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Field determination of nitrate in
seawater using a novel on-line
coppered cadmium column: A
comparison study with the
vanadium reduction method
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Xiaolai Shi1 and Yong Zhu1*

1Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural
Resources, Hangzhou, China, 2Southern Marine Science and Engineering Guangdong Laboratory
(Zhuhai), Zhuhai, China
Nitrate is the main form of dissolved inorganic nitrogen, playing an important role

in both marine biogeochemical research and water environment management. In

this work, the most commonly used coppered cadmium columnwasmodified and

a novel on-line Cu/Cd column with a spiral structure coupled with a de-bubbling

device and syringe-type filter was developed. With the advantages of convenience,

portability, stability, and high reduction efficiency, the interference of air bubbles in

the column could easily be avoided. Based on the classic Griess reaction, a simple

reverse flow injection system coupled with a novel Cu/Cd column and custom-

made flow cell was established for the field spectrophotometric determination of

nitrate in seawater. The effects of certain reaction parameters—including the

reagent concentration, flow rate, length of the Cu/Cd column, and salinity—

were investigated, optimized, and compared with pure water, with an

approximate 9% increase in the sensitivity of seawater samples. This method

exhibited a detection limit of 0.03 mmol/L, with a relative standard deviation of

0.6%, and the working range was 20 mmol/L before dilution. Compared to the

referred vanadium reduction method based on the same flow system, the

proposed method showed significant advantages including sensitivity and

reproducibility. No significant difference was observed between the analytical

seawater sample results obtained by the proposed and reference methods.

Furthermore, the proposed method was validated by the first class of National

Certified Reference Materials and successfully applied to the nitrate determination

of Wenling coastal seawater (Zhejiang, China).
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nitrate, reverse flow injection analysis, field determination, novel coppered cadmium
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1 Introduction

Nitrogen, as one of the essential elements in marine

biogeochemical research, is present in various forms (Paerl, 2018;

Seceh et al., 2021); nitrate, nitrite, and ammonium are the most

common inorganic forms of dissolved inorganic nitrogen in marine

ecosystems (Bristow et al., 2017). Compared to other nitrogen species

in seawater, nitrate is the principal form of fixed dissolved inorganic

nitrogen assimilated by organisms (Patey et al., 2008), controlling

primary productivity to a certain degree (Canfield et al., 2010).

Therefore, the measurement of nitrate is essential for improving the

scientific understanding of biogeochemical nutrient processes.

However, accelerated eutrophication occurs in fresh water and

marine ecosystems due to a large amount of nitrate discharged into

coastal water as a result of anthropogenic activity, resulting in various

environmental problems including eutrophication, hypoxia, and

enhanced acidification (Howarth, 2008; Paerl, 2018; Fang et al.,

2021). In addition, nitrate can be readily reduced to nitrite in-vivo,

interfering with the body’s oxygen transport mechanism via the

irreversible conversion of hemoglobin to methemoglobin (Singh

et al., 2019). Higher concentrations of nitrate are toxic and can lead

to methemoglobinemia in aquatic animals (Yu et al., 2021) and blue

syndrome in human infants with the excessive intake of nitrate via

drinking water (Jiang et al., 2020). Thus, monitoring nitrate

concentration in seawater is meaningful for both scientific research

and water environment management.

The accurate measurement of nitrate is still a major challenge,

although various nitrate determination methods have been proposed

including spectrophotometric, chemiluminescent, electrochemical,

chromatographic, capillary electrophoretic, and spectrofluorimetric

methods, which have been summarized in several comprehensive

reviews (Wang et al., 2017; Alahi et al., 2018; Singh et al., 2019; Jiang

et al., 2020). Among all methods, the spectrophotometric method is

by far the most widely used for nitrate determination due to its

simplicity and inexpensive analytical feasibility (Wang et al., 2017).

The most popular spectrophotometric method for nitrite

determination is based on the classic Griess reaction, which was

first reported in 1879 (Griess, 1879). The reaction was modified

several times and subsequently became the commonly used Griess

reaction, which has been specifically used for nitrite determination.

The main reaction principle occurs under acidic conditions, where

nitrite is diazotized with sulfanilamide (SAM) and coupled with N-(1-

naphthyl) ethylenediamine dihydrochloride (NED) to form a pink

azo dye, measured at an absorbance of 520–540 nm (Becker et al.,

2020). Meanwhile, the modified Griess reaction has also been widely

used for nitrate determination by reducing nitrate to nitrite before the

diazotization reaction. Since the modified Griess reaction was

developed into a very mature, reliable, and widely accepted method,

the reduction efficiency and stability of nitrate to nitrite have become

crucial step in accurate nitrate measurements (Garcıá-Robledo et al.,

2014). A reduction efficiency value above 95% has typically been

required to achieve almost all nitrate reduction. Various types of

reductants such as coppered cadmium column (Feng et al., 2013),

zinc column (Ellis et al., 2011), hydrazine sulfate (Pons et al., 2008),

titanium trichloride (Foreman et al., 2016), UV radiation (Machado

et al., 2017), and vanadium (III) chloride (VCl3) (Schnetger and
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Lehners, 2014) have been reported for nitrate analysis in

environmental samples. However, no reduction method is perfect

and without disadvantages. Almost every reduction method has its

own shortcomings, such as being time-consuming, variations in the

efficiency of the column, potential metal toxicity, variations in

reduction efficiency with different matrices, easy accumulation of

air bubbles, violet and absorbing light in the same range as pink azo

dye, interference from ions and organic matter, and a long irradiation

time (Garcıá-Robledo et al., 2014; Wang et al., 2017). Although the

VCl3 reduction method has been frequently reported in recent years,

with the advantage of decreased toxicity (Lin et al., 2019; 2020; 2022),

the coppered cadmium (Cu/Cd) reduction method is still the most

commonly used reduction technique for nitrate determination (Singh

et al., 2019). Since the cadmium column was first used in seawater for

nitrate determination in 1967 (Wood et al., 1967), the application of

the Cu/Cd column has been widely promoted not only in commercial

instruments but also in new development methods or instruments

(Nugraha and Ridwan, 2019; Khongpet et al., 2020). In the cadmium

granule coppered process, cadmium is oxidized to the Cd2+ cation,

and Cu2+ is reduced to metallic copper, which precipitates on the

cadmium surface as a porous coating layer (Pons et al., 2008). This

Cu/Cd reduction method results in a galvanic cell, with copper as the

cathode and cadmium as the anode. The nitrate reduction process

follows:

NO−
3 +  H2O   +   2Cd   =  NO−

2   +   2Cd
2+ + 2OH−

With the development of the flow analysis technique, flow-based

methodologies for automated nitrate measurement have been widely

used for seawater analysis. Flow-based methodologies have the

advantage of not only permitting automated analysis but can also

improve sensitivity and reproducibility while providing the possibility

of miniaturization and portability (Zhu et al., 2019). Therefore, higher

requirements have been put forward for the on-line application of the

Cu/Cd column. To apply flow analysis, the Cu/Cd column is usually

custom-made using a straight or U-shaped quartz tube (Feng et al.,

2013). The diameter of the column should be small enough to

minimize the effect of solution diffusion, and the length of the

column should be sufficiently long to ensure reduction efficiency.

To improve the reduction efficiency and facilitate the rapid removal of

incoming air bubbles from the column, the Cu/Cd column should be

placed vertically to allow the incoming solution to flow from the lower

end to the upper end. However, Cu/Cd columns made using quartz

with a long length can be easily broken during long-distance transport

or poor investigation conditions. Furthermore, unstable reduction

efficiency and the easy accumulation of air bubbles severely limit the

application of traditional Cu/Cd columns. To overcome these

limitations, great efforts have been made to improve and modify

the reductant (Zhang et al., 2000). However, most studies have

focused on changing the reductant, and fewer studies have

investigated modifying the classical Cu/Cd column.

The aim of this study was to develop a novel on-line Cu/Cd column

with a spiral structure for field applications, which had the advantages

of stable reduction efficiency, portability, a shortened length of the

entire reduction device, and elimination of the influence of air bubbles.

The consumption of Griess reagents was minimized by using a reverse

flow injection analysis (rFIA) system. Based on the modified classic
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Griess reaction, we described a simple reverse flow injection analysis

method that utilized a novel on-line Cu/Cd reduction column for the

field determination of nitrate in seawater. Subsequently, a stable

reduction efficiency higher than 95% was obtained. The proposed

method was also compared with the frequently reported VCl3
reduction method, and the modified method was used for the field

determination of nitrate in coastal seawater.
2 Experimental

2.1 Reagents and solutions

All chemicals were analytical grade and purchased from

Sinopharm Chemical Reagent Co., China unless stated otherwise.

All solutions were prepared with pure water (18.20 MW·cm) collected

from a Millipore water purification system (Millipore, MA, USA). All

containers and bottles used in the experiment were pre-cleaned by

soaking in 2 mol/L HCl solution for at least 24 h, followed by

thorough rinsing with pure water. The nitrate and nitrite stock

solutions (both at 100 mmol/L) were prepared by dissolving oven-

dried (105°C for 2 h) solid potassium nitrate and sodium nitrite in

pure water, which was stored at 4°C in a refrigerator. The working

standards were prepared through daily appropriate dilution of the

stock solutions. The SAM solution was prepared by dissolving 1.5 g of

SAM in 1000 mL of 0.5% mol/L HCl solution, and 0.15 g/L of NED

solution was prepared by dissolving 0.15 g of NED in 1000 mL of pure

water. The NH4Cl buffer solution was prepared by adding 10 g of

NH4Cl into 1000 mL of pure water and the pH of the solution was

adjusted to 8.1 with 50% (v/v) NH3·OH solution. All reagents for the

VCl3 reduction method were prepared according to a previously

reported method (Lin et al., 2022). Aged surface oligotrophic seawater

was collected from the Indian Ocean, and the first class of National

Certified Reference Materials (GBW08634-GBW08637) was used to

validate the proposed method.
2.2 Preparation of the novel spiral type
Cu/Cd column

The novel spiral type Cu/Cd column was custom-made,

consisting of a spiral quartz tube 17 cm in length and an inner
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diameter of 3.0 mm, which was filled with coppered cadmium

granules (Shanghai Xinhu experimental equipment Co., China)

between 0.3–0.8 mm in diameter. The two ends of the spiral type

Cu/Cd column were plugged with glass wool to prevent the outflow of

cadmium particles. In addition, a retraction design was added at the

outlet of the quartz tube to prevent the glass wool from being washed

away during the long running process. However, even with the block

of glass wool and the retraction design, it was inevitable that some

small cadmium particles would be washed into the detection flow cell

and ultimately affect the measurement results. Thus, an on-line

syringe-type filter with a 0.45 mm pore-size related to the outlet of

the column was used. Small air bubbles could be easily generated

in the flow analysis system, and the convergence of these air bubbles

into the Cu/Cd column would seriously reduce the reduction

efficiency and affect the stability of the reduction rate. Therefore, to

minimize the effect of small air bubbles in the Cu/Cd column, a de-

bubbling device (Pengzan Biotechnology Co., Shanghai, China) was

added to the inlet of the column. The entire Cu/Cd column was then

filled with the NH4Cl buffer solution before and after use.
2.3 Instruments and procedures

A schematic diagram of the manifold design for nitrate

determination in seawater is shown in Figure 1. The flow system

consisted of two peristaltic pumps (Baoding Longer Precision Pump

Co., Hebei, China), with an 8-position selector valve and a 6-port

injection valve (Valco Instruments Co., Louisiana, USA), a miniature

STS-VIS spectrophotometer (Ocean Optics Inc., Florida, USA), and a

custom-made flow cell with a 3 cm path length (Jiangsu Yixing

Spectral Analytical Optical Element Factory, China). All manifold

tubing consisted of 1.58 mm o.d. and 0.75 mm i.d. transparent

polytetrafluoroethylene (PTFE) tubing, except for the peristaltic

pump tubing, for which we used Tygon tubing. Standard flangeless

PEEK fittings (1/4-28, IDEX Health & Science LLC, Wallingford, CT,

USA) were used throughout the fluidic manifold construction. The

detection signal was recorded by laboratory-programmed software

written in LabVIEW (National Instruments, Austin, TX, USA).

The flow analysis program is shown in Supplementary Table 1. In

step 1, the sample was mixed with NH4Cl buffer solution by pump 1

and transferred to the novel spiral type Cu/Cd column to reduce
FIGURE 1

Schematic diagram of the reverse flow injection analysis system coupled with the novel spiral type Cu/Cd column for nitrate determination in seawater.
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nitrate to nitrite. Then, the on-line stream was mixed with the SAM

solution and delivered into the flow cell as a carrier stream.

Meanwhile, the 6-port injection valve (V2) was switched to position

A, and the color reagent NED was delivered and filled into the

injection loop of V2 by pump 2. In step 2, by switching V2 to position

B, a constant volume of NED solution was injected into the carrier

stream and reacted in the mixing coil, forming the pink azo dye,

which was delivered to the flow cell and detected at 540 nm with a

reference wavelength of 700 nm.
2.4 Sample collection

Seawater samples, collected from the Wenling coastal area,

Zhejiang Province, China in January 2021, were used for validation

experiments. The collected samples from the surface seawater were

filtered through a 0.45 mm membrane filter and then stored in acid-

washed high-density polyethylene bottles. The samples were stored at

-20°C and analyzed in lab. Temperature and salinity were recorded

with a CTD (RBR Ltd., Canada). The concentration of phosphate in

the surface seawater was measured with a AutoAnalyzer 3 HR (SEAL

Analytical Ltd., UK).
3 Results and discussion

3.1 Parameter optimization

To establish the best conditions for the field determination of

nitrate in seawater, the main factors affecting the flow system,

including the reagent concentrations and flow rates of the two

different peristaltic pumps, were investigated, based on a univariate

experimental design. A standard solution of 10 mmol/L of nitrate was

used as the testing sample for the parameter optimization experiment.

Each sample was quantified three times, and the results are shown in

Figure S1.

The effect of SAM concentration in the range of 0.5–2.5 g/L on the

peak height was investigated. As shown in Figure S1(a), the

absorbance signal increased with increasing SAM concentration

from 0.5 to 1.5 g/L. Because the signal reached a plateau when the

SAM concentration was between 1.5 g/L and 2.5 g/L, a concentration

of 1.5 g/L for SAM was chosen in this study. The concentration of

NED varied in the range of 0.05 g/L to 0.25 g/L and the results are

shown in Figure S1(b). The peak height increased throughout the

entire NED concentration range and slowly increased up to 0.15 g/L.

Taking the balance of peak height and blank into consideration, a

NED concentration of 0.15 g/L was selected.

The influence of the sample flow rate and NH4Cl solution ranging

from 0.28 mL/min to 0.98 mL/min on the signal intensity was

determined, as illustrated in Figure S1(c). The peak height

increased between 0.28 mL/min and 0.35 mL/min but decreased

with a further increase in the flow rate. Considering the sample

throughput and sensitivity, the sample and NH4Cl solution flow rate

were selected as 0.77 mL/min. The flow rate of the reagents (SAM and

NED) between 0.05 mL/min and 0.35 mL/min was evaluated for

optimization (Figure S1(d)). We observed that there was no

significant change with increased flow rate. Thus, to achieve a high
Frontiers in Marine Science 04
sample throughput, a reagent flow rate of 0.20 mL/min was selected as

the optimal condition.
3.2 Effect of the Cu/Cd column length

The reduction efficiency of the Cu/Cd column was the key point

of the entire proposed method and the nitrate determination result

was easily influenced (Garside, 1993). Because the inner diameter of

the reduction column was set to 3.0 mm, to minimize the diffusion

effects in flow analysis, the length of the column was important for the

reaction efficiency. However, only a few studies have reported on the

length effect of the reduction column (Lapa et al., 2000; Ellis et al.,

2011). The influence of the length of the Cu/Cd column was evaluated

in the range of 5 to 17 cm. The reduction efficiencies of the Cu/Cd

column with different lengths were investigated using a standard

nitrate solution and standard nitrite solution (both at 10 mmol/L). As

shown in the inset of Figure 2, the reduction efficiency of the Cu/Cd

column increased with increasing column length, reaching a plateau

between 13 and 17 cm with a reduction efficiency of 98% to 102%.

Therefore, in the proposed method, the length of the column should

be longer than 13 cm, to ensure a reduction efficiency greater than

95%. In addition, a series of standard nitrate solutions in the range of

0–12 mmol/L was prepared and tested by using various lengths of the

reduction column, and the results are illustrated in Figure 2. We

observed that as the length of the column was increased from 5–15

cm, the slope of the calibration curve increased. However, the slope

slowly decreased at a length of 17 cm, possibly due to increased back

pressure (Ellis et al., 2011).
3.3 Effect of sample salinity

Higher salinity corresponded to a larger ionic strength in the

sample solution, which could affect the rate of the chemical reaction.

Otherwise, the salinity differences between the seawater sample and
FIGURE 2

Calibration curves ranging from 0 to 12 mmol/L with different lengths
of the Cu/Cd column (n=3), where the inset shows the variations in
reduction efficiency with different column lengths.
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carrier possibly resulted in the Schlieren effect due to the different

refractive indices (Zhu et al., 2013). To investigate the salinity effect,

several different seawater samples with various salinities of 0, 3.5, 7,

10.5, 14, 17.5, 21, 24.5, 28, 31.5, and 35 were prepared by diluting aged

seawater collected from the surface of the Indian Ocean (salinity of

open ocean seawater was almost constant at 35), with pure water as

the matrix. Then, the calibration curves (ranging from 0 to 20 mmol/

L) were obtained by spiking the nitrate standard solution into

seawater solutions with different salinities. The relationship between

the slope of the calibration curves and salinity is shown in Figure 3,

indicating that the slope of the calibration curve increased with

increasing sample salinity. In addition, compared to pure water, an

approximately 9% increase in the sensitivity of the seawater sample

was observed, which was possibly caused by the change in ion

strength and the influence of the Cu/Cd column reduction process.
3.4 Analytical figures of merit and
method validation

Under the chosen optimal conditions, the method detection limit,

estimated as three times the standard deviation of the repeated blank

measurements (n = 9), was 0.03 mmol/L. The reproducibility of the

method was evaluated by repetitive determinations of a sample at a

concentration of 15 mmol/L of nitrate. The results are shown in Figure S2,

where the relative standard deviation was 0.6% (n = 9), indicating good

precision. Sample throughput of 15 per hour was obtained with the

proposed method, and typical output signals of the calibration curve

ranging from 0 to 20 mmol/L were obtained, as shown in Figure 4.

Regression equation was given by y=0.0267x (mmol/L) + 0.0012, with R2

= 0.9981 (n=5), where x is the concentration of nitrate plus nitrite and y

denotes the absorbance. The accuracy was also verified by testing the

primary first class of the National Certified Reference Materials

(GBW08634-GBW08637), and the values measured by the proposed

method were in good agreement with the certified material values.
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3.5 Comparison with the VCl3
reduction method

Several studies have previously reported on the determination of

nitrate in estuarine and coastal waters (Lin et al., 2019; Singh et al., 2019;

2020). Therefore, a reverse flow injection analysis method coupled with

VCl3 reduction for nitrate determination was established according to a

previously reported study (Lin et al., 2022). An overall comparison of the

analytical figures of merit between the proposed method and the VCl3
reduction method is summarized in Table 1. The MDL of the proposed

method was lower than the VCl3 reduction method, where the slope of

the calibration curve of the proposed method was higher than the VCl3
reduction method, indicating that the proposed method had more

sensitivity. Furthermore, the intercept of the calibration curve with the

proposed method was lower for the reagent used in the VCl3 reduction

method, with a background color. To further investigate the viability of

the proposed method with the novel spiral type Cu/Cd column, 17

seawater samples were analyzed with this method and the VCl3 reduction

method. As shown in Figure 5, the results indicated no significant

difference between the proposed method and the established

reference method.
FIGURE 3

Relationship between the slope of the calibration curves and salinity,
where the inset shows the calibration curves for nitrate in the samples
with various salinities of 0, 3.5, 7, 10.5, 14, 17.5, 21, 24.5, 28, 31.5, and 35.
TABLE 1 Comparison of the analytical performance characteristics of the
proposed method and the VCl3 reduction method.

Proposed
method

VCl3 reduction
method

Flow system rFIA rFIA

MDL (mmol/L, n=9) 0.03 0.15

Slope of the calibration
curve

0.0267 0.0142

Intercept of the calibration
curve

0.0012 0.0122

Regression coefficient (R2,
n=5)

0.9981 0.9986

RSD (n=9) 15 mmol/L: 0.6% 16 mmol/L: 2.4%
FIGURE 4

Typical output signals of the calibration curve ranging from 0 to 20
mmol/L for nitrate determination (n = 3), where the inset shows the
calibration curve.
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3.6 Application

The proposed method was applied for the determination of nitrite

in seawater samples, which were collected from the coastal seawater of

Wenling, Zhejiang Province. The collected samples from the surface
Frontiers in Marine Science 06
seawater were filtered through a filter (0.45 mm) and analyzed. Of note,

some sample concentrations exceeded the linear range of the

calibration curve, and dilution of the sample was necessary to ensure

measurement. Thus, the distributions of surface nitrate concentrations

from 45 investigation stations are presented in Figure 6. In addition, the

temperature, salinity, and phosphate concentration in the surface

seawater were measured and recorded. As shown in Figure 6, the

nitrate concentration showed a strong spatial variation, ranging from

2.25 mmol/L to 57.47 mmol/L. The data indicated a good correlation

between the nitrate concentration, salinity, and temperature, where the

variation trend of nitrate concentration was consistent with the

phosphate concentration.
4 Conclusions

A novel on-line Cu/Cd column with a spiral structure coupled

with a de-bubbling device and a syringe-type filter for field

application was developed to overcome the limitations of the

commonly used Cu/Cd column. Coupled with the reverse flow

injection analysis technique, a novel spectrophotometric method for

the field determination of nitrate in seawater was established. The

proposed method was easy to operate and had the advantages of high

sensitivity, stable reduction efficiency, a suitable calibration range, and

a minimized effect of air bubbles. In addition, the proposed method
FIGURE 5

Comparison of the results obtained by the proposed method and the
referred VCl3 reduction method.
FIGURE 6

Distribution of temperature, salinity, phosphate, and nitrate + nitrite in the surface seawater from Wenling, Zhejiang Province. The figure was created
with Ocean Date View software (Schlitzer, 2021).
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was validated by the National Certified Reference Materials, with

good agreement between the results of the proposed method and the

reference VCl3 reduction method. The results demonstrated that the

proposed method with excellent portability and flexibility could be

applied to the field determination of nitrate in seawater.
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