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Seahorses are small sedentary fish considered flagship species of the

conservation efforts. They are particularly vulnerable to human pressures

because inhabiting threatened coastal ecosystems. Indeed, the worldwide

decline of local populations in the last decades led to the inclusion of all

seahorse species on the IUCN Red List, where most species, including

Hippocampus guttulatus, were classified as ‘‘Data Deficient’’ on a global level

due to the lack of relative data on several biological and ecological traits. Because

of such sensitive conservation status, improvement of the current knowledge on

the diet composition of wild animals and its differences among habitats could be

of great importance as it could help understanding the way the environment is

exploited. In the present study, we used a non-invasive DNA metabarcoding

technique to further elucidate long-snouted seahorse diet and expand our

understanding of prey choice among different habitats. We identified 24

families, 22 genera and 26 species, and according to the results, most of the

seahorse samples contained taxa such as Amphipoda, Decapoda, Isopoda, and

Mysida. Several non-native species were discovered in the diet, suggesting their

dietary incorporation that could mirror high anthropogenic impacts and habitat

modifications. We found significant differences in the diet composition among

investigated habitats, thus indicating trophic flexibility of H. guttulatus among

diverse habitats, a characteristic that may be essential for the resilience of this

iconic yet sensitive species.

KEYWORDS

seahorses, Hippocampus guttulatus, diet, syngnathidae, Mar Piccolo of Taranto,
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1 Introduction

Effective biodiversity conservation depends on a good understanding of the

relationships between species or populations and their environment (Bremner, 2008;

Dıáz-Abad et al., 2022). Identifying dietary items is necessary to acknowledge prey

preference and availability in a given habitat but also to account for trophic interactions
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when designing species protection (Hamann et al., 2010; Dıáz-Abad

et al., 2022). Indeed, food is considered the most fundamental

resource for the species’ survival (Wang et al., 2022) as it directly

influences critical traits such as body condition (Rothman et al.,

2012) and reproduction (Cameron, 1996). Distribution and

abundance of prey items, however, can strongly depend on

environmental conditions, so predator species may be forced to

modify their diets in case of eventual disturbances and/or other

external pressures (Gainsbury and Meiri, 2017; Gül and Griffen,

2020). In species conservation management, understanding dietary

preferences is crucial for both identifying resource requirements

and predator population dynamics (Ward et al., 2012; Shao

et al., 2021).

Worldwide, pressures on marine ecosystems have caused

extensive modifications and/or degradation of coastal habitats

(Hughes et al., 2017; Thibaut et al., 2017). Seahorses (Hippocampus

spp.) mostly occur in threatened coastal ecosystems (Hernandez-

Urcera et al., 2021; Pierri et al., 2022) and are, therefore, particularly

vulnerable (IUCN, 2022). They are sedentary species whose low

mobility make them sensitive to fluctuations of feeding resources at

local scale as they are not able to swim over long distances in search of

food (Foster and Vincent, 2004). Many studies indicated that

seahorse populations declined in the past decades, and although

exact causes remain unknown, habitat modifications/degradation and

illegal fisheries seem main responsible (Correia et al., 2015; Pierri

et al., 2021). Therefore, all seahorse species were included on the

International Union for Conservation of Nature (IUCN) Red List of

Threatened Species (IUCN, 2022) where many species, including the

long-snouted seahorse Hippocampus guttulatus, were classified as

‘‘Data Deficient’’ on a global level (Pollom, 2017) due to the lack of

information on distribution (Pierri et al., 2022), population trends

(IUCN, 2022) and biodiversity-related data (Heard et al., 2019).

Seahorse distribution seems directly influenced by prey

availability (Curtis and Vincent, 2006; Gristina et al., 2015; Ape

et al., 2019). These fish are ambush predators that usually rely on

their vision to capture prey (Kuiter, 2000). In uncovered areas, they

practice a “sit-and-wait” predation strategy (Tipton and Bell, 1988;

James and Heck, 1994) and rarely swim in search of food (Kendrick

and Hyndes, 2005; Felıćio et al., 2006). Diet and foraging strategies

are well documented in many scientific studies showing that

seahorses principally consume epibenthic invertebrates (e.g.,

harpacticoid copepods, amphipods, nematodes, polychaetes), thus

reflecting not only their sedentary behavior but also habitat-specific

biodiversity (Kendrick and Hyndes, 2005; Castro et al., 2008; Kitsos

et al., 2008; Yip et al., 2015; Ape et al., 2019). Up to date, most

studies on seahorse diet employed morphological examination of

gut or stomach contents, through stomach flushing or by

biochemical means (e.g., Kitsos et al., 2008; Gurkan et al., 2011;

Valladares et al., 2017; Ape et al., 2019; Valladares and Planas,

2021). The next-generation sequencing (NGS) technologies,

combined with the expansion of DNA barcode databases (Hebert

et al., 2003), has recently allowed to perform diet analysis in many

fish species (e.g., Taguchi et al., 2014), including seahorses (Lazic

et al., 2021; Kim et al., 2022). The analysis of the DNA barcode

sequences of consumed items from fecal material indicated that

DNA metabarcoding is an effective tool for studying seahorse diets
Frontiers in Marine Science 02
(Lazic et al., 2021). Indeed, these powerful and non-invasive

methods can provide accurate dietary profiles for many

individuals and result in extended knowledge of foraging ecology.

In this study, we analyzed fecal samples of H. guttulatus from four

preferential habitats in Mar Piccolo of Taranto (for this area; see

Gristina et al., 2015; Gristina et al., 2017) where seahorses have recently

faced a severe population decline of approximately 90% (Gristina et al.,

2015; Pierri et al., 2021). We aimed at widening the knowledge of the

diet of wild long-snouted seahorses by using broad-coverage metazoan

DNA metabarcoding primers and investigating whether diet

composition changes among different habitats. The applied protocol

has been recently developed in laboratory conditions (Lazic et al., 2021)

and here has been applied to wild populations. In this context, the

study of the dietary composition across different habitats while using

non-invasive technique could offer an important tool to help plan

conservation actions that aim at reversing negative population trends.
2 Materials and methods

2.1 Study area

Mar Piccolo of Taranto is located at the northern end of the

Gulf of Taranto, with a total surface area of approximately 20.63

km2 (Figure 1). Surrounded by urban development, heavy

industries and civil and military shipyards, the water body of Mar

Piccolo is affected by heavy metals, hydrocarbons, pesticides, and

organic waste (Cardellicchio et al., 2007; Petronio et al., 2012).

Across the entire basin, natural rocky substrates are reduced, while

the seafloor is dominated by soft sediments that vary from mud to

mixed sands. They are sparsely covered by patches of Cymodocea

nodosa, scattered tufts of brown algae (Cystoseira spp.) and large

algal beds of Cladophora prolifera (Cecere and Petrocelli, 2009).
FIGURE 1

Map of the sampling area in the Mar Piccolo of Taranto.
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Hard substrates, mainly of anthropogenic origin (wood poles of

mussel farms, stone walls along the coastline, rocks, ropes, and

discarded material), support an algal turf principally constituted of

perennial Cystoseira spp. and other frondose algae (i.e., Corallina

elongata, Dictyopteris spp.) (for further description see Gristina

et al., 2015; Gristina et al., 2017).
2.2 Sample collection

Forty non-reproductive adult long-snouted seahorses were captured

by diving at Mar Piccolo of Taranto. Although at least six different

habitats were described at this site (Gristina et al., 2017), this study

focused on the four most extensive habitats: (1) Cladophora prolifera

(onwards C. prolifera) at 6 m of depth (n=10), (2) vertical stone wall

(onwards stone wall) with abundant algae (C. elongata,Cystoseira sp. and

Dictyota dichotoma) and filter feeders (sabellids, ascidians, demosponges)

at 0.3 – 0.6 m of depth (n=10), (3) unvegetated sandy bottom (onwards

sandy bottom) mixed with organogenous concretions (bivalve and

gastropod shells) and small stones at 1.6 – 2.2 m of depth (n=10), and

(4) poles of mussel farms (onwards poles) colonized by rich sessile filter-

feeder fauna (bivalves, demosponges, sabellids, bryozoans and ascidians)

at 3.3 – 4.2 m of depth (n=10) (for further description of habitats see

Gristina et al., 2015; Gristina et al., 2017). Captured seahorses were

individually placed in small aerated 2L tanks filled with surrounding

seawater. Each tank was then filtered through 0.2 mm pore-size

polycarbonate filters. Produced fecal samples (total n=33; C.

prolifera=9, stone wall=9, sandy bottom=9, poles=6) were collected by

syphoning, preserved in 96% ethanol, and stored at −20°C for further

examination. All animals were immediately released to the original

capture site in perfect health conditions. To exclude host

contamination, H. guttulatus Cox1 amplicon sequence, produced

during the previous research (Lazic et al., 2021) and available on

GenBank (OQ291591), was used in subsequent analysis.
2.3 DNA extraction

For each sample, 50 mg of feces were selected and then used for the

total genomic DNA extraction by using FastDNA SPIN kit for soil

(BIO 101, Carlsbad, Canada) following themanufacturer’s instructions.

Cell lysis was achieved by bead beating in FastPrep Instrument (BIO

101) at speed 6 for 40 s. Qualitative and quantitative DNA assessment

was carried out using PicoGreen®dsDNA quantitation assay

(Invitrogen, Carlsbad, California) and agarose gel (1%)

electrophoresis. DNA extraction blanks (sterile distilled water) were

prepared and processed together with the samples to exclude

contamination related to the extraction reagents and procedure.

DNA extracts were stored at −20°C before amplification by PCR.
2.4 Cox1 library preparation
and sequencing

Amplicon libraries were prepared from 0.5 ng of extracted

DNA. The adopted strategy is described in detail by Manzari
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et al. (2015). The primer pair used for amplification of the

mitochondrial Cytochrome oxidase subunit 1 (Cox1) gene was

mlCOIintF_NextFor and dgHCO2198_NextRev (Next_For: 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′, and

Next_Rev: 5′GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAG-3′) (Leray et al., 2013), designed to contain (from 5′ to
3′ ends) transposon Nextera sequences (Nextera DNA sample

preparation guide, Illumina). RNase/Dnase-free Molecular

Biology Grade water (Ambion) was used as a negative control of

PCR amplification. Equimolar quantities of the purified amplicons

were pooled and subjected to 2×250 bp paired-end sequencing on

the Illumina MiSeq platform. To increase the genetic diversity of the

sequenced samples, as required by the MiSeq platform, a phage

PhiX genomic DNA library was added to the mix and co-sequenced

(Kozich et al., 2013).
2.5 Taxonomic characterization of
seahorses’ preys

The quality of raw Cox1 sequence data was checked using

FastQC (available at: http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) and multiQC (Ewels et al., 2016). Illumina

adapters and PCR primers were removed from raw reads using

cutadapt (Martin, 2011). Retained paired-end (PE) reads were

denoised into ASVs (Amplicon Sequence Variants) (Callahan

et al., 2017) by applying DADA2 (version 1.18) (Callahan et al.,

2016). ASVs were taxonomically annotated using a modified

version of BioMaS (Bioinformatic analysis of Metagenomic

amplicons) (Fosso et al., 2015) working on MetaCOXI (Balech

et al., 2022) and MIDORI (Leray et al., 2018) as reference databases.

Dynamic sequence similarity threshold was adopted to improve the

ASVs classification accuracy (species at 97%, genus at 95%, family at

93%, class at 91%, order at 88%, and phylum at 78%) as in Lotus

pipeline (Hildebrand et al., 2014). Unassigned ASVs were

additionally aligned against nt and nr collections using the blastn

(Mount, 2007) and diamond blastx (Buchfink et al., 2015) tools,

respectively. All ASV sequences partially mapped on different

reference sequences were labelled as chimeric and removed from

subsequent analysis. Retained sequences were taxonomically

annotated using TANGO (Alonso-Alemany et al., 2014; Fosso

et al., 2018) at the same similarity percentage thresholds

described above. Contaminant ASVs were identified using

decontam (Davis et al., 2018); alignment against the human

genome (Pruesse et al., 2007) allowed the removal of additional

noise sources.

R packages phyloseq (1.26.1) (McMurdie and Holmes, 2013)

and vegan (2.5.6) (Oksanen, 2022) were used to measure alpha and

beta diversity. For this purpose, ASVs counts were normalized by

rarefaction (depth values settled to 45,000). Shannon and inversed

Simpson indexes were used as measures of alpha diversity (i.e.,

intra-sample diversity), while Bray–Curtis dissimilarity matrix was

used to measure beta diversity (i.e., inter-sample diversity). The

Nonmetric Multidimensional Scaling (NMDS) was applied to beta-

diversity matrix to obtain graphical representations of the observed

dissimilarities. Statistical differences in alpha diversity indexes were
frontiersin.org
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measured by Wilcoxon (W) test. PERMANOVA (Permutational

Multivariate analysis of variance) was performed to infer the

contribution of explanatory variables in beta diversity data

partitioning by applying 999 permutations. The contribution of

individual species to the overall Bray–Curtis dissimilarity was

achieved by SIMPER analysis with 999 permutations. The

functions metaNDS, adonis and simper of the Vegan package

(Oksanen, 2022) were used to perform NMDS, PERMANOVA

and SIMPER analysis, respectively.
3 Results

3.1 Overall sequencing results

Libraries of dual indexed amplicons of 420 bp were successfully

sequenced on the MiSeq platform using 2 × 250 bp paired end (PE)

sequencing strategy. Overall, approximately 8 million PE reads (mean

242,645 ± 54,990 SD) were generated across all samples. After

trimming, merging and denoising procedures, approximately 87%

of the produced PE reads were retained, resulting in a total of 683

ASVs. According to the ecological metrics, data were normalized by

rarefaction to 45,000 sequences. Nine samples were discarded as they

contained less sequences than the imposed rarefaction depth and

were dominated by H. guttulatus Cox1 gene sequences.
3.2 Seahorse diet

Shannon index values (Figure 2) indicated statistically

significant differences among stone wall and C. prolifera and

stone wall and sandy bottom samples (p-value ≤ 0.05). Stone wall

samples were characterized by the highest alpha-diversity values

compared to other sampling sites (stone wall: 2.13 ± 0.93, C.

prolifera: 0.80 ± 0.41, sandy bottom: 0.88 ± 0.63, poles: 0.76 ±

0.78). Simpson Index (Supplementary Figure 1) indicated a similar

trend and revealed statistically relevant differences (p-value ≤ 0.05)

between stone wall and C. prolifera samples (stone wall: 0.74 ± 0.17,

C. prolifera: 0.42 ± 0.21, sandy bottom: 0.37 ± 0.24, poles: 0.34

± 0.34).

Beta diversity values (Figure 3), measured using Bray-Curtis

dissimilarity metrics and plotted using nMDS (non-metric Multi-

Dimensional Scaling), indicated no clear separation of samples

among different habitats. However, PERMANOVA (Table 1)

highlighted that approximately 21% of data variability is

associated with the sampling site.

In accordance with alpha diversity indices, SIMPER analysis

(Table 2) identified stone wall ASVs contributing the most to the

differences between groups. Nonetheless, the highest amount of

explained between-group diversity was observed in the comparison

in which sandy bottom samples were involved. These results could

be probably explained by a large intra-group variability as observed

in alpha (Figure 2; Supplementary Figure 1) and beta (Figure 3)

diversity plots.

In terms of taxa, we identified 24 families, 22 genera and 26

species. At level of classes, Malacostraca, Gastropoda, and Polychaeta
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were the most observed (Table 3), and were represented by nine

orders (Amphipoda, Isopoda, Decapoda, Mysida, Trochida,

Phyllodocida, Sabellida, Terebellida, and Eunicida). Although with

low abundances, several other classes were also detected, including

Insecta, Gymnolaemata, Demospongiae and Ascidacea.

Malacostracan crustaceans were the predominant food item for all

habitats and had relatively high abundances (range 1 – 99,98%).

There were differences in specific taxa identified among different

habitats (Table 3), but also some overlap. For instance, genusMunna

was present in samples from stone wall, C. prolifera and wood poles,

but was absent on sandy bottom. Furthermore, the most consumed

diet item differed among habitats; in samples of wood poles, for

instance, the most abundant genera were Paramysis (Arthropoda,

16.05% ± 39.31% in one out of six samples) and Athanas

(Arthropoda, 11.41% ± 27.96, %, in one sample), in samples from

C. prolifera, the most observed was Munna (Arthropoda, 11.56% ±

33.09%, in five samples out of nine), while on sandy bottom, the most

abundant were Caprella (Arthropoda, 10.88% ± 32.61%, in three

samples out of nine) and Paramysis (Arthropoda, 10.30% ± 30.85%,

in four samples). The same principle was also observed at the species

level, where the most consumed prey differed among habitats. Indeed,

on wood poles, the samples presented high content of Amphipoda sp.

(Arthropoda, 22.27% ± 27.96%, in three out of six samples) and

Paramysis (Mesomysis) intermedia (16.05% ± 39.31%, in one sample);

in C. prolifera, the most abundant was Munna japonica (11.56% ±

33.09%, in five out of nine samples); on stone wall, Steromphala

adansonii (Mollusca, 4.73% ± 12.75%, in five samples) and; on sandy

bottom, the most consumed was P. (M.) intermedia (10.30% ±

30.85%, in four samples). The abundance of unassigned sequences

at the species level ranged between 0.11% and 100%.
4 Discussion

This study used DNA metabarcoding of feces to investigate the

diet of long-snouted seahorses in several most extensive habitats at

Mar Piccolo of Taranto and indicated that this technique is suitable
FIGURE 2

Shannon index for investigated habitats. * means "p-value ≤ 0.05"
and "ns" means not significant.
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for dietary assessment of wild seahorses, following previous

laboratory findings (Lazic et al., 2021). Compared to other diet

studies (Kitsos et al., 2008; Gurkan et al., 2011; Ape et al., 2019)

using morphological analysis of undigested food remains, our study

reached a more extensive taxonomic characterization, especially for

small-sized and soft-bodied prey. Among all habitats, seahorses

mainly preyed on crustaceans, followed by polychaetes and

gastropods. Our results expand the existing knowledge on seahorse

diet and elucidate differences in dietary composition among different

habitats, detecting prey types previously missed by visual methods, all

of which were plausible due to records from the same study site (Ape

et al., 2019; Pierri pers. comment). Indeed, the analysis revealed
Frontiers in Marine Science 05
several species that have, to our knowledge, not been identified before

as seahorse preys, namelyCaprella scaura (Amphipoda, Arthropoda),

Paramysis (Mesomysis) intermedia (Mysida, Arthropoda) and

Steromphala adansonii (Gastropoda, Mollusca).

Most of the samples contained crustacean taxa such as

Amphipoda, Isopoda, Decapoda and Mysida; in three out of four

investigated habitats, seahorses frequently fed on Munna japonica

(Isopoda, Arthropoda). Such finding is interesting as this species

seems non-native to the Mediterranean Sea (Lazic et al., 2021).

Several other non-native species were also detected in the diet,

including C. scaura and Alpheus bellulus (Decapoda, Arthropoda).

H. guttulatus had ingested other invertebrates as well, including

gastropods, among which species S. adansonii resulted frequently

selected on sandy bottom and stone wall. Several insect, sponge and

ascidians were also found in the stomach contents, but hardly any of

the identified ones served as food. Such taxa could have been the

result of secondary predation or were eaten passively with effective

prey items (Kim et al., 2022), in accordance with previous studies

highlighting reliability of DNA-based methods for detecting

indirect predation (e.g., Sheppard et al., 2005). Seahorses usually
TABLE 2 Results of SIMPER analysis: the number of ASVs significantly (p-values ≤ 0.05) contributing to between group diversity, contribution (portion
of the diversity) range and identified species.

Comparison N° of ASV Contribution range (total Contribution) Identified species

wood poles vs. C. prolifera 3 0.01 – 0.3% (0.32%) Amphipoda sp. DNAS-1B6-193928

wood poles vs. stone wall 22 0.002 – 12.3% (19.1%) Alpheus bellulus

wood poles vs. sandy bottom 5 0.01 – 16.1% (28.2%) Amphipoda sp. DNAS-1B6-193928
Paramysis (Mesomysis) intermedia

C. prolifera vs. stone wall 34 0.02 – 12.3% (21.4%) Alpheus bellulus

C. prolifera vs. sandy bottom 9 0.0004 – 21.8% (32.2%) Pisidia longicornis

stone wall vs. sandy bottom 36 0.002 – 12.6% (25.9%) Alpheus bellulus
FIGURE 3

nMDS plot based on the Bray-Curtis dissimilarity matrix. Stress=0.09. nMDS was inferred using four dimensions and up to 100 iterations. All possible
combinations of inferred MDS are shown.
TABLE 1 PERMANOVA results.

Explained variability

Habitat 20.69% *

Residuals 79.31%
Residuals represent the amount of variability that a model cannot explain.
* means p-value ≤ 0.05.
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TABLE 3 The most abundant (relative abundance ≥ 1%) classes, genera, and species for each sampling site.

Sampling site Rank Taxa Average relative abundances Frequency of occurrence

Poles

Class
Malacostraca 91% ± 10.01% 6/6

Insecta 1.07% ± 2.62% 1/6

Genus

Paramysis 16.05% ± 39.31% 1/6

Athanas 11.41% ± 27.96 1/6

Liposcalis 1.07% ± 2.62% 1/6

Munna 1.78% ± 2.75% 4/6

Species

Amphipoda sp. DNAS-1B6-193928 22.27% ± 34.96% 3/6

Athanas nitescens 11.41% ± 27.96% 1/6

Paramysis (Mesomysis) intermedia 16.05% ± 39.31% 1/6

Liposcelis entomophila 1.07% ± 2.62% 1/6

C. prolifera

Class

Malacostraca 78.92% ± 9/9

Ascidiacea 1.69% ± 5.08% 1/9

Demospongia 1.0% ± 3.0% 1/9

Genus

Munna 11.56% ± 33.09% 5/9

Botryllus 1.69% ± 5.08% 1/9

Haliclona 1.0% ± 3.00% 1/9

Species

Botryllus schlosseri 1.69% ± 5.08% 1/9

Munna japonica 11.56% ± 33.09% 5/9

Haliclona xena 1.0% ± 3.00% 1/9

Stone wall

Class

Malacostraca 18.83% ± 30.96% 9/9

Gastropoda 4.73% ± 12.75% 5/9

Polychaeta 3.17% ± 8.92% 3/9

Insecta 1.06% ± 2.21% 3/9

Gymmoleamata 1.71% ± 5.13% 1/9

Genus

Steromphala 4.73% ± 12.75% 5/9

Munna 1.98% ± 5.92% 3/9

Pisidia 2.35% ± 7.04% 2/9

Watersipora 1.71% ± 5.13% 1/9

Species

Steromphala adansonii 4.73% ± 12.75% 5/9

Gammaridae sp. HKL 32 2.08% ± 5.75% 4/9

Munna japonica 1.98% ± 5.92% 3/9

Pisidia longicornis 2.35% ± 7.04% 2/9

Watersipora subovoidea 1.71% ± 5.13% 1/9

Sandy bottom

Class

Malacostraca 45.92% ± 38.91% 9/9

Polychaeta 10.33% ± 29.26% 5/9

Insecta 2.61% ± 7.63% 3/9

Genus
Paramysis 10.30% ± 30.85% 4/9

Caprella 10.88% ± 32.61% 3/9

Species Paramysis (Mesomysis) intermedia 10.30% ± 30.85% 4/9

(Continued)
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ingest their prey via a strong suction action down their tubular

snout (Bergert and Wainwright, 1997; Woods, 2002). Indeed, the

presence of this unlikely prey items was not a common occurrence,

and their ingestion could also have occurred accidentally during

ingestion of effective prey since small crustaceans frequently live

and hide in sessile benthic organisms such as sponges. It is not

possible to reliably distinguish between primary, secondary, or

accidentally ingested prey items using DNA or visual analyses of

gut contents, however, inferences can be made based on the overall

composition of the gut contents, which for seahorses are usually

dominated by a mix of crustacean species (Woods, 2002; Castro

et al., 2008; Storero and González, 2008; Gurkan et al., 2011;

Valladares et al., 2017; Manning et al., 2019). The likely

secondary and/or accidental prey items may be useful in

providing some insights of the food webs and habitats that the

primary prey species rely on. Among these unlikely prey items, we

also identified non-native species, such as Haliclystus tenuis

(Staurozoa, Cnidaria) (Holst and Laakmann, 2019), thus pointing

out that the gained data could also help at evaluating ecosystem

structure and health.

The general pattern that H. guttulatus eats different prey items

among different habitats has also been found in another study at the

same site which indicated stone wall habitats as the most diversified

in terms of species biodiversity probably due to complexity of algal

turfs (Ape et al., 2019). Seahorses are showing trophic flexibility and

can modify their foraging strategy depending on the habitat

complexity (James and Heck, 1994; Felıćio et al., 2006; Ape et al.,

2019) by catching the prey that is more accessible in a specific

habitat (Ape et al., 2019) and that can fit into their mouth (Wilson

and Vincent, 1998). The studies of Ryer (1988) and Franzoi et al.

(1993) on species of the genus Syngnathus indicated that the

availability of prey species influences the consumption rates and

contribution to the diet (Oliveira et al., 2007). In this regard,

frequent consumption of several prey items may indicate their

higher availability at Mar Piccolo of Taranto rather than seahorse

dietary preference. In addition to crustaceans, gastropod S.

adansonii seems to be important in the diet of seahorses.

Although adults of this species are relatively large, and it is

possible that seahorses preyed on its larvae, there are indications

that seahorses can extract large-sized prey from its shell and suck it

while integer (Ape et al., 2019). Indeed, many fish species select

larger prey items as more energy can be obtained by this choice

(Gerking, 1994).

Notably, the present results were more accurate and consistent

in terms of identified species than observed in previous studies on

the diet of the long-snouted seahorses (Kitsos et al., 2008; Gurkan

et al., 2011; Ape et al., 2019; Valladares and Planas, 2021). Indeed,

many prey taxa discovered in this study were identified at the
Frontiers in Marine Science 07
species level, while previous work (Ape et al., 2019) at Taranto Mar

Piccolo only provided identification at the order or family level.

Although this method could be useful in detecting species that

would be otherwise difficult to observe, identification of prey DNA

in fecal samples, however, depend on many factors, including

differential digestion of soft-bodied and hard-bodied prey,

variable gut transition times for different prey components and

prey types (Nielsen et al., 2018), and choice of target sequences

(Weber and Lundgren, 2009). Furthermore, this approach is

strongly limited by the reference databases, whose level of

completeness represents one of the most critical issues in DNA-

based species diversity analyses. We used several databases

available, but the capacity to identify diet items could still be

improved by creating representative, possibly local, databases at

least at the family level to limit misidentifications or unassigned

sequences (Santos and Branco, 2011). Furthermore, the diet results

presented in this study provide a single snapshot of what the

animals had eaten in recent feeding events and although

seahorses have limited swimming abilities (Curtis and Vincent,

2006; Caldwell and Vincent, 2013; Pierri et al., 2020), it could not be

excluded that some displacement among habitats however

occurred. Since both biomass and species composition of local

communities can vary over time, mainly because of natural or

human-induced impacts, samples should be collected at different

periods of time, encompassing any existing variations. This is

particularly important when having in mind that several dietary

detections were of non-native species that could de facto act as

dietary replacements. Mar Piccolo of Taranto is one of the most

heavily polluted and human-impacted water bodies in southern

Italy (Cardellicchio et al., 2007; Petronio et al., 2012) and the dietary

incorporation of non-native species could mirror high

anthropogenic impacts and habitat modifications.

Using a non-invasive and accurate molecular technique, our

findings further elucidate long-snouted seahorse diet and expand

our understanding of prey choice. However, future studies should

evaluate how diets change by season as both availability and need

may differ. Management goals should probably target different

habitats during different periods of year and hopefully

emblematic seahorses may be able to respond positively to these

management actions.
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Felıćio, A. K. C., Rosa, I. L., Souto, A., and Freitas, R. H. A. (2006). Feeding behavior
of the longsnout seahorse hippocampus reidi ginsburg 1933. J. Ethol. 24, 219–225.
doi: 10.1007/s10164-005-0189-8
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