized linear model showed that in general the moisture

contents of prey fishes were not significantly affected by their

habitats (p = 0.2593, GLM), some specific species showed

significantly different moisture contents in different habitats. For

example, the moisture contents of large yellow croaker

(Pseudosciaena crocea) from Shantou (77.76 ± 0.90%) are

significantly higher than those from other habitats, especially

Jiangmen (63.73 ± 1.09%) (Table S1).

The crude protein and fatty content of prey fishes were also

significantly influenced by species and location (p< 0.001, GLM).

Taking the large yellow croaker for the example again, the crude

protein of the large yellow croaker from Xiamen (12.88 ± 0.48%)

were lower than those of not only other species collected in the same

habitat but also the large yellow croaker from other sites, especially

Shantou (15.89 ± 0.20%) (Table S1). For the crude fat, the content of

Keled mullet from Xiamen reached as high as 20.69 ± 1.33% but

that from Qinzhou was significantly much lower (3.42 ± 0.60%).

The crude fat content of large yellow croaker from Jiangmen (15.49

± 0.99%) and Zhanjiang (12.98 ± 0.84%) is much higher than those

from Xiamen (4.72 ± 0.77%), Shantou (4.82 ± 0.35%) and Zhuhai

(6.41 ± 1.17%) (Table S1).

Comparison of the proximal composition among them in

Zhuhai (Lingding Bay) and Jiangmen (western PRE) showed that

the patterns of fish proximal composition are different between

Zhuhai and Jiangmen. In Zhuhai, the crude protein content showed

of demersal and benthopelagic fishes were significantly higher than
Frontiers in Marine Science 05
pelagic/neritic fishes (p< 0.05, Kruskal-Wallis test). (Figure 2A),

while there was no significant difference in fat contents among

species niche group (p > 0.05, one-way ANOVA). Evaluation of the

energy density of prey fish based on protein and fat content reversed

that the demersal fishes had the highest energy density while the

pelagic/neritic displayed the lowest one (Figure 2A). The fishes in

Jiangmen had higher crude protein contents than those in Zhuhai,

especially those of pelagic/neritic fishes. Unlike the prey fish in

Zhuhai, the pelagic/neritic fish in Jiangmen had significantly higher

(p< 0.05, Kruskal-Wallis test) fat content and energy density

compared to the demersal and benthopelagic groups (Figure 2B).
3.2 Fatty acids composition

A total of 23 kinds of the fatty acid were detected from 14 prey

fish species of Indo-Pacific humpback dolphins, which included 12

saturated fatty acids (SFA), 9 monounsaturated fatty acids (MUFA)

and 11 polyunsaturated fatty acids (PUFA) (Table S2).

Seven dominant fatty acids (more than 1% of total fatty acids) in

the prey fishes were found: 14:0, 15:0, 16:0, 17:0 and 18:0 as SFA;

16:1, 17:1, C18:1n-9cis as MUFA; C18:2n-6cis, C20:3n-3, C20:5n-3

(EPA), C22:6n-3 (DHA) as PFA. The average content of SFA,

MUFA and PFA is 57.09%, 33.49% and 8.71%, respectively (Table

S2). The SFA, MUFA and PFA contents of prey fishes varied

significantly with species and location (p< 0.001). Among the 14

species of prey fish in this study, the fishes of Sciaenidae and

Engraulidae family displayed significantly higher (p< 0.05, one-way

ANOVA/Kruskal-Wallis test) PUFA, EPA, DHA content and

PUFA/SFA ratio, and significantly lower (p< 0.05, one-way

ANOVA) MUFA content than those of Clupeidae and Mugilidae

family (Figure 3). In particular, the spiny head croaker of Sciaenidae

family had the highest PUFA, EPA, DHA contents and PUFA/SFA

ratio among the studied species (Table S2). Our results suggested

that prey fishes in Sciaenidae and Engraulidae family are the most

important PUFA resource.

We then compared the fatty acid composition among pelagic/

neritic, benthopelagic and demersal fishes in Zhuhai and Jiangmen.

In Zhuhai, for the PUFA, DHA, DHA+EPA content and PUFA/

SFA ratio, the contents of demersal fishes were significantly higher

(p< 0.05, Kruskal-Wallis test) than those of benthopelagic and

pelagic/neritic fishes (Figure 4A). However, in Jiangmen, the SFA,

MUFA, PUFA, EPA and DHA contents, and PUFA/SFA ratio show

little difference among the three species niches, especially between

pelagic/neritic and demersal fishes (Figure 4B).
3.3 Amino acid composition

The amino acid compositions in the 14 prey fish species of

humpback dolphins are listed in Table S3, where 9 essential amino

acids and 8 nonessential amino acids were detected. Glutamine

(Glu, 7.48 ± 1.76%) is the dominant amino acid, followed by

aspartic acid (Asp, 4.84 ± 1.14%), lysine (Lys, 4.16 ± 0.97%),

arginine (Arg, 4.02± 0.88%), glycine (Gly, 3.84 ± 0.86%), leucine

(Leu, 3.77% ± 0.88) and alanine (Ala, 3.55 ± 0.75%). In general, the
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average concentration of essential amino acids (EAA) of all the

samples was 23.63 ± 4.87%. Their essential amino acids/total amino

acids (EAA/TAA) and essential amino acids/non-essential amino

acids (EAA/NEAA) were 47.21 ± 2.00% and 89.70 ± 7.08%,

respectively. The prey fishes were high-quality protein sources,

according to the ideal FAO/WHO model which recommended

that the EAA/TAA and EAA/NEAA ratios of high-quality protein

should be around 40% and higher than 60%, respectively (Table S3)

(WHO, 1991).

We also calculated the AAS, CS and EAAI of all the fishes

studied (Tables S4–S6), and found that except for Met+Cys, which
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is the first limiting amino acid (Table S4), the other EAA contents

are close to or higher than those of FAO/WHO reference protein,

and lower than egg protein. All the fishes have EAAI higher than 60

(Table S6). These results again suggested that the prey fishes

possessed rich and amino-acid-balanced high-quality protein.

Although good at protein quality in general, the EAA, NEAA,

TAA contents, EAA/TAA, EAA/NEAA ratios of prey fishes varied

significantly with species (p< 0.001, GLM). Compared with

Engraulidae and Sciaenidae fishes, Clupeidae and Mugilidae fishes

have higher (q< 0.05, Kruskal-Wallis test) EAA and total TAA

contents but lower EAAI, suggesting discordance of EAA richness
A

B

FIGURE 2

The box plots of proximal composition and energy density of fishes in different species niches from Zhuhai (A) and Jiangmen (B). Different lower-
case letters indicate a significant difference among groups.
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FIGURE 3

The box plots of fatty acids composition of fishes of different families. Different lower-case letters indicate a significant difference among groups.
A

B

FIGURE 4

The box plots of fatty acids composition of fishes in different species niches from Zhuhai (A) and Jiangmen (B). Different lower-case letters indicate a
significant difference among groups.
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and EAA balance. However, Johnius fasciatus had the highest EAA

content and EAAI, implying that this species could serve as the best

of both options (Figure 5).

We then compared the amino acid composition among pelagic/

neritic, benthopelagic and demersal fishes in Zhuhai and Jiangmen.

In Zhuhai, the demersal fishes had significantly higher EAA and

TAA content than pelagic/neritic and benthopelagic fishes

(Figure 6A). While in Jiangmen, the highest EAA contents were

recorded from the pelagic/neritic fishes and the lowest from

benthopelagic fishes (Figure 6B). However, in both areas, EAA/

TAA and EAAI did not show significant differences among the

three species niches.
4 Discussion

Overall, our data provided the nutritional profiling of the prey

fishes of Indo-Pacific humpback dolphins along the southern

coastal areas of China. The results showed that the crude fat,

protein content, fatty acids and amino acid composition varied

significantly with species and locations. We specifically focused on

the Pearl River Estuary (Zhuhai and Jiangmen), home to the largest

Indo-Pacific humpback dolphin population, which has shown a

dietary switch from primarily demersal to neritic and pelagic fish

(Lin et al., 2021). In Zhuhai, the prey fishes were found to have

lower energy densities, poorer fatty acid and amino acid quality

indices (PUFA content, PUFA/SFA ratio, DHA content, EAA

content) in pelagic/neritic fishes compared with demersal ones,

suggesting that the largest humpback dolphin population would

suffer from nutritional stress due to a dietary switch from higher

nutr i t ional qual i ty demersal fishes to pelagic/ner it ic

fishes (Figure 7).

Prey fishes are extremely important to the marine mammals by

providing energy for basal metabolism, thermoregulation,

swimming, osmoregulation and reproduction (Trites and

Donnelly, 2003; Berta et al., 2015; IJsseldijk et al., 2021). Our

results showed that the energy densities varied considerably with
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different species, with pelagic and neritic prey fishes having

significantly lower energy densities compared to demersal fishes,

which would affect the energy intake of dolphins, which depend on

prey size and prey abundance (Baird and Dill, 1996; Emery, 2017).

Facing the decline of prey resource, the humpback dolphins would

try to adjust their foraging strategy by expand their targeting prey

species to neritic and pelagic fish, however, as showed in Lin’s

results, their overall foraging efficiency was still declining, not only

in the prey availability and prey size (Lin et al., 2021), but also

energy densities as revealed by our current study (Figure 2A).

Lipids are essential for all organisms, as they play a major role

not only as fuel, but also in cell membrane structure and cellular

signal transmission (Hulbert and Abbott, 2012). Like their

terrestrial relatives, marine mammals do not possess the

capability to synthesize all necessary fatty acids, particularly the

polyunsaturated fatty acids (PUFA) which must be supplied by

feeding on prey fishes (Dannenberger et al., 2020). PUFA, especially

eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid

(C22:6n-3, DHA), play a critical role in a variety of mammalian

ontogenetic processes in modulating health status and the onset of

chronic disease. Diets’ deficiency in PUFA can lead to improper

development of the brain and visual systems (Powell et al., 2021;

von Schacky, 2021), as well as damage to cardiovascular (Nordoy,

1999), immune (Swanson et al., 2012; Radzikowska et al., 2019), and

reproduction functions (Maranesi et al., 2018) in mammals. Our

results again pointed to a potential fatty acid crisis of the humpback

dolphins in the water of Zhuhai resulting due to the dietary switch.

Thereafter, prey fishes in the families Sciaenidae and Engraulidae,

especially the demersal fishes in Zhuhai, should be carefully

monitored and conserved as their population depression would

increase the risk of lacking PUFA and affect the health of the

humpback dolphins.

This crisis in terms of diet quality decline has already occurred

in the Steller sea lion (Eumetopias jubatus) population in Alaska

(Trites and Donnelly, 2003), which has shown reduced body size

(Pitcher et al., 2000; Atkinson et al., 2008), reduced productivity

(Pitcher et al., 1998), reduced pup and juvenile survival (Raum-
FIGURE 5

The box plots of amino acids composition of fishes of different families. Different lower-case letters indicate a significant difference among groups.
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Suryan et al., 2002), altered blood chemistry (Calkins and Goodwin,

1988), and eventually population decline (Calkins and Goodwin,

1988). Studies with regard to wild and captive seals suggest that this

population depression is not due to an overall decline in fish

abundance, but rather to a decline in the relative quality of prey

fish. For example, seals’ body fatty content declined by 32% over 30

days while their body protein increased in proportion to protein

intake when their prey fishes switched from Atlantic herring to

Atlantic pollock (Kirsch et al., 2000), which is not a good

phenomenon for the animal residing in cold environments and

subject to periodic fasts between foraging bouts. Such a negative

response to a dietary switch from high-energy forage fish (clupeids

such as herring and sprat) to lean fish (such as hake and whiting)

has also been documented in wild harbour seals in Scotland

(Thompson et al., 1998). Because of the lack of direct evidence,

there is still an unfilled gap between these relative qualitative defect

of prey fish and the health of humpback dolphins. However,

consider the multiple lines of evidence (declining prey availability,

smaller prey size, lower energy densities, poorer fatty acid and

amino acid quality indices) suggesting potentially adverse
Frontiers in Marine Science 09
outcomes, and the lessons drawn from Steller sea lion and

harbour seals’ example, we indeed raise concerns about the health

of dolphins. In fact, our continuous field survey in the past fifteen

years on humpback dolphin population in the PRE indicated a

much less newborns and juveniles in the eastern PRE (Zhuhai area)

than the western area (Jiangmen area) (unpublished data). This

phenomenon may be at least in part due to the food quality in the

Zhuhai area, such as less energy and PUFAs.

Amino acids are essential biomolecules, both as structural

building blocks of proteins and as intermediates in a variety of

metabolic pathways. Like EFA, essential amino acids (EAA) cannot

be synthesized by mammals but should be obtained from proteins

in diet. The quality of dietary protein is assessed from EAA to

nonessential amino acid (NEAA) ratio (Mohanty et al., 2014). Our

results indicate the EAA, NEAA, TAA contents, EAA/TAA, EAA/

NEAA ratios of prey fishes varied significantly with species but in

general the protein quality is good in humpback dolphins’ prey

fishes. Our results suggested that the prey fishes possessed rich and

amino-acid-balanced high-quality protein, although some of the

indexes may vary among species and niche.
A

B

FIGURE 6

The box plots of amino acids composition of fishes in different species niches from Zhuhai (A) and Jiangmen (B). Different lower-case letters
indicate a significant difference among groups.
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Since the pre-mortem movement between sub-regions and

post-mortem movement along with the drift is care in the PRD

humpback dolphins, the dead dolphins in the study by Lin et al.

(2021) represent the ration of the whole population. However, as

the signifcantly difference of community structure of potential prey

fishes among provinces (Guangdong, Guangxi and Fujian

provinces) and stages (2018-2020, 2012-2014 and 2006-2008)

(q<0.05, ANOSIM) (Figure S2), the variety of nutrition

component among species and locations (Tables S1–S6), and the

limitations of the stomach content data to Pearl River Estuary

population, it is not rigorous to generalize our conclusion to all the

populations of the humpback dolphins. Since we collected the

samples in 2013, great changes have taken place in the marine

habitat, which would lead to alteration in fish assemblages and

nutritional contents in the Pearl River Estuary. Therefore, more

continuous sample and data collection are necessary to obtain more

robust results on current state. Despite these, our study indeed

provided a framework, with energy density and fatty acid

composition as its most important indicator, for assessment of

not only the humpback dolphins but also the other marine top

predators based on the nutritional composition of their prey fishes

and revealed the potential threats.

In order to protect the humpback dolphins from such a “junk

food” tragedy (Österblom et al., 2008), further action should be paid

to prey fishes, in overall quantity and more importantly their
Frontiers in Marine Science 10
nutritional quality. Bottom trawling is the most effective fishing

practice for catching demersal fishery resources in China.

According to the China Fishery Statistical Yearbook,

Guangdong’s domestic trawlers landed 566,975 tons of fish in

2020, approximately half of the total reported marine domestic

fish (BFMOA, 2021). As bottom trawling not only plunders the

benthic fishery resources, but also imposes strong pressure on

coastal marine ecosystems (Eigaard et al., 2017), it should be

constrained through effective management in the Indo-Pacific

humpback dolphin natural reserves and their adjacent sea area. In

addition, as an effective management tool for fishery resources

(Kitada, 2018), the artificial enhancement and release of nutrient-

rich fish species, such as the spiny head croaker and Osbeck’s

grenadier anchovy (Coilia mystus), would be helpful in restoring the

dietary quantity and quality of humpback dolphins. Furthermore,

novel high throughput technologies, such as targeted metabolomics,

environmental DNA barcoding and genomic sequencing, should be

used to assess the prey fish population and their nutritional quality

as well as their habitat ecosystem (Valenzuela-Quinonez, 2016;

Zhong et al., 2022).

Our study is expected to facilitate the development of scientific

programs for the successful conservation of not only the Indo-

Pacific humpback dolphin, but also other marine top predators, by

conserving and reconstructing the quantity and quality of their

prey fish.
FIGURE 7

Summary of the dietary switch in the Zhuhai population of Indo-Pacific humpback dolphins and the potential nutritional risk. The arrows in the table
indicate significantly higher (up-arrows) or lower (down-arrows) nutrition component in pelagic/neritic fishes compared with demersal fishes
(p<0.05), while the circles indicate there is no significant difference. *: Duncan’s Multiple-Range Test of ANOVA; #: Kruskal-Wallis test. PUFA,
Polyunsaturated fatty acids; MUFA, Monounsaturated fatty acids; SFA, Saturated fatty acids; DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic
acid; EAA, Essential amino acid; NEAA, Non-essential amino acids; TAA, Tatol amino acid; CS, Chemical score; ASS, Amino acid score; EAAI, Essential
amino acid index.
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