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ULL-SLAM: underwater low-light
enhancement for the front-end
of visual SLAM

Zhichao Xin, Zhe Wang, Zhibin Yu* and Bing Zheng

Key Laboratory of Ocean Observation and Information of Hainan Province, Faculty of Information
Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya,
Hainan, China
Underwater visual simultaneous localization and mapping (VSLAM), which can

provide robot navigation and localization for underwater vehicles, is crucial in

underwater exploration. Underwater SLAM is a challenging research topic due to

the limitations of underwater vision and error accumulation over long-term

operations. When an underwater vehicle goes down, it may inevitably enter a

low-light environment. Although artificial light sources could help to some

extent, they might also cause non-uniform illumination, which may have an

adverse effect on feature point matching. Consequently, the capability of feature

point extraction-based visual SLAM systems could only sometimes work. This

paper proposes an end-to-end network for SLAM preprocessing in an

underwater low-light environment to address this issue. Our model includes a

low-light enhancement branch specific with a non-reference loss function,

which can achieve low-light image enhancement without requiring paired

low-light data. In addition, we design a self-supervised feature point detector

and descriptor extraction branch to take advantage of self-supervised learning

for feature points and descriptors matching to reduce the re-projection error.

Unlike other works, our model does not require pseudo-ground truth. Finally, we

design a unique matrix transformation method to improve the feature similarity

between two adjacent video frames. Comparative experiments and ablation

experiments confirm that the proposed method in this paper could effectively

enhance the performance of VSLAM based on feature point extraction in an

underwater low-light environment.

KEYWORDS

self-supervised learning, VSLAM, feature point matching, underwater low-light
enhancement, end-to-end network
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1133881/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1133881/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1133881/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1133881&domain=pdf&date_stamp=2023-05-08
mailto:yuzhibin@ouc.edu.cn
https://doi.org/10.3389/fmars.2023.1133881
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1133881
https://www.frontiersin.org/journals/marine-science


Xin et al. 10.3389/fmars.2023.1133881
1 Introduction
In recent years, vision-based state estimation algorithms have

emerged as a compelling strategy for detecting indoor Garcıá et al.

(2016), outdoor Mur-Artal and Tardós (2017); Campos et al.

(2021), and underwater Rahman et al., 2018; Rahman et al.,

2019b environments using monocular, binocular, or multi-

cameras. Meanwhile, simultaneous localization and mapping

(SLAM) techniques can provide robots with real-time self-

localization and constructing a map in an unknown environment,

making SLAM vital in path planning, collision avoidance, and self-

localization tasks. Specifically, visual SLAM provides an effective

solution for many navigation applications Bresson et al. (2017),

where it is responsible for detecting unknown environments and

assisting in decision-making, planning, and obstacle avoidance.

Furthermore, in recent years, the use of autonomous underwater

vehicles (AUVs) or remotely operated underwater vehicles (ROVs)

for marine species migration Buscher et al. (2020) and coral reef

monitoring Hoegh-Guldberg et al. (2007), submarine cable and

wreck inspection Carreras et al. (2018), deep-sea exploration

Huvenne et al. (2018), and underwater cave exploration have

received increasing attention Rahman et al., 2018; Rahman

et al., 2019b.

However, unlike the terrestrial environment, the light source

conditions are often limited during deep-sea exploration. As a

result, underwater vehicles can only perform illumination

detection through the airborne light source, which leads to the

underexposure of underwater captured images. Furthermore, due to

the limited space of the aircraft, the installation distance between

the airborne lens and the light source is often too close, which will

also lead to uneven exposure of the image or even overexposure.

Meanwhile, photos captured underwater suffer from low contrast

and color distortion problems due to strong scattering and

absorption phenomena. Therefore, providing robust feature

points for tracking, matching, and localization for feature point

extraction-based visual SLAM systems is complex and challenging.

As a result, direct execution of currently available vision-based

SLAM often fails to achieve satisfactory and robust results.

To solve the problem of feature point matching, SuperPoint

DeTone et al. (2018) expressed keypoints detection as a classification

problem and realized the feature point detectionmethod based on deep

learning in this way. UnSuperPoint Christiansen et al. (2019) converted

the keypoints detection problem into regression, and the detection

head outputs the offset ratio of the keypoints in each patch relative to

the reference coordinates, thereby improving the effect of feature point

detection. Although these methods have achieved fair results in non-

underwater general scenes, there is no particular design for underwater

low-light scenes.

In recent years, deep learning-based Low-Light-Image-

Enhancement(LLIE) has achieved impressive success since the first

seminal work Lore et al. (2017). LLNet Lore et al. (2017) employed a

variant of stacking sparse denoising autoencoders to brighten and

denoise low-light images simultaneously. Zero DCE Li et al. (2021)

achieved zero-reference learning through non-reference loss

functions and treats light enhancement as an image-specific curve
Frontiers in Marine Science 02
estimation task; it takes low-light images as input and produces high-

order curves as output while achieving fast calculations.

EnlightenGAN Jiang et al. (2021) adopted an attention-guided U-

Net as the generator and used a global-local discriminator to ensure

that the augmented results look like authentic typical light images.

Although these works can achieve likely results in in-air low-light

environments, these existing low-light enhancement networks did

not consider the uneven illumination issues during the underwater

exploration. Since there is no guarantee to keep the feature points

from two adjacent frames consistent, an image-level low-light

enhancement model may improve human visual perception but

may be useless for feature point matching (Figure 1). Data

collection is another underwater challenge. Some existing low-light

image enhancement networks Lore et al. (2017); Li et al. (2021); Jiang

et al. (2021) need a training data set by fixing multiple cameras to

adjust the camera’s exposure time or taking images at different times

of the day. It would be difficult to take underwater images at different

times of the same scene along with an underwater robot.

To address these issues, we propose a front-end network

framework for underwater monocular SLAM based on low-light

feature point extraction with siamese networks in Figure 2, named

ULL-SLAM. Our ULL-SLAM can improve the performance of

monocular SLAM in underwater low-light environments. This

unsupervised end-to-end network architecture can effectively

improve feature-matching performance, thereby obtaining better

and more robust SLAM results. Our network can accomplish both

low-light image enhancement and feature point extraction, and both

are optimized together to enhance the low-light image enhancement

network toward favorable feature point extraction and matching.

Continuous image frames are input during training, and the network

constrains the image enhancement followed by continuous frames to

improve the performance of feature point extraction and matching

between consecutive frames. Meanwhile, the image enhancement

network and the feature point extraction network share the same

backbone to improve the inference speed of the model and make the

model capable of deployment on embedded devices. Furthermore, we

have independently packaged the low-light feature point extraction

network of ULL-SLAM, which can help audiences to transplant into

any SLAM architecture based on feature point extraction and obtain

performance gains. Finally, we evaluate our method on multiple

underwater datasets. The proposed method outperforms existing

methods in position estimation and system stability. In summary,

our main contributions are as follows:
• We propose a mean frame loss and a temporal-spatial

consistency loss to improve the ability of feature point

extraction among several adjacent frames and keep the

enhanced features from the adjacent frames consistent.

• We propose an adaptive low-light enhancement network

with an uneven brightness loss, which can adjust the

brightness of an image with an arbitrary low-light level.

• We adopt the method of the siamese network to train the

network’s ability to extract feature points through

homography transformation. The siamese network

enables interest point scores and positions to be learned

automatically.
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FIGURE 2

The overview framework of the proposed method. The green box is the low-light image enhancement branch, and the red box is the feature
extraction branch. The two parts share the same backbone (in the blue box), and the orange box is the output result of the model.
FIGURE 1

An image-level low-light enhancement preprocessing module (e.g., Zero-DCE Li et al. (2021)) can improve human visual perception. However, it is
unlikely to improve feature point matching performance between two adjacent frames in an underwater video. The proposed ULL-SLAM, which
includes a video-level low-light enhancement module, can effectively extract the feature points between two adjacent frames.
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2 Related work

2.1 Low light image enhancement

There are four types of popular low-light image enhancement:

1) supervised learning, 2) reinforcement learning, 3) unsupervised

learning, and 4) zero-shot learning. MBLLEN Lv et al. (2018)

extracted effective feature representation through a feature

extraction module, an enhancement module, and a fusion

module, which improves the performance of low-light image

enhancement. Ren et al. Ren et al. (2019) designed a more

complex end-to-end network, including an encoder-decoder

network for image content enhancement and a recursive neural

network for image edge enhancement. To reduce the computational

burden, Li et al. Li et al. (2018) proposed LightenNet, a lightweight

model for low-light image enhancement. LightenNet takes the low-

light image as input to estimate its illuminance pattern. It can

enhance the image by dividing the input image by the illuminance

graph. In the absence of paired training data, Yu et al. Yu et al.

(2018) used adversarial reinforcement learning to study the

exposure of photos, which they named DeepExposure. First, the

input image is segmented into sub-images based on exposure. For

each sub-image, local exposures are sequentially learned through a

reinforcement learning-based policy network, and the reward

evaluation function is approximated by adversarial learning.

EnligthenGAN Jiang et al. (2021) is based on an unsupervised

learning method and addresses the problem that training a deep

model on paired data may lead to overfitting and thus limit the

model’s generalization ability. Supervised learning, reinforcement

learning, and unsupervised learning methods either have limited

generalization ability or suffer from unstable training. Zhang et al.

Zhang et al. (2019) proposed a zero-shot learning method called

ExCNet, which is used for backlit image in painting. It first uses a

network to estimate the S-curve that best fits the input image. Once

the S-curve is estimated, guided filters separate the input image into

a base layer and a detail layer. The estimated S-curve then adjusts

the base layer. However, most of these works are image-level

models. Applying an image-level model for video preprocessing

may cause features to be inconsistent between two adjacent frames.

In many low-light underwater cases, the unique illumination from

the underwater vehicle could be more likely to cause uneven

brightness distribution than in-air cases. Unlike these works, our

model includes two loss functions to ensure the enhanced

underwater images can practically improve the feature points

matching efficiency as well as the VLSAM performance.
2.2 Underwater SLAM

Nowadays, the popular visual SLAM system is normally based

on the feature description method Rublee et al. (2011). VINS Qin

et al. (2018); Qin and Shen (2018) proposed a general monocular

fusion framework containing IMU information. Unlike the non-

underwater environment, conventional navigation and positioning

communication methods cannot be used typically underwater (such

as GPS). Hence, the visual information of the underwater robot
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itself provides an essential guarantee for robot navigation. In the

absence of GPS to generate ground truth for camera poses, a recent

work employs Colmap’s Schönberger and Frahm (2016);

Schönberger et al. (2016) SFM (structure-from-motion, SFM)

based method to generate relatively accurate camera trajectories.

To evaluate underwater SLAM performance, UW-VO Ferrera et al.

(2019) uses the reconstructed trajectories as ground truth trajectory

values. Due to the good properties of sound propagation in water,

some sonar-based methods Rahman et al., 2018; Rahman et al.,

2019a; Rahman et al., 2019b, SVIN Rahman et al. (2018) and SVin2

Rahman et al. (2019b)), incorporate additional sparse depth

information from sonar sensors for more accurate position

estimation. No matter which kind of feature point-SLAM system

is used, the premise of its work is to be able to extract feature points.

However, in deep-sea exploration, the feature points cannot be

easily extracted due to the low brightness of underwater imaging

and insufficient illumination. Besides, sonar sensor-based solutions

Rahman et al., 2018; Rahman et al., 2019b) remain expensive, and

we aim to propose a general underwater SLAM framework based on

purely visual information in deep-sea low-light environments.
3 Methodology

3.1 Overall framework

Feature point extraction and matching play a key role in VSLAM

process. Unfortunately, many existing low-light image enhancement

works are not designed for continuous frames. An image-level

preprocessing may improve human visual perception, but it may be

useless for feature point extraction and matching. Moreover, the

artificial illumination used for deep-sea exploration may easily cause

uneven illumination. The ULL-SLAM front-end feature point

extraction network uses a self-supervised siamese network training

framework to learn all four tasks simultaneously; the process is shown

in Figure 2. The learning tasks of the network are mainly divided into

two branches: low-light image enhancement and feature point

extraction. The two branches share the same backbone to reduce

the model’s training time and improve the model’s inference speed,

thereby ensuring that the model runs on embedded devices in real-

time. The low-light image enhancement branch is responsible for

enhancing the input original low-light image, and the feature point

extraction branch uses the siamese network to predict the two

detected feature points of the same input image.

The proposed enhancement network does not directly perform an

image-to-image mapping from the low-light image to the enhanced

image but rather estimates an enhancement curve from the low-light

image to the enhanced image by the network, and applies the

estimated enhancement curve to the low-light image to complete

the low-light enhancement of the original image. Therefore, in order

to make the estimated enhancement curve more accurate, images with

different exposure levels of the same image are used when feeding

them into the network, which is why the input part of the network

frame has 7 images with different exposure levels at the samemoment,

as shown in Figure 3. In order to ensure the color imbalance that may

occur between the front and back frames after underwater continuous
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frame image enhancement (e.g., the image scenes between the front

and back frames do not differ much, but the enhancement effect has

changed), the images at the five moments of ti, ti−1, ti−2, ti+1, ti+2 at the

input end of the network are to ensure that the texture information,

color, etc. between the front and back frames of continuous frame

image enhancement do not become distorted, and at the same time

can complete the Feature point matching, this part is explained in

detail in the ablation experiment (Figure 4) of the loss function.

The first step is to perform a spatial transformation (rotation,

scaling, tilt, etc.) on the input image through random homography

T. Through the siamese network A, output the feature points

fraction a, the position a, and the descriptor sub-information a.

In the second step, the input image passes through the siamese

network B, and then the output result is transformed by the same

random homography T to obtain the feature point score B, position

B, and descriptor information B. The feature points output by the

siamese network A and the siamese network B are spatially aligned,

and finally, the distance between the two points is minimized in the

loss function to train the network. The feature points are

differentiable through the T transformation and the loss function

so that each siamese network can be trained and tested end-to-end.
3.2 Backbone

The backbone network takes an input image and generates

intermediate feature map representations for each subtask. The first

seven convolutional layers of the backbone network are

symmetrically connected. Each layer consists of 32 convolution

kernels of size 3×3 with a stride of 1 followed by a ReLU activation

function. The Tanh activation function follows the last convolution

layer. Three max-pooling layers separate the last four pairs of

convolutional layers with a stride and kernel size of 2. After each

pooling layer, the number of channels in subsequent convolutional

layers doubles. The number of channels for 8 convolutional layers is

32-32-64-64-128-128-256-256. Each pooling layer samples twice

the height and width of the feature map, while the entire trunk

samples are eight times the height and width of the feature map. An

entry in the final output corresponds to 8 × 8 regions in the input

image. So for an input image of 480 × 640, the network will return

(480/8) · (640/8) = 4800 entries Christiansen et al. (2019). Each

entry is processed on each subtask in a fully convolutional way to

output descriptors, scores, and locations, effectively creating 4800

points of interest Christiansen et al. (2019).
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3.3 Low-light image enhancement branch

Underwater robots usually must deal with images with dark

light and uneven illumination distribution of continuous video

frames in the marine environment, Zero-DCE Li et al. (2021)

proposes the idea of brightening the curve as shown in Eq. 1.

This function is well designed to solve the problems of the constant

brightness value range, monotonically increasing brightening curve,

simple curve formula and network differentiability. However, this

idea does not consider that the enhanced features between two

adjacent frames should be as consistent as possible. Therefore, we

draw on this idea to propose a new solution based on the siamese

network to deal with the low-light enhancement problem of

underwater constant frame images. Specifically as follows:

LE(I(x);a) = I(x) + aI(x)(1 − I(x)),

LEn(x) = LEn−1(x) + anLEn−1(x)(1 − LEn−1(x)),
(1)

where x is the pixel coordinate; LE(I(x);a) is the augmented image

of the input image I(x); a ∈ ½−1, 1� is a trainable curve parameter

that adjusts the size of the LE curve. Each pixel is normalized to

[0,1], and all operations are performed pixel-wise.

3.3.1 Temporal-spatial consistency loss
Inspired by the spatial consistency loss Lspa proposed in Zero-

DCE [15], we further consider the temporal relationship between

two adjacent frames and propose the temporal-spatial consistency

loss Ltspa to extend the spatial consistency restriction from the

image-level to the video level. Comparing with the Lspa defined in

Zero-DCE, the proposed Ltspa takes into account the spatial

consistency between a source image and the homography

transformation of its adjacent frame.

Let S denote the siamese networks; I is the raw image. Then we can

use the spatial homography transformation matrix T to represent the

adjacent frame of the raw image as TI. Let us define Ea = S(I) and Eb =

S(TI)as the enhanced outputs from the siamese network S, respectively.

Then we can define the temporal-spatial consistency loss as follows:

Ltspa =
1
Ko

K

i=1
( Ei

a − TEi
b

�� ��
+oj∈W(i)( E

i
a − Ej

a

�� �� + TEi
b − TEj

b

��� ��� − TIi − TIj
�� ��))2, (2)

where K is the number of pixels and i is the traversal of pixels, and

W(i) is the 3×3 neighborhood of the ith pixel.
FIGURE 3

The images used for network training increase in brightness from left to right. Images with different exposure levels are used to improve the
generalization of the augmentation network and to enhance the detection and matching ability of the feature point detection network.
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3.3.2 Mean frame loss
Our network adopts continuous video frame input for training.

We propose a locally constrained loss function that stabilizes

transitions between consecutive frames of enhanced images. The
Frontiers in Marine Science 06
scene and pixel differences between consecutive frame images are

minimal, and we adopt the idea of local optimization to control the

drift between consecutive frame-enhanced images. The specific

operations are as follows:
FIGURE 4

The ablation study of various loss functions. Tw=
all represents the feature point matching result when using all loss functions; Tw=o

tspa represents the

feature point matching result without using Ltspa; T
w=o
mf represents the feature point matching result without using Lmf ; T

w=o
ub represents the feature

point matching result without using Lub; To represents the original low-light image; i represents the image of the current moment; (i + 5) represents
the 5th image after the current moment.
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Lmf =
1

Mo
M

i=1
o
j+n

j=i
( Emean

tj+1 − Emean
tj

��� ��� + Emean
tj − Emean

ti

��� ���)2, (3)

Here Emean
t is the average pixel value of the output image of the

siamese network at the current moment; M is the total number of

images; n is the number of local images selected to participate in the

optimization; this value is 4 in actual training.

3.3.3 Uneven brightness loss
In a deep marine environment, artificial illumination is a

common light source. However, an artificial light source’s power

is always insufficient to illuminate the entire area, resulting in

uneven illumination. To prevent some places from being too dark

and to restrain overexposure, we make the brightness of each pixel

closer to a specific intermediate value. We then propose a local

uniform brightness loss function, which uses the following error

function to express the constraint.

Lub =o
N

s=1
Es − Emedianj j, Emedian

=

a1Emedian  if Emedian ≤ 0:4

a2Emedian  if Emedian ≥ 0:8

Emedian  otherwise

,

8>><
>>: (4)

where Es represents the average value of the local pixel area. During

training, the image is divided according to the strategy that the local

area is 25 pixels, and N represents the number of local pixel areas.

Emedian describes the median value of the pixel area of the entire

image. To prevent the overall brightness of the enhanced image

from being low or over exposed, we limit its weight. When the

median pixel value is lower than or higher than the set threshold, we

use weight parameters ha1 and a2 and its compensation to ensure

that the generated image will not be overexposed or darkened and

to maintain the generated image. The specific values in training are

1.75 and 0.7, respectively.

Meanwhile, to make the enhanced image maintain stable color

and smooth illumination, we follow the color constant error loss

and smooth illumination loss in Zero-DCE Li et al. (2021),

as follows:

3.3.4 Color constancy loss
Zero-DCE Li et al. (2021), proposed color constancy loss

corrects for potential color bias in the enhanced image and

establishes the relationship between the three adjustment

channels. The loss function is defined as follows:

Lcol =o∀ (p,q)∈ϵ(Jp − Jq)
2, ϵ ∈ (R,G), (R, B), (G,B)f g, (5)

where (p, q) traverses all pairwise combinations of the three RGB

color channels, Jp represents the average luminance of color channel

p, and (p, q) represents a pair of channels.

3.3.5 Illumination smoothness loss
To maintain the monotonic relationship between adjacent

pixels, we follows the illumination smoothness loss defined in

Zero-DCE Li et al. (2021). This requirement can be expressed as:
Frontiers in Marine Science 07
LtvA =
1
MoN

n=1oc∈x( ▽x A
c
nj j + ▽y A

c
n

�� ��)2, x = R,G,Bf g, (6)

N is the number of iterations, and∇xand∇y are the horizontal and

vertical gradient operators, respectively. For images, the horizontal

and vertical gradients are the difference between the values of the

adjacent pixels to the left and above.
3.4 Feature point extraction branch

To calculate the loss value of the network, we need to establish

the relationship between the feature points. The same image passes

through the siamese networks A and B and outputs two sets of

matrices A = ½Sa, Pa,Da�, B = ½Sb, Pb,Db�, which respectively

represent the feature point scores, feature point positions, and

feature point descriptors of the two images output by the

network. The position of the feature points detected in image A is

transformed into image B through the matrix transformation T, and

Â = ½Ŝa, P̂a, D̂a� obtained. Pa and P̂a called feature point pairs, where
P̂a = TPa, the distance between Pa and P̂a is minimized. The smaller

the distance between the two, the better the ability of the extraction

network to extract feature points. However, not all P̂a are involved

in the calculation. This is because the siamese network is uncertain

about the output of the same image after matrix transformation,

and there will be occasional weak feature points. Therefore,

according to the experience of reprojection error in SLAM, we

define that after the homography matrix transformation T DeTone

et al. (2018); Christiansen et al. (2019). The distance between the

feature points and the position is within the neighborhood of 3� 3

pixels, which means that the detected feature points are the same

point in the input image. We sent the positions of such feature

points to the loss function for calculation. The operation can

effectively improve the stability and repeatability of network

detection feature points. The Loss function is handled in the same

way as UnSuperpoint Christiansen et al. (2019). We use Lunsuperpoint

to describe it here.

Total loss.

Ltotal = Ltspa + Lmf + Lub + Lcol +WtvALtvA + Lunsuperpoint (7)

where weight WtvA is used to balance scales with different losses,

which is a direct reference to the weight setting in Zero-DCE. The

loss function Ltotal sums up the loss function of the image

enhancement branch and the loss function of the feature point

extraction branch. By minimizing the loss function Ltotal , the effect

of the enhanced image can be achieved to generate in the direction

favorable to feature point extraction, so that the network has the

ability of feature point extraction in the underwater low-

light environment.
4 Experiments

In this section, we compare the advantages of ULL-SLAM with

the widespread feature point extraction based SLAM operating in a

marine low-light environment. We choose ORB-SLAM2 Mur-Artal
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and Tardós (2017), which has stable performance in the underwater

test in our laboratory, as our baseline. ORB SLAM2 is also a visual

SLAM framework that can be used for monocular, stereo, and RGB-

D cameras based on the extraction of feature points (ORB). A new

system —ULL-SLAM is constructed by replacing its physical sign

point extraction module with our underwater low-light feature

point extraction network. We also compared it to the original

ORB-SLAM2 Mur-Artal and Tardós (2017), ORB-SLAM3

Campos et al. (2021), and Dual-SLAM Huang et al. (2020).
Fron
• Dual-SLAM Huang et al. (2020) extends ORB-SLAM2,

saves the current mapping, and activates two new SLAM

threads. One handles the incoming frame to create a new

map, and the other targets link the new and old maps.

• ORB-SLAM3 Campos et al. (2021) Visual, visual-inertial,

and multi-map SLAM using monocular, stereo, and RGB-D

cameras, achieving state-of-the-art performance.
Since we adopt a deep learning-based method to extract feature

points, we test the model’s running speed (frame-per-second, FPS)

on Jetson AGX Xavier, which is also widely equipped on ROV and

AUV. Our ULL-SLAM can reach a speed of 40.6 FPS.
4.1 Implementation details and
evaluation metrics

4.1.1 Dataset
4.1.1.1 Training dataset

The URPC dataset Liu et al. (2021) contains contains

monocular video sequences collected by the ROV on a real

aquaculture farm nearby Zhangzi Island, China. The ROV can

travel in water depths of about 5 meters. The ROV captured a total

of 190 seconds of video sequences at a 24Hz acquisition frequency.

We obtain a total of 4,538 frames from the video. The collected

video sequence scene changes significantly, the light is sufficient, but

the water quality is cloudy. In order to ensure that the feature point

extraction branch can extract more feature points, we add the image

after image sharpening in the laboratory’s previous work. The

fusion of these two kinds of data not only ensures that the feature

point extraction network can extract more feature points but also

ensures the generalization ability and robustness of the model. The

low-light image enhancement model based on zero-order learning

cannot be trained typically with simple underwater images.

However, acquiring underwater low-light data sets is difficult and

expensive. Therefore, we adopt the idea of style transfer to

transform the brightness of datasets and finally form images with

different colors and brightness for training. Considering that there

are no meaningful objects in the first 2000 consecutive images in the

original sequence, we delete them and select only the last 2538

images, respectively, for brightness conversion. Among them, we

used 1250 images for testing. In the training process, we select the

open-source offline SFM Schönberger and Frahm (2016);

Schönberger et al. (2016) library to generate a camera attitude

track from 1250 continuous frame images to evaluate underwater

SLAM performance.
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4.1.1.2 Test datasets

The training data set URPC is an artificially generated low-light

image. To test the performance of ULL-SLAM in a natural

underwater environment, we select five video clips of natural

underwater low-light scenes from the videos provided by Schmidt

Ocean Alalykina and Polyakova (2022). These video clips are

captured with an underwater vehicle to a depth of 400-500

meters in the Pacific Ocean. Each video clip is 2150, 3500, 4600,

5200, and 6000 frames, respectively. The rotation and ambiguity of

the image in each piece of data are different. We generate the

camera pose using SFM Schönberger and Frahm (2016);

Schönberger et al. (2016). We also use SFM to provide ground

truth to test the performance of the ULL-SLAM system in a natural

underwater low-light environment.

4.1.2 Evaluation metric for SLAM
To measure SLAM performance, we choose 1) absolute

trajectory error (ATE), 2) root mean square error (RMSE), and 3)

initialization performance for evaluation. ATE directly computes

the difference between the ground-truth trajectory of the camera

pose and the SLAM-estimated trajectory. RMSE can describe the

rotational and translational errors of two trajectories. The smaller

the RMSE, the better the system trajectory fit. The initialization

performance indicates the number of frames to perform underwater

SLAM initialization. The lower the initialization frame, the better

the SLAM performs and the more stable and continuous the output.

We repeated ten underwater SLAM experiments to get the best

results for all methods.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(Yi − f (xi))

2

s
(8)

where f (xi) represents the system’s predicted trajectory, and Yi

represents the Groundtruth of the trajectory.
4.2 Low light enhanced visualization result

We verify the effect of the proposed loss function in this section

and visualize the effect of each function separately by conducting

ablation experiments during training. It is worth noting that the loss

function we designed for continuous frames (Eq. 3) and

overexposure (Eq. 4) mainly enables the network to have a good

feature point extraction effect in the underwater low-light

environment. The two networks are optimized end-to-end

together rather than proposing a low-light image enhancement

model. Therefore, we do not compare the performance of other

low-light enhancement models on terrene in the same underwater

scene. Figures 5, 6 show the comparison of the training dataset

image and the real underwater test dataset image before and after

the low-light enhancement network, respectively. Figure 7 verifies

the ablation experiment of our proposed loss function on the low-

light image enhancement effect. It should be noted that the ultimate

purpose of our network is to focus on the effect of the network in

feature point extraction, so Figure 4 shows the effect of our

proposed loss function on feature point extraction.
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4.3 Feature point matching performance

To further reveal the superiority of the feature point extraction

effect in ULL-SLAM compared with other methods, we show the

matching pairs with ORB Rublee et al. (2011), SIFT Lowe (2004),

and SURF Bay et al. (2008) under two consecutive frames in

Figures 8, 9. We obtain ground-truth values from motion using a

structure-of-motion-based COLMAP Schönberger and Frahm

(2016); Schönberger et al. (2016) method. We conduct

experiments using 2150 consecutive frames of underwater images

with an image size of 640x480 and pre-calibrated in-camera

references. Only matching pairs in the 3×3 pixel region are

considered correct matched pairs.

To verify that the feature points detected by our system are valid

interior points, we conduct the feature point matching test through

the reprojection error of every 20 frames of images. Specifically, the

feature points extracted from the current frame are reprojected onto

the previous 20th frame image to compare the errors between the

feature points. Then we select a 3×3 pixel region. When the error

between the feature points is less than 3, the feature point is marked

as number 0 and the inner point; then, the others are marked as the

mismatched outer points and number 1. Finally, the feature-

matching error rate of our proposed method is 0.9%, the error

rate of ORB method is 6.7, the error rate of SIFT method is 5.1, and

the error rate of SURF method is 3.5. The formula is as follows:

Pix = p − KHpwinterval=20

�� �� 1 otherwise

0 pix < 3

(
(9)
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where p represents the coordinates of the feature points of the

current frame, K represents camera parameters, H represents the

transformation matrix, and pwinterval=20
represents the coordinates of

the image feature point at the 20th frame interval from the current

frame.

Error =
1
N o

N

i=1,10,20…
∣ pi − KHpwi ∣ (10)

where Nrepresents the number of image pairs involved

in reprojection.

To verify the ability of the system to extract feature points in a

natural low-light underwater environment, we conducted a feature

point detection test in the test dataset. According to the constraints

of state estimation, the SLAM system outputs accurate positional

estimation data only when a sufficient number of interior points are

matched, and when the number of interior points is too small, it will

cause the system to fail to complete the positional estimation.

Therefore, we construct a test image pair at intervals of 20 and 30

frames for the test set video clips and perform feature point

detection and matching tests in different feature point detectors.

When the number of feature points detected between the two

frames of the test image pair is greater than 50, we record the

correct samples and calculate the proportion of the accurate sample

numbers in all test pairs of the video clip. When the system is able to

detect enough feature points at 20 or 30 frames between keyframes,

it proves that the feature point matching capability of the network is

good enough. The performance of the system is demonstrated by

verifying the matching ability of the proposed network feature

points. In this way, we use this method to compare the ability of
FIGURE 5

Comparison of low-light images before and after enhancement on URPC-dark dataset.
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network feature point detection. The test results are shown in

Tables 1, 2.

Similarly, we propose a SLAM system and pay more attention to

the effectiveness of the extracted feature points on the SLAM

system. There is no direct proportion between the number of

matching feature points and the performance of SLAM.

Therefore, in the comparison experiment, we only select the

feature point extraction methods commonly used in the current

SLAM system, such as (ORB). Other feature point extraction

networks based on deep learning only focus on feature point

extraction and have yet to be transplanted into the SLAM system,

so we did not compare them.
Frontiers in Marine Science 10
4.4 Underwater SLAM results

We aim to validate the proposed network model in low-light

feature points Extraction SLAM and the system’s effectiveness. We

adopt the ORB-SLAM2 of the stability of the effect in the early

stage of the laboratory experiment as the basic SLAM framework.

Our model replaces the ORB feature point extraction network in

the original system, keeping the back-end optimization

architecture with the original method unchanged, forming a

new SLAM system – ULL-SLAM. Our model replaces the ORB

feature point extraction network in the original system, keeping

the back-end optimization architecture with the original method
FIGURE 6

Comparison of low-light images before and after enhancement on real underwater dataset provided by Schmidt Ocean Alalykina and Polyakova (2022).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1133881
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xin et al. 10.3389/fmars.2023.1133881
unchanged, forming a new SLAM system – ULL-SLAM. It

conducts comparative experiments with the original ORB-SLAM

and the currently popular Dual-SLAM and ORB-SLAM3 on the

URPC-dark dataset. The quantification results are shown in

Table 3. From the results, it can be found that the quantization

error of ULL-SLAM is significantly smaller than the other three,

and the minor quantization error can make the estimated camera

pose trajectory more stable, thereby considerably improving the

initial performance. An excellent low-light feature point

extraction network can make feature matching more reliable so

that ULL-SLAM can obtain a more stable and accurate output.

In the five real underwater low-light scenes, we use Zero-DCE

as the pre-processing of underwater low-light image enhancement
Frontiers in Marine Science 11
tool. Then, we feed the enhanced images into ORB-SLAM2 for

testing. As shown in Table 4, ORB-SLAM2 did not improve all the

data sets. The results indicate that an image-level low-light

enhancement network can hardly improve the feature point

matching and SLAM’s performance.

We compared the performance of ULL-SLAM and the other

three SLAM systems in five real underwater low-light video clips on

the test set provided by Schmidt Ocean. The visualization results of

the test tracks of these four SLAM systems are shown in Figure 10.

We can find that the SLAM trajectory obtained with ULL-SLAM is

closest to the ground truth. Meanwhile, Table 5 shows the

quantization error data of the four systems in the five video clips.

The two experimental results confirm that the ULL-SLAM system
FIGURE 7

The ablation study of various loss functions. The first row of images represents the normal network output, To represents the original low-light
image, i represents the image of the current moment. We select the ith Frame and eighth (i+8) frames after the current moment to verify the effects
of different functions, w=o represents the other functions unchanged, and the network output image after removing this function. When the loss
function Lub is removed, we can find overexposure occurs in the image after enhancement. When the loss function Lmf is removed, it can be seen
that the image scene does not change significantly at the interval of 8 frames, but the enhancement effect has changed significantly.
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FIGURE 8

Comparison of extraction methods of different feature points. The image on the left is the current frame image, and the image on the right is the
20th frame image behind the current frame image.
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FIGURE 9

Comparison of extraction methods of different feature points. The image on the left is the current frame image, and the image on the right is the
40th frame image behind the current frame image.
TABLE 1 Feature point detection effect of different feature point detectors in a real underwater environment.

Video clips Method > 50 ↑ Accuracy rate ↑

seg1 ORB 814 0.757

SIFT 822 0.765

SURF 869 0.808

ULL-SLAM 912 0.848

seg2 ORB 1511 0.863

(Continued)
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TABLE 1 Continued

Video clips Method > 50 ↑ Accuracy rate ↑

SIFT 1505 0.860

SURF 1542 0.881

ULL-SLAM 1607 0.918

seg3 ORB 1467 0.638

SIFT 1432 0.623

SURF 1502 0.653

ULL-SLAM 1624 0.706

seg4 ORB 2412 0.928

SIFT 2391 0.919

SURF 2421 0.931

ULL-SLAM 2501 0.962

seg5 ORB 2288 0.762

SIFT 2301 0.767

SURF 2327 0.776

ULL-SLAM 2433 0.811
F
rontiers in Marine Science
 14
Spaced 20 frame pairs of images.
TABLE 2 Feature point detection effect of different feature point detectors on the dataset provided by Schmidt Ocean.

Video clips Method >50 ↑ Accuracy rate ↑

seg1 ORB 772 0.718

SIFT 784 0.729

SURF 816 0.759

ULL-SLAM 839 0.784

seg2 ORB 1449 0.828

SIFT 1436 0.820

SURF 1467 0.838

ULL-SLAM 1521 0.869

seg3 ORB 1349 0.586

SIFT 1327 0.577

SURF 1413 0.614

ULL-SLAM 1575 0.685

seg4 ORB 2305 0.886

SIFT 2277 0.876

SURF 2334 0.898

ULL-SLAM 2419 0.930

seg5 ORB 2196 0.732

SIFT 2225 0.741

SURF 2276 0.759

ULL-SLAM 2349 0.783
Spaced 30 frame pairs of images.
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can achieve the expected effect in the authentic underwater low-

light environment, which verifies that our proposed scheme can be

well applied in the underwater low-light environment.
4.5 Limitations and future work

The low-light image enhancement branch and feature point

extraction branch share the same network and are optimized end-

to-end, which can complement each other for mutual benefit and

improve operational efficiency simultaneously. However, we did

not consider a de-scattering module to remove forward and
Frontiers in Marine Science 15
backward scattering noise for underwater exploration. We aim

to build a universal underwater visual SLAM framework that is

robust to various underwater conditions. We leave it as our

subsequent work.
5 Conclusion

In this paper, we propose an underwater low-light feature

point extraction network based on siamese networks and

integrate it into the back-end framework of the SLAM system

to form a new SLAM system—ULL-SLAM. To improve the
TABLE 4 Comparative experiments on the dataset provided by Schmidt Ocean.

Video clips Method ATE ↓ RMSE ↓ Initialization ↓

seg1 ORB-SLAM2 0.823 0.847 23

Zero−DCE + ORB-SLAM2 0.809 0.821 19

EnlightenGAN + ORB-SLAM2 0.779 0.792 16

MBLLEN + ORB-SLAM2 0.807 0.822 20

seg2 ORB-SLAM2 0.611 0.643 10

Zero−DCE + ORB-SLAM2 0.644 0.671 15

EnlightenGAN + ORB-SLAM2 0.581 0.601 13

MBLLEN + ORB-SLAM2 0.567 0.583 16

seg3 ORB-SLAM2 2.892 2.934 37

Zero−DCE + ORB-SLAM2 2.979 3.073 40

EnlightenGAN + ORB-SLAM2 3.017 3.225 47

MBLLEN + ORB-SLAM2 2.709 2.811 38

seg4 ORB-SLAM2 0.391 0.404 4

Zero−DCE + ORB-SLAM2 0.369 0.392 3

EnlightenGAN + ORB-SLAM2 0.322 0.359 5

MBLLEN + ORB-SLAM2 0.431 0.457 8

seg5 ORB-SLAM2 0.802 0.816 19

Zero−DCE + ORB-SLAM2 0.792 0.801 15

EnlightenGAN + ORB-SLAM2 0.676 0.692 14

MBLLEN + ORB-SLAM2 0.845 0.861 20
Zero-DCE, EnlightenGAN and MBLLEN are used for preprocessing low-light images, feeding the enhanced image into the ORB-SLAM2.
TABLE 3 Quantization errors of different SLAM systems on URPC-dark test dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 1.711 1.764 32

Dual-SLAM 1.693 1.722 23

ORB-SLAM3 1.686 1.707 26

ULL-SLAM 1.292 1.316 3
Bold text indicates that it performs best under the same evaluation index. For example, the bold text under the column ATE (absolute trajectory error) indicates that ULL-SLAM obtained the best
performance in the ATE evaluation index, with a quantitative value of 1.292.The same goes for other bold letters.
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FIGURE 10

The performance of different SLAM systems on five real-life underwater low-light video segments.
TABLE 5 ULL-SLAM and three other SLAM systems performed in five segments of real underwater low-light environments in the test dataset provided
by Schmidt Ocean.

Video clips Method ATE ↓ RMSE ↓ Initialization ↓

seg1 ORB-SLAM2 0.823 0.847 23

Dual-SLAM 0.809 0.830 16

ORB-SLAM3 0.786 0.802 18

ULL-SLAM 0.592 0.624 4

seg2 ORB-SLAM2 0.611 0.643 10

Dual-SLAM 0.595 0.619 6

ORB-SLAM3 0.583 0.607 8

ULL-SLAM 0.490 0.523 1

seg3 ORB-SLAM2 2.892 2.934 37

Dual-SLAM 2.786 2.899 32

ORB-SLAM3 2.795 2.836 26

ULL-SLAM 2.601 2.625 9

seg4 ORB-SLAM2 0.391 0.404 4

Dual-SLAM 0.387 0.395 3

ORB-SLAM3 0.374 0.389 3

ULL-SLAM 0.319 0.331 1

(Continued)
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inference speed of the model to achieve real-time performance,

we designed the low-light image enhancement branch and the

feature point extraction branch with the same backbone.

Moreover, the loss functions of the two branches are optimized

together so that the low-light image enhancement branch can

generate feature images beneficial to feature point detection.

Thus the two are mutually beneficial. At the same time, the

proposed network can be flexibly transplanted to the popular

SLAM system based on feature point extraction to improve the

system’s performance. Experimental results show that this

method makes the output trajectory of SLAM more continuous

and stable in an underwater low-light environment and carries

out more accurate state estimation.
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