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An underwater image
enhancement model
for domain adaptation

Xiwen Deng1,2, Tao Liu1*, Shuangyan He1,2*, Xinyao Xiao1,2,
Peiliang Li1,2 and Yanzhen Gu1,2

1Ocean College, Zhejiang University, Zhoushan, China, 2Hainan Institute, Zhejiang University,
Sanya, China
Underwater imaging has been suffering from color imbalance, low contrast, and

low-light environment due to strong spectral attenuation of light in the water.

Owing to its complex physical imaging mechanism, enhancing the underwater

imaging quality based on the deep learning method has been well-developed

recently. However, individual studies use different underwater image datasets,

leading to low generalization ability in other water conditions. To solve this

domain adaptation problem, this paper proposes an underwater image

enhancement scheme that combines individually degraded images and

publicly available datasets for domain adaptation. Firstly, an underwater dataset

fitting model (UDFM) is proposed to merge the individual localized and publicly

available degraded datasets into a combined degraded one. Then an underwater

image enhancement model (UIEM) is developed base on the combined

degraded and open available clear image pairs dataset. The experiment proves

that clear images can be recovered by only collecting the degraded images at

some specific sea area. Thus, by use of the scheme in this study, the domain

adaptation problem could be solved with the increase of underwater images

collected at various sea areas. Also, the generalization ability of the underwater

image enhancement model is supposed to become more robust. The code is

available at https://github.com/fanren5599/UIEM.

KEYWORDS

underwater image, image enhancement, underwater dataset, domain adaptation,
deep learning
1 Introduction

High-quality underwater photography and videography benefit ocean resource

development and sustainable utilization (Mariani et al., 2018; Liu et al., 2020). However,

underwater image degradation, including blurred edges and reduced visibility, is

unavoidable due to the strong absorption and scattering of light in the water (Xie et al.,

2022). The degree of degradation varies with different water constituents in various water

areas (Fu et al., 2022). The enhanced visibility can make scenes and objects more
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highlighted (Wang et al., 2023), although enhancing these poor-

quality underwater images has been a challenging prerequisite for

underwater object detection, monocular depth estimation, and

underwater object tracking (Gao et al., 2019).

As shown in Figure 1, the underwater image quality mainly

depends on two aspects (Rizzi et al., 2002; Foster, 2011; Ancuti et al.,

2018). The first is brightness consistency. The reflected light of the

underwater object is absorbed and scattered by the particles in the

medium, and the camera usually captures low-contrast images. The

second is color consistency. Light at long waves is more easily

absorbed than short ones (Liu et al., 2020), thus underwater images

generally appear bluish or greenish (Galdran et al., 2015).

Accordingly, underwater image enhancement (UIE) algorithms

basically aim at contrast enhancement and color cast correction

(van de Weijer et al., 2007). In recent years, a variety of methods

have been proposed for underwater image enhancement. Generally,

the UIE methods can be divided into three categories: traditional

methods without explicit model-building, physical prior-based

methods, and data-driven deep learning methods.

Several traditional method scan better deal with noise, such as

(Buchsbaum, 1980; Singh and Kapoor, 2014; Singh et al., 2015), lack

of explicit modeling, which usually leads to problems of low

contrast and color deviation. Several physical prior-based

methods, such as (Kaiming He et al., 2009; Drews et al., 2016),

can make the restored image conform to physical concepts, but the

disadvantage is that there is often a lack of prior knowledge of

experts and hand-crafted features (Lan et al., 2023). Several deep

learning-based methods, such as (Li et al., 2017; Cao et al., 2018;

Hou et al., 2018), have shown good enhancement and restoration

performance. However, these studies are based on the data-driven

approach, and thus their performance is limited by their specific

dataset in two aspects. Firstly it is the domain adaptation problem

(Huang and Belongie, 2017). The dataset used by different studies

were collected in different water environments, and their optically

active constituents vary with time and location (Devlin et al., 2009;

Peterson et al., 2020). Besides, solar illumination also differs, and it

also makes a significant difference in underwater objects’

appearance and water styles. Limited training sample scan not
Frontiers in Marine Science 02
sufficiently cover changeably complex underwater environments

(Chen et al., 2021). Therefore, even though one model recovers the

underwater image of a specific sea area well, it is usually difficult to

apply with good generalization abilities in other sea areas. Secondly,

it is difficult for the marine engineering community to obtain a large

dataset of degraded-clear pairwise underwater images (Wang et al.,

2022a). The performance of the deep learning-based models based

on pairwise datasets is supposed to be better than those using

unpaired ones. In natural water such as rivers, lakes, and oceans, the

degraded underwater images can be continuously collected, while it

is usually impossible to obtain pairwise clear ones simultaneously.

As a result, in order to solve the above domain adaptation

problem, we propose an underwater attenuation fitting network in

this study. By combining utilizing individual degraded images and

publicly available pairwise underwater data sets, it can merge the

individual localized and publicly available degraded datasets into a

combined degraded one. Thus, the combined degraded images and

open available clear images compose a pairwise dataset. An

underwater image enhancement method based on this dataset is

also provided in this study. Using our method, even if only

degraded images of a certain sea area are collected, an underwater

enhancement model in the sea area can be built and applied well. In

this study, we used Underwater Image Enhancement Benchmark

(UIEB) (Li et al., 2020b), which contains 950 real Underwater

images. Among them, 890 have corresponding reference images.

We collected three datasets from different sea areas using the

submarine online observation system for training and testing. We

evaluated the quality of the generated images and the image quality

of our dataset using the evaluation quality index of no reference

images (NIQE) (Mittal et al., 2013). Then we propose a new image-

to-image underwater image enhancement model to verify the

validity of our dataset. The enhancement effect of the underwater

image enhancement algorithms on our dataset is significantly

higher than that on the public dataset.

This paper is organized as follows. Chapter two reviews the

existing UIE algorithms and public datasets. In chapter three, the

structure of our proposed UDFM and UIEM are described in detail.

In the fourth chapter, the performance of experiments on different
A B

FIGURE 1

Challenges and problems in natural marine ranch environments: (A) a bluishimage with color distortion; (B) a low contrast and texture
blurred image.
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datasets is evaluated and compared with other image enhancement

methods. The fifth part concludes and discusses this paper.
2 Relation work

2.1 Underwater image
enhancement methods

Spatial domain methods such as histogram equalization (Singh

and Kapoor, 2014)and gray world hypothesis algorithm

(Buchsbaum, 1980), and frequency domain methods such as

Fourier transform (Prabhakar and Praveen Kumar, 2011) and

wavelet transform (Singh et al., 2015) are traditional methods.

These methods can handle noises better but often bring problems

of low contrast, loss of details, and color deviation.

Some researchers also built underwater imaging models to

characterize the physical formation process of the underwater

images and then estimated the depth-related transmission

coefficients (Drews et al., 2016). Thus, they can reverse the

degradation process to restore a clear underwater image, such as

the Kai-ming DCP method (Kaiming He et al., 2009). The

advantage of the method is that it can make the image

enhancement process conform to physical concepts. The

disadvantage is that experts’ prior domain knowledge needs to be

introduced into the model (Cheng et al., 2019), which does not

always hold. These priors are often sensitive to the water

environment where underwater images are collected, which

causes the model may lack generalization. Besides, the imaging

processing could be very complicated in various natural waters, and

it is difficult to establish an appropriate general model.

With the improvement of the computing ability of hardware

platforms, the introduction of excellent networks such as AlexNet

(Krizhevsky et al., 2017) in 2012, and an ever-expanding database of

digital images (Wang et al., 2022b), deep learning methods have

been widely used in image processing (Li et al., 2017; Cao et al.,

2018; Hou et al., 2018), natural language analysis (dos Santos and

Gatti, 2014), and speech processing (Bollepalli et al., 2017). Data-

driven deep learning-based methods are end-to-end methods, and

they can solve the above problems easily by making the model learn

basic parameters directly from the input. Deep convolutional

network CNNs on large-scale datasets have shown excellent

performance in many computer vision tasks (LeCun et al., 2015;

He et al., 2016), which has motivated the development of data-

driven UIE methods. At the same time, the proper availability of

patterns for the training set affects the accuracy of test results

(Naeem et al., 2022). However, real paired image datasets that meet

the training objectives are often scarce. Thus, UIE methods usually

use synthetic degraded images and high-quality counterpart images

for training. Some UIE methods take a different approach and

consider training with unpaired images.

As a pioneering work, Li et al. (Li et al., 2017) proposed the

WaterGAN, which utilizes a generative adversarial network (GAN)

and an image formation model to synthesize degraded/clear image

pairs for unsupervised learning. To avoid the requirement of paired

training data, Li et al. (Li et al., 2018) proposed a weakly supervised
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underwater color transformation model based on cycle-consistent

adversarial networks, which alleviated the need for paired

underwater images for training. However, the nature of the

multiple possible outputs tends to produce unrealistic results in

some cases. Li et al. (Li et al., 2020a) proposed to simulate real

underwater images according to different water types and

underwater imaging physical models. They first synthesized ten

underwater images based on a revised underwater imaging model

(Chiang and Chen, 2012). Then they use synthetic images to train

the corresponding ten underwater image enhancement (UWCNN)

models. This method can obtain a stable and good output. But

facing the input underwater images, how to choose the appropriate

UWCNN model is a challenge. Recently, Li et al. (Li et al., 2020b)

collected a real-world paired underwater image dataset UIEBD to

train a deep network. UIEBD can provide high-quality paired

training data for depth models and a good evaluation of various

underwater image enhancement methods.
2.2 Underwater image
enhancement datasets

There are public underwater datasets, such as Fish4Knowledge

(Boom et al., 2012), LifeCLEF2014 (Salman et al., 2016),

LifeCLEF2015 (Salman et al., 2016), Sea-THRU (Salman et al.,

2016), Haze-Line (Akkaynak and Treibitz, 2019), and UIEB(Devlin

et al., 2009). These datasets are mainly used for object detection

tasks. The Fish4Knowledge contains about 700,000 10-minute video

clips of coral reefs spanned a time period of five years, including

videos taken from sunrise to sunset. Note that these images were

collected with varying water attenuation coefficients and solar

illumination conditions and cannot be directly used in

underwater image enhancement algorithms. The Sea-THRU

dataset includes 1100 underwater images and range maps

(Akkaynak and Treibitz, 2019), and the Haze-Line dataset has

complete content, providing original images and camera

calibration files (Berman et al., 2021). The UIEB (Li et al., 2020b)

dataset contains 890 pairs of sharp and degraded pictures. In

general, these existing datasets are individually collected in some

specific sea areas in rather clear waters, so their representativeness is

limited for real underwater images. Therefore, Li et al. (Li et al.,

2020a) proposed to simulate real underwater images in different

waters using underwater imaging physical models. They used the

synthetic images to train ten underwater image enhancement

(UWCNN) models. However, the underwater environment is

complex, and ten models are not enough to characterize the

underwater environment.
3 Method

The underwater imaging model (Chavez, 1988) can be

expressed as:

I(x) = J(x)*T(x) + A*(1 − T(x)) (1)
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Where I(x) is the degraded underwater image; J(x) is the image

to be recovered; A is background light; T(x) is the underwater

medium transmission map depending on the water quality

conditions, such as scattering and absorption coefficients of the

water constituents. Therefore, the water quality conditions of other

sea areas can be fused into the UIEB degraded images by extracting

the medium transmission map.
3.1 Underwater dataset fitting model

Our underwater dataset fitting network is shown in Figure 2A.

The input I are the degraded images of UIEB, and input II are the

underwater images collected in other certain sea areas. In this study,

the images were collected by an online seabed observation system in

China Wei-zhou island. We first calculate the underwater medium

transmission map of image II, and then splice the RGB image I and

underwater medium transmission map of image II into the four-

channel image III. Next, the output of a new degraded underwater

image is generated by inputting Image III into the encoder and

decoder. Note that the output image is generated from the degraded

image I of UIEB, and it is further blurred with the underwater

medium transmission map of image II by a neural network.

The neural network structure adopts the Encoder-Decoder

structure. The structure of the Decoder is shown in Figure 2B.

Encoder1 and Encoder2 use the first 31 layers of the VGG model.

But the convolution kernel of the first layer is modified to 4� 4

in Encoder1.

In this study, the underwater medium transmission map of T(x)

is calculated based on the generalized dark channel prior algorithm

(Peng et al., 2018), in which we improve the depth estimation

method as shown in Equation (2).

D(x) = min
c,y∈Q(x)

(1 − wc + wc � ( sc − Ic(y)j j) (2)

In the formula, C represents the R, G, B three channels. sc and

wc are determined by ac. The ac represents the proportional relation

of C(R, G, or B channel) with the change of depth of field. Under
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different water quality conditions, the proportional relationship

between light intensity and depth of field is different. A gradient

map is first computed as the rough depth image on R, G, and B

channel by using Sobel operators. The proportional relation can be

fitted by the linear least square method under depth image. The ac is

the slope of the linear regression equation. If ac is greater than 0, it

means that the object is further away from the lens, the intensity of

the corresponding channel is higher, and if ac is less than 0, it means

that the object is closer to the lens, and the intensity of the

corresponding channel is higher. The relationship between ac and

sc and wc is shown as follows:

sc =
1     ifac > 0

0       ifac < 0

(
(3)

wc = tanh(k acj j (4)

The wc is the weight factor of each channel, and k is constant,

which is generally taken as 5. The largest top 0.1% pixel values from

the depth map are averaged as P. Then the Equation (5) can be used

to estimate the media transmission map:

T(x) = max
c,y∈Q(x)

(
P − Ic(x)j j

max(P,       1 − P)
) (5)

In the neural network structure, our loss function is divided into

two parts: the content loss function and the ray attenuation loss

function. The content loss function controls that the content of the

generated image and the input I are the same object. The image

attenuation of UIEB’s degraded image I is controlled by the ray

attenuation loss function. The ray attenuation is carried out

according to the degraded degree of the underwater image II in a

certain sea area. The content loss function is shown in Equation (6):

Lcontent =
on

i=1(Enc(x1)i − Enc(x2)i)
2

n
(6)

Where x1 is the output image, x2 is the input image I, Enc is the

first 31 layers of VGG model (VGG31), n is the pixel number of one

image. The ray attenuation loss function uses the L1 loss function,
A B

FIGURE 2

The framework of the UDFM. (A) the overall framework the underwater datasets fitting newtork; (B) the structure of the decoder.
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and the specific equation is shown in Equation (7):

Ldecay =
on

i jMean(Relui(Enc(x1))) −Mean(Relui(Enc(x1)))j2
n

(7)

Where x1 is the output image, x2 is the input image II, and Relui
refers to the RELU layer network of VGG31. In specific, it refers to

the last four RELU layer networks. Then the output difference of

each layer is averaged and calculated.
3.2 Underwater image
enhancement model

In the underwater image enhancement task, more feature

information about each pixel needs to be used than in other

tasks, such as object detection and object classification. For

example, each pixel uses global information to estimate the

relative depth of the current data, to correct the color deviation.

In addition, for every single pixel, the feature information of its

nearby pixels is also needed to restore its texture information. To

retain a large amount of existing information, we use the fifteen

residual dense block (RDB) modules as the backbone network to

further improve the enhanced image quality. The RDB module is

composed of four dense blocks connected by residual structure, as

shown in Figure 3. The bypass keeps the input information retained

in the dense block (Huang et al., 2018), and the network layer learns

and generates new information. Through the above design, our

model is suitable for the image enhancement task. Moreover, we

add residual structure between dense blocks to make training and

convergence easier.

In the UIEM, our loss function is divided into the content loss

function and the pix-to-pix loss function. The content loss function

assures that the content of the generated image and the input are the

same object. The U-net network (Ronneberger et al., 2015)

implements the content loss function. The content loss function

is shown in Equation (8):

Lcontent =
on

i=1(Unet(output)i − Unet(gt)i)
2

n
(8)

Where output is the output image, gt is the clear image in UIEB,

Unet is the U-net model, n is the pixel number of an image. The pix-
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to-pix loss function uses the L1 loss function, and the specific

equation is shown in Equation (9):

Lpixtopix =
on

i=1(outputi,j − gti,j)
2

n
(9)
4 Experiments and results

The underwater image enhancement has gradually formed its

indicators, divided into two parts. One part is the comparison of

result images, which we have put in Figure 4. The other part is the

comparison of quantitative indicators. PSNR(peak signal-to-noise

ratio) and SSIM(structural similarity) are most commonly used.

However, it is found that the above indicators are not well

consistent with human perception. And then, some scholars

proposed an improved indicator named NIQE(no-reference

image evaluation index). Therefore, we adopt NIQE in this paper.

The results are compared in Tables 1, Table 2.
4.1 Underwater dataset fitting
model experiments

Implementation details. The training and reference of the

algorithm were carried out on a server configured with Intel(R)

Xeon(R) Gold 6342 CPU ×2and NVIDIA A100 40 GB × 4 in this

experiment. The PyTorch was used to build the backbone

network and run on the Ubuntu 18.04 LTS operating system.

We used Adam to optimize the overall objective. The learning

rate was initialized as 1� 10−4 and then decayed to 1� 10−6 in

the last 20 epochs. We trained with a batch size of 16 (on 4 GPUS)

for 300K epochs.

Firstly, the performance of the data fitting model was verified.

The loss function curve is shown in Figure 5 in the training stage,

and it can be seen that the neural network began to converge at the

300K epoch, so we tested the model trained tillthe300K epoch.

In addition, the proportions of the content and ray loss

functions were tested. The Lcontent=Ldecay was tested at 1:1, 5:1,

10:1 and 20:1, respectively. The convergence function curves are

shown in Figure 6.

It has been proved by a lot of experiments that, as the data index

of the experiment, higher peak signal-to-noise ratio (PSNR) or

structural similarity (SSIM) does not always represent a better

reconstruction effect, and the reconstructed texture often fails to

meet the expectation of human eyes. Thus, the no-reference image

evaluation index (NIQE) is used in this study. NIQE (Mittal et al.,

2013) is based on ‘quality perception’ features. Usually, the features

of simple and highly regular natural landscapes are extracted and

used to fit a multivariate Gaussian model. The index quantifies the

difference in the multivariate distribution of the image. In this

study, the NIQE is used to quantify the difference between a set of

generated images and an input set of images. The NIQE average is

calculated in Equation (10).I are the UIEB degraded datasets, II are

the other nature degraded datasets. III are the output images of the

underwater dataset fitting model.
FIGURE 3

The network architecture of the underwater image enhancement
model (UIEM).
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NIQEavg =
on

i=1(NIQE(I,   II) − NIQE(III,   II))

n
(10)
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We tested two nature datasets, and the results are shown in

Table 1. The NIQE average has all dropped below 1.

Besides that, the output results using different encoders are also

given in Table 2. The neural network can encode more apparent

information with the complex network structure, thus improving

performance. As can be seen from the table, Resnet101 has the best

effect as an encoder. The NIQE average is 0.65.

From the visual perspective, we demonstrate some images in

Figure 7. Class (a) is the images of the publicly available dataset,

class (b) is the underwater images of a sea area, and class (c) is the

generated images.
4.2 Underwater image enhancement
experiments

To evaluate the image restoration performance in a real

underwater dataset, we compared UIEM with six deep learning

methods, including UWCNN, UWGAN, Water-net, GDCP (Chavez,

1988), and UIEB. The network’s input is the same underwater image

without additional input, and the reasoning parameters of each

network are the default parameters provided in the open-source

network. It can be seen that when the input image quality is poor,

the enhancement effects of UWCNN and UWGAN are not obvious

and even appear more blurred. Water-net, GDCP, and UIEB can

enhance the image to different degrees. However, Water-Net loses the

picture’s original color and enhances the contrast, making the whole

image dark. UIEB also appears to strengthen excessively brightness,
TABLE 1 Comparison of results before and after using the underwater
dataset fitting model.

Input I Input II NIQE average for
the original
dataset

NIQE average of
the dataset after

fitting

UIEB
degraded
datasets

North Sea
dataset

3.88 0.73

UIEB
degraded
datasets

East Pole
Island
dataset

5.32 0.92
TABLE 2 The Comparison of results from different encoders.

Model Lcontent/Ldecay NIQE average

VGG31 1.61/0.73 0.73

DenseNet121 1.9/1.6 0.95

ResNet50 1.21/0.32 0.70

ResNet101 0.96/0.28 0.65
A

B

FIGURE 4

The enhancement result with different methods. (A) Origin UIEB (Li et al., 2020b) UWCNN-typeI (Li et al., 2020a) UWGAN (Wang et al., 2021),
(B) Water-net (Li et al., 2017) GDCP (Peng et al., 2018) UWCNN-typeIII (Li et al., 2020a) Ours.
A

B

FIGURE 5

Convergence diagrams of the content loss function. (A) is the
content loss function. (B) is the ray attenuation loss function.
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and the details and texture of the picture after GDCP enhancement are

unclear. The UIEM enhancement is the best. All the above image

enhancement models use the generated dataset as the training set. The

closer part of the results obtained by the proposed method is more

precise than the UWCNN-typeI and UWCNN-typeIII, but the farther

part is blurrier. In this study, we need to calculate the underwater

medium transmission map, which represents the attenuation

coefficient of underwater images. The distance of the contents in the

image limits its accuracy. Its accuracy for the results of the near part is

much greater than that of the far part, so it can be seen that the

recovery of the near part is better than that of the far part. However,

UWCNN-typeI and UWCNN-typeIII perform better in the restoration

of the farther part of the image because the UWCNNmethod designs a

variety of water types and then selects the algorithm model according

to the water type. Therefore, The algorithm tends to restore the far

water rather than the near target.
5 Discussion and conclusion

In this paper, we proposed a dataset fitting model UDFM to solve a

challenging problem in underwater image enhancement. There are few

high-quality images, not to mention corresponding clear-enough

reference images for a specific sea area. Although the UIEB dataset

has contributed clear paired datasets of underwater images for training,

the results are unsatisfactory to test in a specific sea area. Ourmodel has

good generalization. The features of underwater images in specific sea

areas are extracted and given to real images in UIEB to obtain synthetic

images. Specific sea areas characterize these synthetic images. We use

NIQE of the reference images (Mittal et al., 2013) to ensure that the

quality of the generated images is close to our sea areas. Finally, image-

to-image enhancement training can be performed using synthetic

images and UIEB reference images. In the testing phase, we adopted

the weights obtained after the training to the real blurred pictures.

Experiments verify that our dataset augmentation method can be
Frontiers in Marine Science 07
applied to underwater images under different sea area conditions.

Just put the image of any sea area into the encoder to simulate the

underwater environment. Experiments also verify that these image-to-

image underwater image enhancementmodels achieve better results on

our dataset than on the UIEB dataset. Our method can provide a

baseline for the dataset synthesis method so that the training of image-

to-image underwater image enhancement algorithms is no longer

limited to the dataset. Our method provides new ideas for the study

of domain adaptation.

In addition, we propose a deep learning-based image-to-image

underwater image enhancement model UIEM. Our algorithm is based

on dense blocks that can obtain more structural texture information,

and we add residual structure. It is beneficial to the image restoration

stage. This method can eliminate the effects of degradation and scatter

on underwater images. Finally, we apply the MSE loss and introduce

the Content loss (Wang et al., 2021) to train the network for further

control over the content information. In addition, the results of our

model are compared with existing algorithms. The effects of other

algorithms are reddish, dark, and blurred. The UIEM has a leading

position in underwater datasets.

The shortcoming of this model is that the model needs to be

retrained when the data sets of other sea areas are collected, and the

fitting ability of the model can only become more robust with the

expansion of the data sets. Secondly, for some pictures, there will be

color bands. As shown in Figure 8, blue color bands exist in the

upper part of the processed picture, which is caused by the fact that

the data fitting model is not optimal. Our future research direction

is to combine these two models and solve the phenomenon of color

bands in the model.

In future work, we will try to collect data from different sea areas to

improve the generalization ability of our underwater image

enhancement model. And we will further optimize our data fitting

model to solve the phenomenon of color bands. We will also try to

combine our method with algorithms such as object detection for

better progress in more advanced vision tasks.
A B DC1:1 5:1 10:1 20:1

FIGURE 6

The loss function traincurve. (A) Lcontent :Ldecay 1:1, (B) Lcontent :Ldecay is 5:1, (C) Lcontent :Ldecay is 10:1, (D) Lcontent :Ldecay is 20:1.
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FIGURE 7

(A) The images of the public data set, (B) the underwater images of a sea area, and (C) the generated images.
A B

FIGURE 8

The enhancement result from the phenomenon of color bands. (A) The origin picture. (B) The enhancement picture with color bands.
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