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In the Southwestern Atlantic, the Falkland Current intrudes onto the South

American shelf, resulting in the meeting of two water masses which are

completely different in temperature and dynamic characteristics, thus generating

the Southwestern Atlantic Front (SAF). Therefore, the SAF has prominent

characteristics of thermal and dynamics. The current ocean front detection is

mainly by performing gradient operations on sea surface temperature (SST) data,

where regions with large temperature gradients are considered as ocean fronts.

The thermal gradient method largely ignores the dynamical features, leading to

inaccurate manifestation of SAF. This study develops a deep learning model,

SAFNet, to detect the SAF through the synergy of 10-year (2010-2019) satellite-

derived SST and sea surface height (SSH) observations to achieve high accuracy

detection of SAF with fused thermal and dynamic characteristics. The comparative

experimental results show that the detection accuracy of SAFNet reaches 99.45%,

which is significantly better than other models. By comparing the frontal

probability (FP) obtained by SST, SSH and SST-SSH fusion data respectively, it is

proved that the necessity of fusion multi-source remote sensing data for SAF

detection. The detection results of fusion data can reflect the spatial distribution of

SAF more comprehensively and accurately. According to the meridional variation

of FP, the main reason for the seasonal variation of the SAF is the change in its

thermal characteristics, and the SAF has stable dynamic characteristics.

KEYWORDS

Southwestern Atlantic fronts, multi-source remote sensing data, deep learning, ocean
dynamics, ocean thermodynamics
1 Introduction

The Southwestern Atlantic (SA) mainly refers to the area of the Atlantic between 35°S-

60°S and 50°W-70°W, that connects to the Drake Passage. Topographically, the area

consists of the South American continental shelf in the northwest and the Argentine basin

in the southeast. Due to its location between subtropical waters and the cold waters in the
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Southern Ocean, the SA is rich in ocean currents and associated

hydrological phenomena, including frontal systems. As shown in

Figure 1A, the SA mainly contains three major ocean currents, the

Brazil Current, the Falkland Current and the Antarctic Circumpolar

Current (ACC). ACC is the strongest cold current in the South

Hemisphere. As a tributary of the ACC at Cape Horn, the Falkland

Current flows northward along the 1000m isobath and invades into

the shelf waters of South American (within the 200m isobath) at

about 45°S (Piola et al., 2013). Under the influence of the Brazil

Current (a strong warm current), the shelf water on the west side is

warmer than the Falkland Current (a strong cold current) on the

east side. Since the ocean front refers to the boundary between

different water masses in the ocean, the Falklands Current enters the

waters of the South American continental shelf, resulting in the

meeting of two water masses with completely different temperature

and dynamic characteristics, generating the Southwestern Atlantic

Front (SAF) (Wang et al., 2021). As an important part of the

Southern Ocean Front (Chapman et al., 2020), the SAF has great

impacts on the ecological environment, fishery production and

material transport in the SA (Lopes et al., 2016). Therefore, it is of

great significance to detect the SAF accurately.

In the frontal regions, the properties of water mass change

rapidly, which are characterized with enhanced horizontal gradients

of temperature, salinity, density, etc (Legeckis, 1979). Therefore,

researchers often calculate the gradient magnitude map by gradient

operation on satellite remote sensing observations (Text S1), and

reserve the area with large gradient by a specific threshold to identify

the ocean front (Moore et al., 1999; Dong et al., 2006; Wang et al.,

2020). Among them, sea surface temperature (SST) data are widely

used for ocean front detection (Freeman et al., 2016). Figures 1B, D, F

are display the SST distribution over the SA, the SST gradient

magnitude map, and the SST front (Southwestern Atlantic thermal

front) obtained from the magnitude map by gradient threshold,

respectively. Figure 1B shows that the temperature difference

between the two sides of the 200m isobath is obvious. SST gradient

magnitude map indicates the magnitude of the temperature gradient,

which can reflect the intensity of the front. As can be seen from

Figure 1D, the maximum SST gradient magnitude are mainly

distributed along the west of the 200m isobaths, which coincides

exactly with the spatial distribution of the SST front (yellow zone) in

Figure 1F. Therefore, the Southwestern Atlantic thermal front (SST

front) is mainly distributed along the South American shelf water on

the western side of the 200m isobath. Apart from that, the SAF is a

typical “current-induced front” (Wang et al., 2021) and thus has

prominent dynamic characteristics. Since sea surface height (SSH)

data can be used to represent the dynamic characteristics of ocean

phenomena, they have been widely used in the study of dynamic

fronts in recent years (Chambers, 2018). Figure 1C shows the SSH

distribution over the SA. Different from the SST distribution, the SSH

distribution is mainly divided by the 1000m isobath, which is exactly

consistent with the pathway of the Falkland Current. The invasion of

the South American shelf water by the Falkland Current along the

1000m isobath leads to the encounter of two water masses with

different dynamic characteristics, resulting in a large difference in the

SSH, thus generating the SSH front (Southwestern Atlantic dynamic

front). According to Figures 1E, G, the Southwestern Atlantic
Frontiers in Marine Science 02
dynamic front is mainly distributed along the 1000m isobath,

which is different from the spatial distribution of the Southwestern

Atlantic thermal front. It should be emphasized that for two distinct

water masses, the fronts formed between them are unique. The

reason for the difference in the spatial distribution of thermal and

dynamic fronts comes from the different expression of front

characteristics (Takahashi and Kawamura, 2005; Liu and Hou,

2012). Thermal front is the expression of the thermal

characteristics of SAF, and the dynamic front is the performance of

SAF’s dynamic characteristics. Both of them are part of SAF.

Therefore, to achieve high-precision SAF detection that fuses

dynamic and thermal characteristics cannot only rely on SST or

SSH but requires the synergy of SST and SSH. Meanwhile, it is

challenging to establish a feature association between massive SST

and SSH data and accurately identify the SAF from complex feature

fusion data (Liu et al., 2021). Traditional gradient-based frontal

detection method (Text S1) cannot solve the above problems

(Kittler, 1983).

In recent years, deep learning methods, especially convolutional

neural networks (CNNs) have shown excellent performance in

mining complex rules hidden in multi-source long term series

data, and are increasingly applied to the study of various ocean

phenomena such as mesoscale eddies, internal waves, and sea ice

(Gao et al., 2022; Zhang and Li, 2022; Li et al., 2022a). Since ocean

fronts separate water mass classes and neural networks are robust in

assigning classes in complex data, edge detection driven by the

underlying neural network may be a good way to find fronts (Li

et al., 2022b). Compared with traditional frontal detection methods,

deep learning methods have advantages in automatic feature

extraction and modeling the relationship between multi-source

remote sensing data and ocean fronts. This study develops a deep

learning model, SAFNet, to perform feature fusion of SST and SSH

data spanning 10 years (2010-2019), and extract the SAF from the

fusion data. Comparative experiments show that SAFNet can

achieve accurate detection of SAF. Finally, by comparing the

seasonal frontal probability (FP) derived from SST, SSH and SST-

SSH fusion data respectively, the necessity of the fusion data for SAF

detection is proved, and a new understanding of the spatiotemporal

distribution and seasonal variation of SAF is obtained. Apart from

that, the code of the SAFNet will be updated to GitHub: https://

github.com/yangxiaomao225/SAFNet.

The rest of the paper is organized as follows. Section 2

introduces the multi-source remote sensing data used to establish

the dataset for training and testing the proposed model and the

structure of the SAFNet. Some comparative experiments and

spatiotemporal distribution of the FP are shown and discussed in

Section 3. In the last section, some conclusions are drawn.
2 Data and method

2.1 Data for training and testing the deep
learning model

The altimeter data used in this study are generated by

Copernicus Marine and Environmet Monitoring Service
frontiersin.org
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(CMEMS) using data from the TOPEX/Poseidon, Jason-1, Jason-2,

and Envisat missions. The daily gridded SSH data with a spatial

resolution of 0.25°×0.25°from January 2010 to December 2019,

spanning 10 years. Since SSH products contain two kinds of data,
Frontiers in Marine Science 03
sea level anomalies (SLAs) and absolute dynamic topography

(ADT), this study uses ADT, the sum of the time-mean dynamic

topography and time-varying SLAs. The daily SST data with a 0.25°

spatial resolution refers to the NOAA Optimum Interpolation (OI)
FIGURE 1

Introduction to the SAF background. (A) is the chart of the SA. (B, C) are 10-year (2010-2019) mean SST and SSH distributions over SA. (D, E) are
mean SST and SSH gradient magnitude maps obtained from SST and SSH for 2010-2019. (F, G) are SST fronts (yellow zone) and SSH fronts (green
zone) obtained from the corresponding gradient magnitude map by the threshold. The black and brown solid contours are 200m and 1000m
isobaths, respectively.
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SST product (Reynolds et al., 2007), which is constructed from

infrared satellite observations of the Advanced Very High-

Resolution Radiometer (AVHRR) and has the same period as the

SSH data.

In this study, with the help of the above SSH and SST data, a

SAF dataset is established for training and testing the proposed

SAFNet. Since the Southwestern Atlantic thermal front (SST front)

and dynamic front (SSH front) are part of the SAF and represent

different oceanographic characteristics of the SAF, this study first

uses the traditional gradient-based front identification method

(Text S1) to calculate SST and SSH front through SST and SSH,

respectively. Then, the union of the two kinds of fronts is used to

represent the SAF in the ideal state, which incorporated the thermal

and dynamic characteristics. We describe the creation of the dataset

with two samples from the SAF dataset (Text S2; Figure S1).

Thus, SAFs obtained from SST and SSH data in the SA (35°S-

57°S, 55°W-70°W, 128×128 pixels) during the period 2010-2018 are

used as the training dataset and SAFs obtained from 2019 data are

used as the validation dataset in this study. There are 3,287 training

samples and 365 validation samples, and pixels in each sample are

labeled as “1” or “0” for front or non-front, respectively.
2.2 SAFNet

2.2.1 Overall Structure of the SAFNet
To achieve accurate detection of the SAF by fusing multiple

oceanographic features, the proposed deep learning model needs

to simultaneously obtain dynamic and thermal characteristics

from SSH and SST data, and can accurately detect SAF from

these features. Through the traditional gradient-based front

detection method (Text S1), we know that the front are the

pixels with large gradients. Therefore, the proposed model needs

to have two capabilities: 1) The pixels with large gradients in SST

and SSH data are extracted and fused as key features. 2) Accurately

extract the pixels with large gradients from the fusion features, so

as to achieve high-precision detection of SAF. Thus, the SAFNet

model consists of two sub-networks: a data fusion network (DFN)

to establish the SSH-SST feature fusion relationship and a feature

extraction network (FEN) to accurately identify pixels with large

gradients from the fusion data for SAF detection. Considering the

complex nonlinear relationship between SST and SSH in the SAF,

the DFN is developed based on CNNs containing dense

connections, and the FEN is developed based on U-Net

(Ronneberger et al., 2015), a classical semantic segmentation

network in deep learning, as shown in Figure 2. In order to

show the detection performance of SAFNet, this study

compared SAFNet with two deep learning models on the

validation set for SAF detection accuracy. The first one is

LinkNet (Chaurasia and Culurciello, 2017), a classical semantic

segmentation model, and the other one is D-LinkNet (Zhou et al.,

2018), which has achieved excellent results in the field of road

recognition. Since they do not contain a data fusion module, to

make a fair comparison, this study adds DFN to LinkNet and D-

LinkNet so that the two models can fuse the features of SST and

SSH like SAFNet.
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2.2.2 DFN
Considering that different satellite sensors observe SSH and SST

data, the fusion of two multi-source heterogeneous data belongs to

multi-modal data fusion. Multi-modal data fusion based on deep

learning is widely applied in medical image segmentation. There are

three data fusion strategies: input-level fusion, layer-level fusion,

and decision-level fusion (Zhou et al., 2019). Unlike the other two

data fusion strategies, layer-level fusion can effectively integrate and

fully use multi-modal data. In the layer-level fusion strategy,

DenseNet (Huang et al., 2017) is the most commonly used

network, so an improved DenseNet structure (Dolz et al., 2019) is

used as the DFN in this study. The SSH and SST data with 128×128

pixels are imported into two different data streams, respectively, and

the features of SSH and SST are extracted through the convolutional

layers in the data stream. These features are densely connected

between layer pairs in the same data stream and between layer pairs

across data streams, and finally a fused data set combining SST and

SSH features is obtained, as shown in Figure 2. The mathematical

expression of DFN is as follows:

xsl=H
s
l (x

1
l−1,x

2
l−1,x

1
l−2,x

2
l−2,…,x10,x

2
0)    s=1 or 2 (1)

where s refers to SSH or SST stream, x1l , x
2
l denote the outputs of

the lth layer in SSH and SST streams and Hs
l  represents the

mapping function of the two data streams at lth layer composed

of a convolution layer followed by a batch normalization and a

Rectified Linear Unit (ReLU) activation function. Therefore, DFN

can alleviate the vanishing gradient problem, introduce implicit

deep supervision, and reduce the risk of overfitting tasks with

smaller training sets.
2.2.3 FEN
In this study, the FEN is used to accurately detect the SAF based

on the output of the DFN. To improve the detection accuracy, the

convolutional block attention module (CBAM) (Woo et al., 2018)

and dilated convolution layers (DCLs) are integrated into the FEN.

FEN uses an encoder-decoder structure. The architecture of FEN

includes six parts: input, encoder, center, decoder, concatenations

and output. The goal of the encoder is to gradually extract pixels

with large gradients from the fusion data through various

convolutional layers, to capture the SAF features at different

representation levels. The encoder contains one CNNCBAM block,

six ResNetCBAM blocks, and three Max pooling layers. A CNNCBAM

block is one CNN layer stacking with the CBAM, and a ResNetCBAM
block is a ResNet unit integrated with the CBAM. The legend on the

right in Figure 2 shows that a ResNet unit contains two CNN layers,

stacking the CBAM after the second CNN layer. Adding the

attention mechanism to the FEN can effectively capture the

thermal and dynamic dependencies of the SAF at different scales.

CBAM is divided into two modules: channel attention module and

spatial attention module. These two modules can generate the

feature map’s weight matrix in two dimensions. Then the weight

matrices are multiplied by the input feature map for adaptive

feature refinement so that the network is more targeted to extract

features. The center part consists of several DCLs with skip

connections. Considering the SAF’s narrowness, connectivity, and
frontiersin.org
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complexity, it is important to increase the receptive field of feature

points in the center part and keep detailed information. DCLs are

undoubtedly the best option. The decoder includes four stages, and

between each stage, the scale of the feature map is restored by

upsampling until the output feature map is the same size as the

input data. Six ResNetCBAM blocks are integrated into the decoder

to recover the SAF’s details accurately. The concatenation fuses the

encoder and decoder at the same level, effectively preventing feature

loss. The output consists of two CNNCBAM blocks, a 3×3

convolutional layer, and a sigmoid layer, finally outputs a value

between [0,1]. If it is greater than 0.5, the pixel is the SAF;

Otherwise, it is a non-front.

2.2.4 Loss function
Detection of the SAF is a typical binary classification problem,

which only needs to determine which pixels are fronts and which

are not. Therefore, the binary cross-entropy loss function

(BCELoss) is an effective training method. However, classifying

the pixels as front or non-front is a highly imbalanced problem. The
Frontiers in Marine Science 05
weight of BCELoss cannot be set correctly when the specific

difference between positive and negative samples is unknown, so

the detection effect cannot be guaranteed. The dice coefficient loss

function can improve this problem (Zhou et al., 2018). The dice

coefficient is a measure function used to evaluate the similarity of

two samples, with a larger value indicating more similarity and a

smaller dice coefficient loss. Thus, this study defined the loss

function as follows:

Loss = 1 − o
N
i=1 Pi ∩

 GTij j
oN

i=1( Pij j + GTij j) +o
N

i=1
BCELoss(Pi,GTi) (2)

BCELoss(P,GT)= −o
W

i=0
o
H

j=0
½gtij· log pij+(1−gtij)· log (1−pij)� (3)

where the N is the number of samples, P is the detection result

map of the SAFNet, GT is the SAF that has been labeled in the

dataset.  W is the width of the feature map, H is the height of the

feature map, gt is a pixel in GT , and p is a pixel in P.
FIGURE 2

The overall structure of the SAFNet which consist of a data fusion network (DFN) and a feature extraction network (FEN).
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3 Results and discussion

3.1 Performance of SAFNet

The SAFNet is trained using the NVIDIA RTX A6000 48G GPU

and PyTorch deep learning packages. The ADAM optimizer with

the learning rate set to 0.01 and the learning rate decay set to 0.1 to

optimize the model. The batch size and the number of epochs are

set to 32 and 50.

Four metrics are adopted to evaluate the performance of

SAFNet and the compared methods (LinkNet, D-LinkNet), i.e.,

Intersection over Union (IoU), Accuracy, Precision and Recall

(Text S3). The objective evaluation results of the three models on

the validation set are presented in Table S1. To visually show the

differences of each model in SAF detection, the ground truth of

four days are arbitrarily selected from the validation set and

compared with the detection results of the three models. As

shown in Figure 3, SAFNet achieves 99.45% detection accuracy

for SAF, which is significantly better than the other two models.

Since CBAM and DCLs are integrated in SAFNet, this study

proves that CBAM and DCLs can effectively improve the

detection accuracy of the proposed model for SAF through

ablation experiments (Text S4; Table S2; Figure S2), which

further proves that the SAFNet can be used as an effective tool

to detect the SAF accurately.
3.2 Spatiotemporal distributions of the SAF

In this study, the comparison experiment and ablation

experiment in Section 3.1 fully proves that SAFNet can achieve

high-precision detection of SAF. This subsection will prove that the

detection results of SAF based on SST-SSH fusion data can reflect

the spatial distribution of SAF more comprehensively and

accurately than that based on SST or SSH alone. In

oceanography, researchers often approximate the spatiotemporal

distribution of a front by obtaining its climatological distribution.

At present, there are two main methods used to calculate the

climatological distribution of fronts. The first one is to calculate

the gradient magnitude of the mean SST or SSH data, and use the

gradient magnitude map to represent the distribution of fronts. The

other one is to use the daily front distribution to calculate the frontal

probability (FP), and use the FP distribution to represent the

distribution of fronts. The region with large gradient in the

gradient magnitude map corresponds to the region with large

probability of the FP distribution (Figure S3), so both the

gradient magnitude and FP can accurately reflect the spatial

distribution of the front (Wang et al., 2020). Since the detection

result of SAFNet is the spatial distribution of daily SAF that fuses

SST and SSH features, FP is used to represent the climatological

mean distribution of the SAF in this study. The FP at each pixel is

defined as follows:

Frontal Probability= 
Nfront

Ntotal
�100% (4)
Frontiers in Marine Science 06
where Nfront is the number of times that the pixel is identified as

a front, Ntotal is the total number of observation days.

Figure 4 displays the seasonal spatiotemporal distributions of

the SAF FP obtained by SST, SSH and the SST-SSH fusion data

from 2010 to 2019. By comparing the detection results of the three

kinds of data, it is found that the frontal signal of the Southwestern

Atlantic thermal front (derived from the SST data) is abundant

in the South American shelf waters (within the 200m isobath), while

the signal of the Southwestern Atlantic dynamic front (derived from

the SSH data) is almost lost in the shelf waters. This is mainly

because the current over the shelf does not organize into intensified

velocity core or pattern, so that no outstanding SSH gradient exist.

However, due to the invasion of the Falkland Current, the shelf

water has obvious temperature differences, producing noticeable

thermal characteristics (Text S5; Figure S4). Furthermore, the

seasonal variation of the thermal front is obvious, which is

stronger in summer and weaker in winter. The dynamic front is

stable in four seasons and exists all the time. The reasons for this

phenomenon come from two aspects: 1) In winter, the increasing

surface cooling effects make SSTs uniform, leading to a decrease in

the temperature difference between the Falkland Current and shelf

water and the disappearance of the thermal front. 2) The Falkland

Current intrudes into the shelf water all year around, resulting in

the stable existence of SSH difference between water masses, so the

distribution of dynamic fronts is relatively stable (Text S5; Figure

S4). Hence, in the detection of the SAF, the thermal front has

seasonal limitations and the dynamic front has spatial limitations,

which indicates that neither the Southwestern Atlantic thermal

front nor the dynamic front can fully accurately reflect the SAF.

They only reflect the SAF’s thermal and dynamic characteristics,

respectively (Text S5). The detection results of SAF by fusion data

can fuse the information of the thermal front and the dynamic front

and complement the advantages of the two fronts to realize the

comprehensive and accurate detection of the SAF. Through the

detection results of the fusion data, this study further understands

the SAF distribution. North of 50°S, the SAF is mainly distributed

along the continental slope break zone between the 200m and

1000m isobaths, and south of 50°S, the SAF is mainly distributed

along 1000m isobath, as displayed in Figures 4L–O.

Figures 4A, F, K display the meridional variation of the FP for

detection results of three kinds of data. According to the above

results, neither the thermal or dynamic front can represent SAF

accurately and comprehensively. Therefore, through the meridional

variation of the thermal and dynamic fronts, the changes of the

thermal and dynamic characteristics of the SAF can be revealed. By

comparing the three graphs, we know that the SAF has stable

dynamic characteristics, and the main reason for the seasonal

variation of the SAF is the change in its thermal characteristics.

Between the 40°S and 50°S, SAF is stronger in summer and fall than

in winter and spring, mainly because the temperature gradient

between the shelf water and the Falkland Current is not obvious due

to the spatially uniform surface cooling in winter. However, in the

35°S-40°S region, SAF is weakest in summer. This is mainly because

this region is affected by the Brazil Current (a strong warm current)

and has a high temperature, while the shelf water temperature is
frontiersin.org
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also high in summer, which makes the temperature gradient small

and the front intensity weak in this region.
4 Conclusion

SAF is a typical current-induced front with prominent

dynamic and thermal characteristics. Therefore, this study
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proposes the SAFNet that can fuse SST and SSH features over

2010-2019 and detect the SAF from the fusion data accurately,

thus achieving an overall high-precision detection of SAF by

fusing thermal and dynamic characteristics. The CBAM and

DCLs are integrated into the SAFNet. The comparative

experiments and ablation experiments show that SAFNet can

achieve high precision detection of SAF, and the detection

accuracy reaches 99.45%. By comparing the seasonal detection
FIGURE 3

The results of the SAF detection. (A–D) are SAF ground truth of four days in validation set, the white zone represents the SAF, and the blue zone is
the non-frontal zone. (E–P) are detection results of each model. The red and brown solid contours are 200m and 1000m isobaths, respectively.
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results of SAF FP obtained by SST, SSH, and the fusion of SST-

SSH, this study finds that SAF is mainly distributed along the

continental slope break zone of South America and the 1000m

isobath. According to the meridional variation of FP, we know

that the SAF has stable dynamic characteristics, and the reason for

the seasonal difference of SAF is the change in its thermal

characteristics. The SAF between 40°S and 50°S is weakest in

winter due to the uniform surface cooling. In the 35°S-40°S region,

the warm Brazil Current makes the water temperature generally

higher and the temperature gradient is not obvious in summer,

which leads to the weakest SAF.
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