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The types of marine oil spill pollution are closely related to source tracing and

pollution disposal, which is an important basis for oil spill pollution punishment. The

types of marine oil spill pollution generally include different types of oil products as

well as crude oil and its emulsions in different states. This paper designed and

implemented two outdoor oil spill simulation experiments, obtained the

hyperspectral and thermal infrared remote sensing data of different oil spill

pollution types, constructed a hyperspectral recognition algorithm of oil spill

pollution type based on classical machine learning, ensemble learning and deep

learning models, and explored to improve the identification ability of hyperspectral

oil spill pollution type by adding thermal infrared features. The research shows that

hyperspectral combined with thermal infrared remote sensing can effectively

improve the recognition accuracy of different oils, but thermal infrared remote

sensing cannot be used to distinguish crude oil and high concentrationwater-in-oil

emulsion. On this basis, the recognition ability of hyperspectral combined with

thermal infrared for different oil film thicknesses is also discussed. The combination

of hyperspectral and thermal infrared remote sensing can provide important

technical support for emergency response to maritime emergencies and oil spill

monitoring business of relevant departments.

KEYWORDS

marine oil spills, hyperspectral remote sensing, thermal infrared remote sensing, oil
pollution types identification, deep learning
1 Introduction

Marine oil spill is the most typical and serious environmental pollution accident in the

process of marine development. Various oil spills pollution types on the sea not only

damage the marine environment and coastline ecology, pollute fishery resources, endanger

marine food security, affect tourism, but also threaten human health, and even hinder the
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healthy development of the marine economy (Washburn et al.,

2018; Silva et al., 2022; Wang et al., 2022). It is difficult to eliminate

negative impacts of major marine oil spills on the marine ecological

environment in a short time.

In general, the types of marine oil spill pollution include

different types of oil products as well as crude oil and its

emulsions in different states. There are five typical oil products: 1)

Crude oil, such as the oil product leaked in the Deepwater Horizon

platform oil spill accident in the Gulf of Mexico in 2010 (Leifer

et al., 2012) and the Penglai 19-3C platform oil spill accident in

2010 (Yang et al., 2019); 2) Fuel oil, that is, the fuel used for large

ship engines, such as the oil product leaked in the oil tanker

grounding accident in southeast Mauritius in 2020 (Rajendran

et al., 2021); 3) Condensate, also known as natural gasoline, is

similar to gasoline, such as the oil product leaked from the East

China Sea oil tanker collision accident in 2018 (Lu et al., 2019a); 4)

Vegetable oil, such as palm oil with the largest production,

consumption and international trade volume in the world (Yang

et al., 2021); 5) Diesel oil, that is, the fuel used for high-speed diesel

engine for small ships. Crude oil and its emulsions in different states

include non-emulsified crude oil, water-in-oil emulsion and oil-in-

water emulsion (Lu et al., 2019b; Lu et al., 2020). Once the spilled oil

on the sea surface is not removed in time, a series of complex

physical and chemical changes, such as diffusion, drift,

emulsification, evaporation, dissolution, adsorption precipitation,

photooxidation and biodegradation, will occur under the combined

action of wind, wave, current and other environmental dynamics,

forming water-in-oil (WO) and oil-in-water (OW) emulsions of

different concentrations (Lu et al., 2013a).

The types of marine oil spill pollution are closely related to

source tracing and pollution disposal, which is an important basis

for oil spill pollution punishment. Different types of oil products,

crude oils and its emulsions in different states need to adopt

different emergency treatment strategies, such as combustion

elimination, oil absorption felt adsorption, dispersant spraying,

skimmer recovery, etc (Zhong and You, 2011; French-McCay

et al., 2022). Timely identification of different types of marine oil

spill pollution is of great significance for marine oil spill monitoring

and emergency response.

Optical remote sensing and microwave remote sensing are

important means for marine oil spill monitoring (Fingas and

Brown, 2014; Lu et al., 2016a; Pärt et al., 2021). Synthetic Aperture

Radar (SAR) is the most commonly used technology for marine oil

spill monitoring in microwave remote sensing, which has the

advantages of all-day, all-weather, and can also successfully obtain

images under cloudy and rainy conditions. Therefore, SAR has

become the primary means for relevant business departments to

monitor marine oil spills (Velotto et al., 2011; Marghany, 2014;

Alpers et al., 2017; Mdakane and Kleynhans, 2020; Ma et al., 2021;

Zhu et al., 2021). However, SAR also has a higher false alarm rate in

detecting marine oil spills, and it is difficult to identify oil spill

pollution types and estimate the oil film thickness. The oil spill

information contained by optical remote sensing is more abundant

than SAR, and has been studied and applied widely in oil spill

monitoring (Shi et al., 2018; Shen et al., 2020; Hu et al., 2021;
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Yang et al., 2022b). Among them, hyperspectral remote sensing has

higher spectral resolution, and can extract rich subtle features among

different oil spill pollution types. Therefore, it has been widely

concerned about oil spill monitoring using hypersectral remote

sensing (Lu et al., 2013b; Cui et al., 2017; Zhu et al., 2019; Zhu

et al., 2019; Li et al., 2020; Wang B. et al., 2021), especially oil spill

pollution type identification (Wettle et al., 2009; Yang et al., 2020;

Jiang et al., 2021; Lai et al., 2021; Li et al., 2021; Yang et al., 2022a), but

is vulnerable to the impact of sun flare in complex marine

environment, which lead to the oil film boundary is not clearly

identified (Sun and Hu, 2016; Lu et al., 2016b; Duan et al., 2020). The

infrared emissivity of seawater and oil film is different, and the oil-

water boundary is well identified. Thermal infrared remote sensing is

almost not affected by the change of light, which can realize the

detection ofmarine oil spill and the inversion of oil film thickness, but

it is difficult to distinguish the type of oil spill emulsion (Jing et al.,

2011; Wang and Hu, 2015; Lu et al., 2016c; Guo et al., 2020; Jiao et al.,

2021; Li et al., 2022). The comparison of marine oil spill monitoring

capabilities of various remote sensing technologies is listed in Table 1.

Most of the optical remote sensing monitoring of marine oil spill

is carried out based on a single sensor type, which has certain

limitations and cannot meet the needs of accurate monitoring.

Recently, more and more scholars pay attention to combining the

advantages of different sensors to effectively improve the remote

sensing monitoring ability of marine oil spill, and have made certain

achievements (Mohammadi et al., 2021; Rajendran et al., 2021). Lu

et al., (2019a) used China’s GF-3 SAR data to delineate suspected oil

spill areas in the East China Sea “SANCHI” collision oil spill event in

January 2018. The multispectral data of Sentinel-2 satellite is used to

carry out optical remote sensing detection of marine oil spill, and

further carried out optical remote sensing identification and

classification of oil spill pollution types based on the analysis of

spectral response characteristics of oil spill simulation experiments,

which is mutually verified with the suspected oil spill monitoring

results of GF-3 SAR.Wang L. F. et al. (2021) proposed a newmethod

to determine the oil film area using the fusion of visible light and

thermal infrared images. This method integrates the advantages of

visible light and thermal infrared images, and can accurately

determine the oil film area under different lighting conditions, with

an average error of 2.78%. Wang and Gao (2020) used SAR and laser

fluorescence sensors to carry out airborne platform oil spill

monitoring. First, they used SAR for long-distance and large-scale

detection. Once the suspected oil spill area was detected, they used

laser fluorescence sensor for close detection. The combination of SAR

and laser fluorescence sensor greatly improved the detection effect

and recognition ability of marine pollutants in large areas.

To sum up, this paper designed and implemented two outdoor

oil spill simulation experiments, carried out the extraction and

analysis of hyperspectral and thermal infrared optical features of

different oil spill pollution types, introduced classification

algorithms such as classical machine learning, ensemble learning

and deep learning, studied and constructed hyperspectral oil spill

pollution type recognition algorithms, and explored how to

improve the ability of hyperspectral oil spill pollution type

identification by adding thermal infrared features.
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2 Materials and methods

2.1 Experiments and materials

This part mainly introduces two outdoor oil spill simulation

experiments. One is the experimental scenario (Figures 1A, B) for

different types of oil products (Figure 2A), namely crude oil, fuel oil,

palm oil, diesel oil and gasoline. In September 2020, the experiment

was conducted in the pool (45 m× 40 m) of Qingdao Nanjiang

Wharf, five kinds of oil products are distributed in the enclosure

made of PVC boards, and the seawater depth is 1.2 m. The second is

the experimental scenario (Figures 1C, D) for crude oil and its

emulsions in different states (Figure 2B), namely, non-emulsified

crude oil, WO emulsion and OW emulsion, which was carried out

in Aoshanwei experimental base in Qingdao in May 2022. High

speed disperser and emulsifier were used to prepare WO emulsion

and OW emulsion with different volume concentrations. The
Frontiers in Marine Science 03
preparation method was referred to (Lu et al., 2019). Crude oil

with different thickness and crude oil emulsions with different

volume concentration are distributed in the enclosure made of

black PVC boards. The oil products information used in the

experiment is shown in Table 2.
2.2 Data and preprocessing

2.2.1 Remote sensing data
For the experimental scenarios of different types of oil products,

the Cubert S185 airborne hyperspectral imager and DJI “Yu” 2

airborne thermal infrared camera were used to obtain

approximately synchronous hyperspectral images and thermal

infrared images of different types of oil products (Figures 3A, B).

For the experimental scenes of crude oil and its emulsions in

different states, the Cubert S185 airborne hyperspectral imager
FIGURE 1

Oil spill observation experimental scenarios and oil distribution using hyperspectral combined thermal infrared remote sensing: (A) experimental
scenarios of different types of oil products in September 2020; (B) distribution of different types of oil products; (C) experimental scenario of crude
oil and its emulsions in different states in May 2022; (D) distribution of crude oil and its emulsions in different states.
TABLE 1 Comparison of oil spill monitoring capability of various remote sensing technologies.

Remote sensing
technologies Advantages Disadvantages

SAR all-day, all-weather and not covered by cloud
high false alarm rate, unable to identify the type of oil spill pollution and
estimate the oil film thickness

Multispectral remote
sensing

wide space coverage, low cost, able to distinguish heavy oils from
light oils and estimate the approximate oil film thickness

low spectral resolution, vulnerable to sunglint interference

Hyperspectral
remote sensing

high spectral resolution, able to identify different oil products and
crude oil emulsions, and reverse oil film thickness

not applicable to large-scale marine oil spill monitoring, vulnerable to
sunglint interference

Ultraviolet remote
sensing

sensitive to thiner oil film
low spatial resolution, vulnerable to interference from sunlight and bio-oil
film, unable to identify non-emulsified oil and oil-water emulsions

Thermal infrared
remote sensing

all-day, sensitive to thicker oil film, not disturbed by the sunglint
unable to identify non-emulsified oil and oil-water emulsions, vulnerable to
interference from targets with similar thermal properties to oil film

Laser radar
active remote sensing, able to identify different oil products, and
reverse oil film thickness

unable to detect very thick oil film, vulnerable, and expensive
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and Zemmuse H20T airborne thermal infrared imager were used to

obtain approximately synchronous hyperspectral and thermal

infrared images of crude oil and its emulsions in different states

(Figures 3C, D). The main parameters of the Cubert S185 airborne

hyperspectral imager and Zemmuse H20T airborne thermal

infrared imager are shown in Table 3. Except for the camera

focus and stability, the main parameters of Zemmuse H20T

airborne thermal infrared imager and DJI “Yu” 2 airborne

thermal infrared camera are the same.

The data acquired by the airborne hyperspectral imager include

the original measured spectral data, reference plate and dark current

calibration data. The data to be converted was imported to the

Cubert Utils Touch software. The spectral reflectance data of

different oil spill pollution types was exported. Import the

thermal infrared image acquired by the airborne thermal infrared

imager into the DJI Thermal Analysis Tool to export the brightness

temperature data of different oil spill pollution types. Due to the

different coverage of airborne hyperspectral image and airborne

thermal infrared image, two images need to be registered and
Frontiers in Marine Science 04
cropped. The image size of different oil products as well as crude

oil and its emulsions in different states used for identification

experiments is 638×630 and 551×765 respectively.

2.2.2 Field data
Field data includes Analytical Spectral Devices (ASD) data and

site photos used to assist in the production of ground truth image.

The ASD FieldSpec4 spectrometer (350-2500 nm) was used to

measure Lambertian standard plate, different oil spill pollution

types, seawater and skylight to obtain their radiance, and then

convert the radiance into the spectral reflectance of different oil spill

pollution types and seawater according to the formula in literature

(Yang et al., 2020). The detailed index parameters of ASD

FieldSpec4 spectrometer are shown in literature (Yang et al.,

2020). The ground truth image (Figure 4) obtained through

human-computer interaction interpretation is used as the

benchmark for evaluating the classification and recognition

results, and the performance of the classification and recognition

model is tested at the same time.
TABLE 2 The properties and description of experimental oils.

Oil spill pollution types Oil
products

Density
g/mL

Apparent
color Description

Different types of oil products

crude oil 0.882 black produced in the Shengli oil field of China with added anticoagulant

fuel oil 0.853 dark cyan
fuel for large-scale marine engines, which is a residual heavy oil after crude oil
extraction of gasoline and diesel oil

palm oil 0.836 palm yellow
the largest vegetable oil product in the world in terms of production, consumption,
and international trade.

0# diesel
oil

0.835 light cyan high-speed diesel engine fuel for small ships

95#
gasoline

0.737
yellowish
transparent

strong volatility, properties are similar to condensate oil that leaked from the East
China Sea oil tanker collision accident in 2018

Crude oil and its emulsions in
different states

crude oil 0.935 black
produced in the Shengli oil field of China, (dehydrated), asphaltene 1.57%, resin
18.77%, wax 7.56%

WO
emulsion

dark brown there are many small water droplets in the oil

OW
emulsion

light yellow there are many small oil droplets in the water
FIGURE 2

Experimental oils: (A) different types of oil products; (B) crude oil and its emulsions in different states.
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2.3 Methods

In this paper, the Support Vector Machine model in classical

machine learning, the Random Forest model in ensemble learning

and the Convolution Neural Network model in deep learning are

selected to identify the types of oil spill pollution. For the

experiment of different types of oil products, the number of
Frontiers in Marine Science 05
labeled samples is 375606, of which about 3% are used for

training and about 3% for validation. For the experiment of crude

oil and its emulsions in different states, the number of labeled

samples is 135695, of which about 3% are used for training and

about 3% for validation. The number of training samples, validation

samples and test samples for each oil spill pollution type in the

experiment is listed in Table 4.
TABLE 3 The main parameters of Cubert S185 hyperspectral imager and Zenmuse H20T thermal infrared imager.

Cubert S185 hyperspectral imager Zenmuse H20T thermal infrared imager

parameter index parameter index

spectral range/nm 450~950 spectral range/mm 8~14

spectral resolution/nm 8 resolution 640×512

spatial resolution/cm 3.6@10000 sensitivity(NETD)/mK ≤50 @ f/1.0

field of view angle/° 23 field of view angle/° 40.6

specification/px2 1000×1000 measuring range/°C -40~ +550

sampling interval/nm 4 pixel spacing/mm 12

number of channels 125 aperture f/1.0

focal length/mm 16 focal length/mm 13.5
FIGURE 3

Hyperspectral and thermal infrared images of different oil spill pollution types: (A) airborne hyperspectral image of different oil products; (B) airborne
thermal infrared images of different oil products; (C) airborne hyperspectral images of crude oil and its different emulsions; (D) airborne thermal
infrared images of crude oil and its different emulsions.
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2.3.1 Support vector machine
SVM is a traditional machine learning method based on

statistical learning theory. It can automatically find the support

vector that has a greater ability to distinguish classification and then

construct the classifier, which can maximize the interval between

classes to achieve good statistics when the number of samples is

small. This method has high convergence efficiency, training speed,

and classification accuracy, and has been widely used in many fields

of research in recent years (Wang et al., 2011; Hu et al., 2019a; Hu

et al., 2019b). The kernel function selected in this paper is the radial

basis function.

2.3.2 Random forest
Random Forest is an algorithm that effectively uses multiple

decision trees to train and predict samples and optimize decisions

through the idea of ensemble Learning. The basic unit is the

decision tree. The randomness of RF is mainly reflected in two

aspects: one is the random selection of data, and the other is the
Frontiers in Marine Science 06
random selection of features to be selected. This can make the

decision trees in the RF different from each other, and further

enhance the generalization ability of the model.

The RF algorithm uses multiple CART decision trees as weak

classifiers. In CART tree, the criterion of impure measure used to

select variables is Gini coefficient. The minimum Gini coefficient

criterion is used for feature selection. Here, the number of decision

trees in the RF is 100.

2.3.3 Convolutional neural network
CNN is a significant achievement in the field of deep learning,

and has been widely used in hyperspectral remote sensing

classification in recent years. CNN has two main characteristics.

One is local receptive fields, the other is weight sharing, which

effectively reduces the number of parameters in the network and

makes CNN have displacement invariance.

The CNN model structure used in this paper consists of seven

information layers, including one input layer, two convolutional
TABLE 4 Number of training samples, validation samples and test samples in the experiment of oil spill pollution type identification.

Data size Class Number of
training samples

Number of
validation samples

Number of
test samples

Different oil products 638×630

crude oil 3000 3000 101897

fuel oil 2000 2000 70036

gasoline 1000 1000 34624

diesel oil 1000 1000 34173

palm oil 1000 1000 34624

seawater 1600 1600 56286

PVC board 700 700 23366

Crude oil and its emulsions in different states 551×765

crude oil 400 400 13082

WO emulsion 1200 1200 40750

OW emulsion 200 200 6776

seawater 200 200 6773

PVC board 1800 1800 60714
BA

FIGURE 4

Ground truth image: (A) different oil products; (B) crude oil and its emulsions in different states.
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layers, two pooling layers, one full connection layer, and one output

layer. The number of convolutional kernel in the first convolution

layer is 10, and the size of convolutional kernel is 5×5. The number

of convolutional kernel in the second convolution layer is 8, and the

size of convolutional kernel is 3×3. The size of the subsampling filter

in the first pooling layer and the second pooling layer is 1×1 and

1×1 respectively. The maximum pooling is adopted for the pooling

layer. The number of batch training is 2, the number of iterations is

80, and the learning rate is 0.7.
3 Results

3.1 Identification results of different oil spill
pollution types

In view of the hyperspectral image (HSI) and multidimensional

image of hyperspectral combined thermal infrared (HTI),

Convolution Neural Network (2D-CNN) model, Support Vector

Machine (SVM) algorithm and Random Forest (RF) algorithm are

used to carry out classification and identification of different oil spill

pollution types, namely, identification of different types of oil

products as well as crude oil and its emulsions in different states.

3.1.1 Identification results of different types of
oil products

According to the classification results of different types of oil

products (Figure 5), it can be seen that 2D-CNN, SVM and RF

classifiers have different abilities in data feature mining, and the

performance of classification is also different. Intuitively, SVM has

relatively poor oil identification effect based on the HSI. The mixing
Frontiers in Marine Science 07
of different oils, especially light oils (palm oil, diesel oil, gasoline) is

serious. The recognition effect of heavy oils (crude oil, fuel oil) is

good. The classification results are quite different from the ground

truth image (Figure 4A). The recognition results of RF model and

2D-CNN model (Figures 5A–C) can better maintain the continuity

of oil film, which is consistent with the ground truth image, and

shows the powerful data mining ability and feature extraction

ability of ensemble learning model and deep learning model.

For the HTI, the recognition results (Figures 5D–F) of the three

algorithms are obviously better than those based on the HSI. With

the addition of thermal infrared features, the oil type recognition

results can better maintain the continuity of oil spill on the sea, with

clearer boundaries, and the mixing phenomenon between light oils

is greatly reduced, which is consistent with the ground truth image.

However, gasoline and seawater still have a misclassification

phenomenon, which is due to the volatility of gasoline, resulting

in that the selected gasoline training samples are not completely

pure gasoline pixels.

3.1.2 Identification results of crude oil and its
emulsions in different states

It can be seen from the recognition results of crude oil and its

emulsions in different states (Figure 6) that, for the HSI, the

recognition results of 2D-CNN model on WO emulsion, OW

emulsion and seawater (Figure 6C) are good, which are consistent

with the ground truth image (Figure 4B), but the crude oil is

partially divided into WO emulsion, showing the strong data

mining ability and feature extraction ability of the deep learning

model. The recognition results of SVM model and RF model for

crude oil and its emulsions in different states (Figures 6A, B) are

similar. In addition to the fact that crude oil is partially divided into
B C

D E F

A

FIGURE 5

Classification results of oil products based on different dimensional images: (A–C) HSI; (D–F) HTI.
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WO emulsion, and seawater is also partially divided into

WO emulsion.

Different from the recognition results of different oil products in

Section 3.1.1, the recognition results of the three algorithms for

crude oil and its emulsions in different states based on the HSI are

significantly better than those of the HTI. The addition of thermal

infrared features enhances the recognition effect between seawater

and WO emulsion, but aggravates the mixing phenomenon

between crude oil and WO emulsion, making most crude oil be

wrongly divided into WO emulsion (Figures 6D–F).
3.2 Identification accuracy evaluation of oil
spill pollution types

The same training samples are used to train the 2D-CNN

model, SVM and RF model to carry out oil spill pollution type

recognition, and the recognition accuracy of oil spill pollution type

is evaluated based on the ground truth image (Figure 4).

3.2.1 Overall identification accuracy evaluation
The overall accuracy andKappa coefficient in the confusionmatrix

are used in this paper to evaluate the overall identification accuracy of

oil spill pollution types based onHSI andHTI, as shown in Table 5. For

different oils, the overall recognition accuracy of SVM, RF and 2D-

CNN models based on the HSI is 72.66%, 78.82% and 80.09%

respectively. After adding thermal infrared features, the overall

recognition accuracy of SVM, RF and 2D-CNN models reached

83.24%, 85.08% and 82.9% respectively, and Kappa coefficients were

0.80, 0.82 and 0.80 respectively, indicating that the prediction results of

the HTI were in good agreement with the actual results. For crude oil

and its emulsions in different states, the overall recognition accuracy of

SVM, RF and 2D-CNN models based on the HSI reaches 94.52%,
Frontiers in Marine Science 08
94.62% and 95.2% respectively. After adding thermal infrared features,

the overall recognition accuracy of SVM, RF and 2D-CNN models is

92.06%, 91.67% and 91.45% respectively.

3.2.2 Identification accuracy evaluation of single
oil spill pollution type

The F1 score is used to evaluate the identification accuracy of single

oil spill pollution type based on HSI and HTI, as shown in Figure 7. In

general, for different oils, the recognition accuracy of the three

algorithms based on HTI has been improved to varying degrees

compared with that based on HSI. Taking the recognition results of

RF model as an example, the F1 scores of gasoline, palm oil and diesel

oil increased by 0.07, 0.21 and 0.20 respectively. The F1 score of crude

oil and fuel oil increased by 0.11 and 0.03 respectively. The F1 score of

seawater increased by 0.09. The experimental results show that the

thermal infrared features can increase the identification ability of

hyperspectral for different oils, especially light oils, and can

effectively improve the oil identification accuracy. For crude oil and

its emulsions in different states, the recognition accuracy of the three

algorithms based on HTI is lower than that based on HSI to varying

degrees, but the recognition accuracy of seawater is improved. Taking

the recognition results of RF model as an example, the F1 scores of

crude oil,WO emulsion andOWemulsion decreased by 0.37, 0.09 and

0.04 respectively, while the F1 scores of seawater increased by 0.10.
4 Discussion

4.1 Spectral response of different oil spill
pollution types

Remote sensing reflectivity of five typical oil products, crude oil

and its emulsions in different states, and seawater were obtained by
B C

D E F

A

FIGURE 6

Classification results of crude oil and its different emulsions based on different dimensional images: (A–C) HSI; (D–F) HTI.
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ASD, of which the area around 1.4 mm and 1.9 mm is affected by the

strong absorption zone of water, so the reflectivity within this range

is abnormal. At the same time, considering the edge effect of the

photosensitive devices used, irregular oscillations will occur at the

end of the sensing spectrum of the spectrometer. Therefore, this

paper studied the spectral response of oil spill in the spectral range

of 360~1340 nm, 1440~1800 nm and 1980~2400 nm.

4.1.1 Spectral characteristics of different oils
In general, the reflectivity of the five oil products and seawater is very

small (Figure 8), which is related to the absorption properties of oil

products and seawater. In the visible light band, the reflectance spectra of

light oils such as diesel, gasoline and palm oil are generally consistent with
Frontiers in Marine Science 09
those of seawater, and there is an obvious reflection peak at about 480 nm;

The reflectivity of heavy oil such as crude oil and fuel oil are obviously

lower than those of light oils and seawater. In the near-infrared and

shortwave infrared bands, the reflectivity of thefive oils are higher than that

of seawater. This is because the pure natural water is nearly a “black body”

in the near-infrared band. Therefore, in the spectral range of 850~2500 nm,

the reflectivity of the purer natural water is very low, almost zero.

Within the spectral range (450~950 nm) of the airborne

hyperspectral image, the spectral curves of the three light oils and

seawater are very similar. Therefore, based on the single dimensional

characteristics of hyperspectral, the recognition results of the three

algorithms for light oils (palm oil, diesel oil, gasoline) and seawater are

poor, and the mixing phenomenon is serious. At the same time, the

spectra of heavy oils and light oils are quite different, so except at the

edge of the enclosure, the recognition accuracy of heavy oils such as

crude oil and fuel oil based on the HSI is good, and there is little mixing

with light oils and seawater.
4.1.2 Spectral characteristics of crude oil and its
emulsion in different states

In general, the spectral response of crude oil and its emulsions

in different states and seawater in different spectral ranges is

different (Figure 9), which is related to its absorption and

scattering properties. WO emulsion contains seawater droplets.

When incident light enters seawater droplets from oil film, it will

produce strong backscattering. In the near infrared and short wave

infrared spectra, the WO emulsion has higher reflectivity. In

addition, due to the absorption of -C-H in WO emulsion, obvious

reflection valleys are formed at ~1725 nm, ~1760 nm and ~2170

nm. In the OW emulsion, dispersed small oil droplets exist in

continuous water, which makes it have high reflectivity in the

spectral range of 360~1400 nm. At the same time, due to the

absorption of -O-H, obvious reflection valleys are formed at ~975

nm and ~1200 nm. This is very close to the results obtained from

the indoor experiment carried out by Lu et al. (2019). Due to the
TABLE 5 The accuracies for oil pollution type identification of three
algorithms based on HSI and HTI.

Evaluation criterion

Methods

Overall
Accuracy

(%)

Kappa
Coefficient

Different oil products

SVM
HSI 72.66 0.68

HTI 83.24 0.80

RF
HSI 78.82 0.75

HTI 85.08 0.82

2D-
CNN

HSI 80.09 0.76

HTI 82.93 0.80

Crude oil and its
emulsions in different

states

SVM
HSI 94.52 0.90

HTI 92.06 0.85

RF
HSI 94.62 0.90

HTI 91.67 0.85

2D-
CNN

HSI 95.20 0.91

HTI 91.45 0.84
B C

D E F

A

FIGURE 7

Identification accuracies of single oil spill pollution type based on HSI and HTI: (A–C) different oil products; (D–F) crude oil and its emulsions in
different states.
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strong absorption and low reflection of incident light, the spectral

reflectance of crude oil is low, especially in the near infrared band,

the spectral reflectivity of crude oil is nearly zero.

In the spectral range of airborne hyperspectral images (450~950

nm), there are large differences in the spectral response of crude oil

and its emulsion different states and seawater. Therefore, based on

the HSI, three algorithms are used to identify WO emulsion, WO

emulsion and seawater with good results. However, due to the high

oil concentration of the stable WO emulsion, the spectral curve of

the WO emulsion is very similar to that of the crude oil. Therefore,

the WO emulsion is mixed with the crude oil in the classification

and recognition results based on the HSI.
4.2 Thermal response of different oil spill
pollution types

4.2.1 Thermal infrared intensity characteristics of
different oils

Because the heat capacity and infrared reflectance of oil film

and seawater are different, there exists temperature difference

between oil film and background seawater, which is the basis

using infrared image to detect marine oil spill. It can be seen from

Figure 3B that the heavy oils (crude oil and fuel oil) show a

“bright” hue on the thermal infrared image, which is the most

obvious difference from the seawater background, in which the

crude oil shows “brightest”, and the fuel oil shows “brighter”.

Light oils (palm oil, diesel oil and gasoline) is displayed as “dark”

hue on the thermal infrared image. Diesel oil is “darker”, palm oil

is “dark”, and gasoline is “darkest”. This is mainly related to the
Frontiers in Marine Science 10
characteristics of the oil products themselves, the ability to

absorption and radiation and other factors. Heavy oils can

absorb more solar radiation and emit it in the form of

thermal radiation.

There is a certain conversion relationship between intensity of

thermal infrared image and brightness temperature. Here, intensity

is used to replace brightness temperature to analyze the thermal

response characteristics of different oils. It can be seen from

Figure 10 that the thermal infrared radiation intensity of the five

oil products and seawater from high to low is crude oil, fuel oil,

diesel oil, palm oil, seawater and gasoline. The thermal infrared

intensity of gasoline is lower than that of seawater, because gasoline

volatilization will cause the surface temperature to drop. The

thermal infrared intensity of crude oil and fuel oil are obviously

higher than those of diesel oil, palm oil and gasoline. The thermal

infrared intensity of the three kinds of light oils is quite different. It

is precisely because of this difference that the mixing phenomenon

between light oils in the recognition results of the HTI is greatly

weakened. However, there is still a certain mixing phenomenon

between gasoline and seawater, which is related to the strong

volatility of gasoline.

4.2.2 Brightness temperature characteristics of
crude oil and its emulsions in different states

It can be seen from Figure 3D that the crude oil and WO

emulsions show “bright” hue on the thermal infrared image, which

is the most obvious difference from the seawater background. The

OW emulsion and seawater show a “dark” hue on the thermal

infrared image, among which, the oil in water emulsion is relatively

“dark”, and the seawater is the “darkest”, which is mainly related to
FIGURE 8

Mean spectral reflectance of typical oil products (The gray area is a non-atmospheric window, the red rectangular area represents the spectral range
of airborne hyperspectral image).
FIGURE 9

Mean spectral reflectance of crude oil and its emulsions in different states (The gray area is a non-atmospheric window, the red rectangular area
represents the spectral range of airborne hyperspectral image).
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the concentration of oil. The higher the oil concentration, the more

solar radiation absorbed and emitted in the form of

thermal radiation.

The thermal infrared image of crude oil and its emulsion in

different states was obtained using the Zemmuse H20T airborne

thermal infrared imager. The brightness temperature analysis was

carried out by selecting pixels of the same size for crude oil, WO

emulsion, OW emulsion and seawater from the thermal infrared

image. It can be seen from Figure 11 that the brightness temperature

of crude oil and its emulsions in different states and seawater from

high to low are crude oil, 90% WO emulsion, 75% WO emulsion,

60% WO emulsion, 0.1% OW emulsion and seawater. The

brightness temperatures of crude oil and WO emulsions with

different concentrations are close. The brightness temperature of

OW emulsion and seawater is similar, but the brightness

temperature of crude oil and WO emulsion is significantly

different from that of OW emulsion and seawater, with an

average difference of 20 °C. It is precisely because the brightness

temperature difference between crude oil and WO emulsions of

different concentrations is not obvious, which makes the mixing

phenomenon of crude oil and WO emulsions enhanced in the

recognition results of the HTI, so the vast majority of crude oil is

wrongly divided into WO emulsions. This shows that thermal

infrared remote sensing technology cannot be used to distinguish
Frontiers in Marine Science 11
crude oil andWO emulsion, which is consistent with the conclusion

reached by Jiao et al. (2021).
4.3 Application of hyperspectral combined
thermal infrared features in oil film
monitoring with different thickness

4.3.1 Spectral and brightness temperature
characteristics of oil film with different thickness

In order to explain the identification results of different oil spill

pollution types using the HTI, the spectral and brightness

temperature characteristics of different oils, crude oil and its

emulsions in different states have been analyzed and discussed in

the previous section. Here we further analyze and discuss the

spectral and brightness temperature characteristics of oil films

with different thicknesses, which can be used to explain the

possible results of oil film thickness classification using the HTI.

It can be seen from Figure 12 that the spectral curves of oil films

with different thicknesses are generally the same. With the increase

of wavelength, the spectral reflectance of crude oil decreases

gradually. Similarly, with the increase of oil film thickness, the

spectral reflectance of crude oil decreases gradually. In the spectral

range of airborne hyperspectral images (450~950 nm), the spectral
FIGURE 10

Thermal infrared intensity distribution of different oil products and seawater.
FIGURE 11

Thermal infrared brightness and temperature distribution of crude oil and its different emulsions and seawater.
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responses of oil films with different thicknesses exist difference.

Therefore, theoretically, the classification results of oil films with

different thicknesses should be good based on the HSI. It can be

seen from Figure 13 that the brightness temperature of oil film with

different thickness is different, which increases with the increase of

oil film thickness, and the brightness temperature difference is

greater than 1°C. In theory, the addition of thermal infrared

features will enhance the recognition ability of oil films with

different thicknesses. The combination of hyperspectral and

thermal infrared remote sensing can be used to classify and

identify oil film with different thickness on the sea surface.

4.3.2 Spectral and brightness temperature
characteristics of WO emulsions with different
thickness at the same concentration

Here, in order to explain the possible classification results of

WO with different thicknesses at the same concentration using

hyperspectral and thermal infrared remote sensing, the spectral and

brightness temperature characteristics of WO emulsions with

different thicknesses at the same concentration are analyzed and

discussed. It can be seen from Figure 12 that, taking WO emulsions

with a concentration of 60% as an example, the spectral curves of

WO emulsions with different thickness at the same concentration

are generally consistent. In the spectral range before 1200 nm, the

spectral reflectance of WO emulsions decreases gradually with the

increase of oil film thickness; In the near-infrared range after 1200
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nm, the spectral reflectance of WO emulsions increases gradually

with the increase of oil film thickness.

In the spectral range of airborne hyperspectral images (450~950

nm), the spectral responses of WO emulsions with different

thicknesses at the same concentration are different. Therefore,

theoretically, the classification results of oil films with different

thicknesses should be good based on the HSI. It can be seen from

Figure 13 that the brightness temperature of WO emulsions with

different thicknesses at the same concentration is different, which

increases with the increase of oil film thickness. However, the

brightness temperature difference is not all greater than 1°C, and

there may be mixing between oil films with different thicknesses. In

conclusion, theoretically, the addition of thermal infrared features

may enhance the recognition ability of WO emulsions with different

thicknesses at the same concentration.
5 Conclusion

In this paper, we designed and implemented two outdoor oil spill

simulation experiment, carried out the extraction and analysis of

hyperspectral and thermal infrared multidimensional optical features

of different oil spill pollution types, constructed hyperspectral oil spill

pollution type recognition algorithm based on traditional machine

learning, ensemble learning, and deep learning model, and explored

how to improve the ability of hyperspectral oil spill pollution type
FIGURE 12

Spectral reflectance of crude oil film with different thickness and WO emulsion with different thickness at the same concentration (The gray area is a
non-atmospheric window, the red rectangular area represents the spectral range of airborne hyperspectral image).
FIGURE 13

Thermal infrared brightness and temperature of crude oil film with different thickness and WO emulsion with different thickness at the same concentration.
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identification by adding thermal infrared features. At the same time,

the classification ability of hyperspectral combined with thermal

infrared remote sensing for different oil film thicknesses and WO

emulsions with different thicknesses at the same concentration is also

discussed. The main conclusions can be drawn as follows: (1) The

addition of thermal infrared features can effectively improve the

hyperspectral recognition ability of different oils (crude oil, fuel oil,

palm oil, diesel oil, gasoline), especially light oils. Among them, the F1

scores of gasoline, palm oil and diesel oil are increased by 0.07, 0.21 and

0.20 respectively, the F1 scores of crude oil and fuel oil are increased by

0.11 and 0.03 respectively, and the F1 scores of seawater are increased

by 0.09. (2) Thermal infrared remote sensing technology cannot be

used to distinguish crude oil and high concentration WO emulsions.

The addition of thermal infrared features will reduce the recognition

effect of hyperspectral on crude oil and WO emulsions; (3) Through

the analysis of the spectral characteristics and brightness temperature

characteristics of oil films with different thicknesses and WO

emulsions with different thicknesses at the same concentration, it is

theoretically shown that the thermal infrared characteristics can

enhance the ability of hyperspectral classification of oil films with

different thicknesses and WO emulsions with different thicknesses at

the same concentration.

This paper analyzes the spectral characteristics and brightness

temperature characteristics of oil films with different thicknesses and

WO emulsions with different thicknesses at the same concentration,

and obtains corresponding theoretical conclusions. Next, in order to

verify the relevant theories and obtain reliable conclusions, we will

use airborne hyperspectral images and airborne thermal infrared

images to identify oil films with different thicknesses and WO

emulsions with different thicknesses at the same concentration.

Affected by the weather, complex marine environment and

lighting conditions, the data obtained by optical remote sensing

during the oil spill accident is limited. In the case of few samples,

sample self-learning and expansion is a problem worthy of attention,

andmachine learningmodels in the case of limited samples should also

be concerned. At the same time, facing the needs of oil spill remote

sensing business monitoring, transfer learning model based on

historical oil spill remote sensing data should be explored to achieve

marine oil spill monitoring without samples.
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