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cyclone modeling
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Spume, large-radius seawater droplets that are ejected from the ocean into the

atmosphere, can exchange moisture and heat fluxes with the surrounding air.

Under severe weather conditions, spume can substantially mediate air-sea fluxes

through thermal effects and thus needs to be physically parameterized. While the

impact made by spume on air-sea interactions has been considered in bulk

turbulent air-sea algorithms, various hypotheses in current models have resulted

in uncertainties remaining regarding the effect of spume on air-sea coupling. In

this study, we extended a classic bulk turbulent air-sea algorithm with a “bag-

breakup” physical scheme of spume generation parameterizations to include

spume effects in a complicated numerical model. To investigate the impact of

spume on air-sea coupling, we conducted numerical experiments in a simulation

of Tropical Cyclone Narelle. We observed a significant improvement in the ability

to model minimum central pressure andmaximum sustained surface wind speed

when including the bag-breakup spume scheme. In particular, the impact of the

bag breakup–generated spume is observed in the intensity, structure, and size of

the tropical cyclone system through the modulation of local wind speed (U10),

wave height (Hs), and sea surface temperature.

KEYWORDS

tropical cyclone modeling, air-sea-wave–coupled model, sea spume, air-sea heat

fluxes, bag-breakup
1 Introduction

Tropical cyclones (TCs) are one of the most devastating environmental natural

disasters, with destructive and landfalling TCs rarely failing to cause substantial

economic loss and damage (Vigdor, 2008; Nordhaus, 2010). Thus, intensive

investigations in improving TC forecasting are required (Southern, 1979; Chan, 1985;

Moon et al., 2004a; Moon et al., 2004b; Moon et al., 2007; Strachan et al., 2013). Over recent
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decades, significant improvements in TC forecasting have been

steadily achieved (e.g., in the tracking and positioning of TCs), with

contributions made by a combination of updated numerical models

and detailed observations (Emanuel et al., 2004). However, while

complicated numerical models have been widely used, relatively

little progress has been made in the prediction of TC intensity (e.g.,

as evaluated by minimum center pressure and/or maximum

sustained wind speed) (Chan and Kepert, 2010; Kepert, 2010;

Emanuel, 2018). Variations in TC intensity partly arise from

changes in environmental conditions under a TC system and TC-

scale internal fluctuations caused by the stochastic processes that

result from high-frequency transients (Emanuel et al., 2004). As a

critical process, air-sea heat exchange and moist convection can be

markedly modulated by water droplets ejected from the ocean

surface (Zhang et al., 2017; Xu et al., 2021a; Zhang et al., 2021;

Xu et al., 2022). However, this chaotic physical process, while

critical, is not represented effectively in the current numerical

simulations of TC systems.

To consider the impact of water droplets on a TC system, the

full microphysics of water droplet evolution in the air demands a

clear understanding. It has been suggested that sea spray impacts

air-sea dynamics in the following two ways: (i) through the air-sea

saturation layer that is represented by the drag coefficient saturation

(ii) and direct air-sea momentum transfer. In addition to a dynamic

impact, sea spray can also substantially mediate air-sea heat fluxes

(Rizza et al., 2018; Rizza et al., 2021; Zhang et al., 2021). For

instance, sea spray–induced heat fluxes (HFs) account for more

than 10% of the total air-sea HF. Here, we take the moist enthalpy

(heat energy fluxes) generated by water droplets as an example.

Based on Pruppacher and Klett (1978), water droplet–induced HFs

can be functioned by the following:

Cwm
dT
dt

= −k(T − Ta) + Lv
dm
dt

(1)

where Cw is the specific heat of the ocean water; m and T are the

mass and temperature of the water droplets, respectively; k is the

Boltzmann constant; and Lv is latent heat evaporation. The positive

net heat transfer from the droplet to the atmosphere exists only

during the brief period of droplet temperature adjustment. After

temperature adjustment, the latent HF realized to the atmosphere is

balanced by the diffusion (sensible) HF obtained from the

atmosphere for droplet evaporation, and there is no further

contribution from the droplet to the enthalpy flux to the

atmosphere; that is, k(T − Ta) = Lv
dm
dt . As such, the total amount

of enthalpy entering the atmosphere during the entire life cycle of

the water droplet (i.e., from injection to fall back into the ocean) is

given by the following:

Qk = −Cw

Z tf

0
m

dT
dt

dt (2)

where tf is the residence time of the water droplets staying in the

atmosphere. Assuming that the relaxation time of the water droplet

temperature is much larger than that of evaporation (Andreas,

1992), the radius of the water droplets is large, and the residence

time of the droplet in the atmosphere significantly exceeds the time
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of the droplet temperature adjustment (Andreas and Emanuel,

2001; Andreas et al., 2008). Equation 2 can be written as follows:

Qk =
4
3
pr30Cwrw(Tw − Teq) (3)

where r0 is the initial radius of the water droplets when sprouting

from the ocean; rw is the density of the ocean water; and Tw and Teq
are the temperature of the ocean surface and the thermal

equilibrium temperature of the water droplets, respectively.

Following Troitskaya et al. (2018b), the sensible HFs from the

water droplets to the atmosphere (Qs) can be obtained by the latent

HFs induced by the water droplets (QL) subtracted from Qk. As Qs

and QL are sensible and latent HFs induced by an individual water

droplet, we need to compute the total amount of water droplets

produced at the ocean surface to consider the impact of the HFs

induced by the water droplets on the air-sea boundary layer.

To quantify the in-time production of water droplets, a

generation function of spume (i.e., water droplets with a radius

generally larger than 10 mm) is needed, as spume is believed to

account for more than 95% of the total volumetric concentration of

water droplets generated by winds ranging from 10 to 15 m s-1

(Andreas, 1992; Ortiz-Suslow et al., 2016). One of the earliest

observations of the spume microphysical generation processes

was in the 1980s (Koga, 1981). Later, substantial measurements of

spume were conducted (Andreas, 1992; Spiel and De Leeuw, 1996;

Spiel, 1998; Lhuissier and Villermaux, 2012; Mehta et al., 2019; Xu

et al., 2021b). Recently, Veron et al. (2012) proposed that substantial

amounts of spume can be produced by the bursting of the airflow-

inflated liquid that forms at the lower range of the bubble breakup

regime. Based on high-speed camera laboratory observations,

Troitskaya et al. (2017), by providing possible physical

explanations for various phenomena, concluded that direct spume

generation at extreme winds could be largely modulated by a “bag-

breakup”mechanism. Throughout a bag-breakup occurrence, a rise

in small-scale ocean surface elevations is observed, which is in turn

blown into an inflated “sail” by extreme winds. This sail finally

breaks up and produces spume. As such, the amount of spume

induced by the bag-breakup mechanism can be functioned as

follows:

dF
dr

= 〈N〉(F1 + F2) (4)

where   dFdr is the spume generation function; r is the radius of the

spume; (N) is the number of “bags”; and F1 and F2 are the number

of spumes caused by the “canopy” and “rim” within one bag,

respectively (please refer to Supplementary Material 1, Troitskaya

et al. (2018a); Troitskaya et al. (2018b) for more information).

Therefore, assuming that the bag-breakup mechanism modulates

the production of water droplets through the air-sea interface, we

can estimate water droplet–induced fluxes by following Perrie et al.

(2005); Andreas et al. (2008); Xu et al. (2021a), and Xu et al. (2022)

through Eq. 3 and the integral of Eq. 4.

In the present work, we investigated the impact of the spume

generated by the bag-breakup mechanism in a TC system. In doing

so, we extended the air-sea bulk algorithm of Andreas and Emanuel
frontiersin.org
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(2001) and Andreas et al. (2008) with the spume generation bag-

breakup function and implemented an updated algorithm into a

fully coupled atmosphere-ocean-wave numerical model. The

coupled model was then used to simulate TC Narelle, which

occurred in 2013. In the Methods section, we discuss the fully

coupled atmosphere-ocean-wave numerical model used in this

study. The results and discussions are provided in the Results and

Discussion section, which is followed by a summary and conclusion

in the Conclusion section.
2 Methods

2.1 Tropical Cyclone Narelle

As a result of a strong monsoon flow associated with the burst of

a Madden–Julian Oscillation (White and Fox-Hughes, 2013; Smith

et al., 2015), a tropical low pressure formed near 10.5°S 126°E in

January 2013. This tropical low initially went west and slowly

developed while moving toward the southwest. On 00:00/8

January 2013, this low pressure reached cyclone strength,

developed into TC Narelle, and continued to grow under

favorable conditions. TC Narelle traveled southwestward on

00:00/9 January 2013 and progressively achieved a peak wind

speed of 105 knots (195 km/h) from 00:00 to 12:00 on 11 January

2013 when it was located approximately 470 km to the north of

Exmouth, Western Australia. From 13 January 2013, Narelle

traveled along the Western Australian coast to the southwest and

gradually weakened to below tropical cyclone strength at 06:00/14

January 2013, dissipating well offshore.
2.2 Model description

In this study, we adopted the Coupled Ocean-Atmosphere-

Wave-Sediment Transport (COAWST v3.3) Modeling System

(Warner et al., 2010a). This coupled system comprises three

components: an atmosphere model, an ocean model, and a wave

model. A model-coupled toolkit was applied to connect these model

components and exchange modeling variables at an interval of

30 min. For further information, please refer to Warner et al.

(2010b). Below, we briefly clarify in depth our setup for each

component in COAWST.
2.2.1 Atmosphere
Used as the atmospheric model for the COAWST, the Weather

Research and Forecasting (WRF) model, known as the Advanced

Research WRF (WRF-ARW v3.9) (Skamarock and Klemp, 2008), is

a compressible and non-hydrostatic numerical weather prediction

system with a variety of atmospheric physical schemes. In this

study, we used the Purdue Lin Scheme (Chen and Sun, 2002) for the

microphysics process, the Dudhia Scheme (Dudhia, 1989) for the

shortwave-radiation process, the RRTM Scheme (Mlawer et al.,

1997) for the longwave-radiation process, the Mellor-Yamada-

Nakanishi-Niino scheme Nakanishi and Niino, (2006), Nakanishi
Frontiers in Marine Science 03
and Niino, (2009) for the surface and planetary boundary layer

process, and the 5-layer thermal diffusion scheme (Dudhia, 1996)

for the land surface process. Due to the limitations of the

computational resources, the WRF-ARW model was run with a

7.5-km horizontal resolution, which is somewhat coarse but still

allows for simulating a TC’s inner core dynamics (Wu et al., 2018).

There were 59 sigma levels in the vertical, which was sufficiently fine

and allowed for simulating atmospheric vertical dynamic processes.

We initiated the WRF-ARW on 00:00/1 August 2014 based on data

from the European Centre for Medium-Range Weather Forecasts

(ECMWF) and produced fifth-generation atmospheric reanalysis

(ERA-5) data with a horizontal resolution of 0.25° × 25° and 1-h

intervals. The boundary conditions were derived using the

same data.

2.2.2 Ocean
To consider the response from the underlying ocean to the

atmosphere, a free-surface and topography-following coordinate

Regional Ocean Model System (ROMS) with wind stress forcing

and air-sea fluxes exchanging with the WRF was defined as the

ocean component in the COAWST. As a free-surface regional

oceanic numerical model, ROMS with terrain-following

coordinates solved the Reynolds-averaged Navier–Stokes

equations (Shchepetkin and McWilliams, 2005). In this

application, we adopted a model domain with the same

horizontal resolution (7.5 km) as the WRF model to increase the

computation efficiency. In the vertical, 30 levels were used for the

extended topography-following coordinates. The vertical stretching

parameters qs = 5, qb = 0.5, and Tcline = 5 were used. Reanalysis

data from the global Hybrid Coordinate Ocean Model (HYCOM)

GLBa0.08, which was based on a part of the U.S. Global Ocean Data

Assimilation Experiment (GODAE), were used to determine the sea

surface level (zeta), currents (U, V), vertically averaged currents

(ubar, vbar), salinity (salt), and temperature (temp) for the

initiation of the ROMS. The outputs from HYCOM were also

used to obtain the open boundary conditions for the currents,

temperature, and salinity. The open boundary conditions were

defined as Chapman conditions for the free surface and two-

dimensional momentum, Flather conditions for the three-

dimensional momentum, and temperature and salinity with

radiation and nudging conditions. A 1-month simulation was

conducted through a coupled WRF-ROMS model to obtain a hot

start oceanic field. While the 1-month spin-up was considered

sufficient for stabilizing the ocean model, it should be noted that

the spin-up preparation is critical for a short-term met-ocean

event simulation.

2.2.3 Wave
The Simulating WAves Nearshore (SWAN) wave model used in

COAWST is a third-generation wave model. SWAN integrates in

spatial and spectral space to solve the wave action equation

accounting for wind-wave generation, wave breaking, wave–wave

interaction, and other factors. In this study, the simulation domain

and resolution for SWAN were set as the same as used for ROMS to

conserve computational resources by shortening the time required
frontiersin.org
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to recalculate grid data (Figure 1). Komen et al. (1984) was adopted

for the whitecapping calculation. By specifying a directional

resolution of 10°, 36 wave directions were determined. In

addition, 24 frequencies (0.04–1.0 Hz) were derived by

defining the minimum frequency as 0.04 Hz. The data of the

global simulation of the WaveWatch III model (ftp://

polar.ncep.noaa.gov/pub/history/waves) were used for the

boundary conditions of SWAN. In accordance with the oceanic

field preparation, the initial conditions of SWAN were derived from

the outputs of a 1-month WRF-SWAN coupled model running

with the same model grids and domain as used in this study.
2.3 Experimental designs

The COAWST model was used to investigate the impact of

spume on the modeling of TC Narelle. Historically, the Coupled

Ocean-Atmosphere Response Experiment (COARE) bulk

algorithm has been adopted to estimate air-sea interfacial HFs.

Here, to characterize the role of spume in the air-sea heat exchange,

we substituted the default bulk turbulent algorithm in the surface

module within the WRF with the air-sea microphysical algorithm

suggested by Andreas et al. (2008). In doing so and in accordance

with Perrie (2004), spume-induced sensible and latent HFs were

proportionally added to the interfacial direct air-sea sensible and

latent HFs, respectively, as follows:

HL,T = HL +HL,sp (5)

HS,T = HS +HS,sp (6)

where HL,T and HS,T are the total latent and sensible heat transfer
Frontiers in Marine Science 04
across the air-sea interface, respectively; HL and Hs are the direct

air-sea latent and sensible HFs, respectively; and HL,sp and HS,sp are

the spume-induced latent and sensible HFs, respectively (see

Supplementary Material 2 for more information). As such, by

using the updated coupled model (i.e., Eqs. 1–6), two numerical

experiments were conducted. Expt. 1 was the control run in which

the spume scheme was absent, while Expt. 2 included the spume

scheme. Therefore, the impact of spume (more specifically, spume

produced by the bag-breakup mechanism, hereafter referred to as

“the spume scheme”) on local atmospheric and oceanic

environments can be investigated.
3 Results and discussion

3.1 Atmosphere

Figure 2 shows a comparison between observations from the

International Best Track Archive for Climate Stewardship

(IBTrACS) and the simulation results. The simulation results with

and without the spume scheme are comparable before 06:00/10

January 2022; however, after 06:00/10 January 2022, the inclusion of

the spume scheme deepens the minimum central pressure (Pmin) by

up to 20 hPa and significantly reduces the errors with observations.

This improvement can also be seen in the maximum sustained

surface wind speed (Vmax). By introducing the spume scheme, Vmax

increases by up to 13 m s-1 in contrast to the simulation without

spume (Figure 2B), thus reducing the error with observations.

While concurrent in situ observations are scarce due to the

limitations of measurement techniques, we can observe

improvements when comparing our simulated wind speeds at a

10-m height (U10) to the measurements of ASCAT MetOp-A,

CryoSat, HY-2, Jasson-1, and Ocean Surface Topography

Mission/Jason-2 (Supplementary Material 3).
FIGURE 1

Domain of the COAWST model. The inner domain outlined by dashed lines (ROMS and SWAN) is nested with the outer domain outlined by solid
lines (WRF). The best-track observations and the track of TC Narelle modeling without and with the spume scheme are represented in solid black
lines with squares, solid blue lines with circles, and solid red lines with triangles, respectively. The passage points of satellites are represented by
cross markers.
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Figures 3A, D, G present the spatial distributions of the total air-sea

HFs of Expt. 1. Themaximum of the HFs through the air-sea interfaces

is located at the radius of maximum wind (RMW). Consistent with

Expt. 1, the maximum of the HFs in Expt. 2 is at the RMW (Figures 3B,

E, H). We observe that with the development and intensification of TC

Narelle, the maximum of the HFs continuously increases. For example,

the maximum of the HF azimuthal average reaches 450, 500, and 550

Wm-2 on 00:00/10 January 2013, 00:00/11 January 2013, and 00:00/12

January 2013, respectively. In comparison with Expt. 1, once the spume
Frontiers in Marine Science 05
scheme is considered, the maximum HF azimuthal average is

significantly enhanced by up to 150, 350, and 375 W m-2 on 00:00/

10 January 2013, 00:00/11 January 2013, and 00:00/12 January 2013,

respectively (Figures 3C, F, I). This is because the seawater temperature

and thus the initial temperature of the spume droplets are higher than

the air that surrounds them, which means that the spume droplets are

expected to transfer heat to the surrounding air. This, in turn, increases

the quantity of heat transferred from the ocean to the above

atmosphere. While spume is likely to cool the atmosphere because of
BA

FIGURE 2

(A) Minimum central pressure (Pmin) and (B) maximum sustained surface wind speed (Vmax). The solid black line, solid blue line, and solid red line are
the observations of the International Best Track Archive for Climate Stewardship and the modeling results without and with the spume scheme,
respectively. The gray shadow represents the period of model spin-up.
FIGURE 3

(A, D, G) are total air-sea heat fluxes without the spume scheme on 10–11 January 2013. (B, E, H) are the same as (A, D, G) but with the spume
scheme. (C, F, I) represent the azimuthal averages of the total air-sea heat fluxes. The direction in which TC Narelle is moving forward at different
times is demonstrated by the red arrows. The azimuthal averages of the total air-sea heat fluxes for the simulation results without and with the
spume scheme are shown by solid blue and red lines, respectively. The standard deviations of the total air-sea heat fluxes in all radial directions are
represented by shadows. The radius of maximum wind is represented by solid circles and dashed lines in spatial distributions and azimuthal averages,
respectively.
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evaporation, such a cooling process cannot be completed because of the

limited suspension time of the spume in the air. This is consistent with

the results of Andreas (1992) and Andreas et al. (2008), who proposed

that the timescale of spume evaporation in the air (minutes to days) is

much larger than that of the heat exchange resulting from temperature

differences (seconds). While the spume-induced HFs are noticeable at

RMW, spume has no discernible effect on the air-sea HFs in the areas

located 120 km away from the center of the TC (Figures 3C, F, I).

Therefore, we expect the structure of the TC to change considerably

due to the presence of the sea spray spume.

Figures 4A, D, G depict the spatial distributions of the

atmospheric pressure at various periods without the spume

scheme. When compared to Expt. 2 (Figures 4B, E, H), we

observe limited changes overall. However, the azimuthal averages

of sea level pressure (SLP) are dramatically affected as a result of

introducing the spume scheme, specifically within the RMW. For

instance, in comparison with the simulation results of Expt. 1, Expt.

2 increases the minimum SLP azimuthal average by up to 2, 6, and

22 hPa on 00:00/10 January 2013, 00:00/11 January 2013, and 00:00/

12 January 2013, respectively (Figures 4C, F, I).

The spatial distribution of U10 and the ocean surface stress at

different times in Expt. 1 are shown in Figures 5A, D, G and

Figures 6A, D, G, respectively. Once the spume effects are

considered, while the directions of the local winds have slightly
Frontiers in Marine Science 06
changed, the maximum U10 and ocean surface stresses are greatly

enhanced (Figures 5B, E, H; 6B, E, H). We notice that such an

impact becomes more apparent with the development and

intensification of the TC. This is in agreement with the spatial

distributions of the HFs, which further show the impact of spume

on the local wind fields. For example, in contrast with the

simulation results without the spume scheme, adding spume

increases the maximum of the U10 azimuthal averages by up to

1.0, 6.6, and 22.9 m s-1 and the maximum of the ocean surface stress

azimuthal averages by up to 0.04, 0.80, and 1.61 N m-2 on 00:00/10

January 2013, 00:00/11 January 2013, and 00:00/12 January 2013,

respectively (Figures 5C, F, I; 6C, F, I). While the maximum of the

U10 is increased when introducing the spume, the location of the

maximum U10 moves closer to the TC center (i.e., the RMW

decreases) such that the TC becomes smaller (on average 10 km)

in comparison with the simulated results without the

spume scheme.
3.2 Waves

During the passage of the TC, we expect spume to make a

significant impact on the waves as spume radically affects wind

fields, and the local sea state is highly dependent upon these fields.
FIGURE 4

(A, D, G) are sea level pressure (SLP) without the spume scheme on 10–12 January 2013. (B, E, H) are the same as panels (A, D, G) but with the spume
scheme. (C, F, I) represent the azimuthal averages of the SLP. The direction in which TC Narelle is moving forward at different times is demonstrated by
the red arrows. The vectors are the directions of the local winds. The azimuthal averages of the SLP are shown by solid lines. The standard deviations of
the SLP in all radial directions are represented by shadows. The radius of maximum wind is represented by solid circles and dashed lines in spatial
distributions and azimuthal averages, respectively.
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Figures 7A, B, D, E, G, H depict the spatial distributions of

significant wave height (Hs) at different times for Expt. 1 and

Expt. 2, respectively. The maximum Hs is largely increased because

of the adoption of the scheme in Expt. 2. This increment, consistent

with the development of U10, increases with the intensification of

the TC. Specifically, the maximum Hs of Expt. 2 is enhanced by up

to 1.3, 1.4, and 3.8 m on 00:00/10 January 2013, 00:00/11 January

2013, and 00:00/12 January 2013, respectively (Figures 7C, F, I) as

compared to the simulated results in Expt. 1. We note that the

simulation results for Hs are improved when introducing spume as

compared with the measurements of CryoSat, HY-2, Jason-1, and

Ocean Surface Topography Mission/Jason-2 (Supplementary

Material 3). While spume produces critical effects on Hs, it

negligibly alters the location where the maximum Hs occurs (i.e.,

the maximum Hs distributes averagely in all radial directions). As

TC Narelle occurred in the Southern Hemisphere, the maximumHs

is expected to be located in the left front quadrant of the TC’s

forward direction. This is due to the fact that a (young) swell

propagates in the same direction as the locally generated wind sea,

which is in the left front as a TC spins clockwise in the Southern

Hemisphere, whereas the propagation directions of the wind sea

and (young) swells keep opposite and/or cross each other

(Holthuijsen et al., 2012). This spatial distribution pattern is not

observed in either Expt. 1 or Expt. 2. One possible reason is that the
Frontiers in Marine Science 07
movement speed of TC Narelle is so slow in the experiments that

the waves under the TC system are largely dominated by the locally

generated wind waves instead of the swell produced at earlier points

(Moon et al., 2003).
3.3 Ocean

As the underlying ocean is closely coupled with atmospheric

environments and local wave fields, and spume significantly alters

the atmosphere and waves, we can expect a controlling impact of

spume on the upper ocean. Figures 8A, D, G show the spatial

distributions of sea surface temperature (SST). During the passage

of the TC system, the SST decreases as a result of deep and cold

water rising to the ocean surface as a consequence of upwelling and

turbulent mixing. It can be seen that the SST decrease caused by the

TC system occurs in the back quadrants of the TC as it moves

forward, and the extent of the SST decrease follows the intensity of

the TC system. As compared with the simulation results in Expt. 1,

incorporating the spume scheme has negligible effects on the

direction of the ocean current, but it enhances the extent and

expands the area of decreasing SST (Figures 8B, E, H). For example,

while the azimuthal average of the minimum SST in Expt. 2 is

equivalent to that in Expt. 1 on both 00:00/10 January 2013 and
FIGURE 5

(A, D, G) are 10-m wind speed (U10) without the spume scheme on 10–12 January 2013. (B, E, H) are the same as (A, D, G) but with the spume
scheme. (C, F, I) represent the azimuthal averages of U10. The direction in which TC Narelle is moving forward at different times is demonstrated by
the red arrows. The vectors are the directions of the local winds. The azimuthal averages of U10 are shown by solid lines. The standard deviations of
U10 in all radial directions are represented by shadows. The radius of maximum wind is represented by solid circles and dashed lines in spatial
distributions and azimuthal averages, respectively.
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FIGURE 6

(A, D, G) are ocean surface stress without the spume scheme on 10–12 January 2013. (B, E, H) are the same as (A, D, G) but with the spume scheme.
(C, F, I) represent the azimuthal averages of surface stress. The direction in which TC Narelle is moving forward at different times is demonstrated by the
red arrows. The vectors are the directions of the local currents. The azimuthal maximum of the surface stress is shown by solid lines. The radius of
maximum wind is represented by solid circles and dashed lines in spatial distributions and azimuthal averages, respectively.
FIGURE 7

(A, D, G) are significant wave height (Hs) without the spume scheme on 10–12 January 2013. (B, E, H) are the same as (A, D, G) but with the spume
scheme. (C, F, I) represent the azimuthal averages of Hs. The direction in which TC Narelle is moving forward at different times is demonstrated by
the red arrows. The vectors are the propagation directions of the local waves. The azimuthal averages of Hs are shown by solid lines. The standard
deviations of Hs in all radial directions are represented by shadows. The radius of maximum wind is represented by solid circles and dashed lines in
spatial distributions and azimuthal averages, respectively.
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00:00/11 January 2013, the decline in SST is largely more

pronounced in Expt. 2 on 00:00/12 January 2013 (Figures 8C, F,

I). That is, the minimum SST is further decreased by 1.2°C in Expt.

2 as compared to that in Expt. 1 mainly at the RMW. This is in

accordance with current studies suggesting that spume strengthens

the SST cooling caused by a TC system (Perrie, 2004; Perrie et al.,

2005; Xu et al., 2022), which is a direct result of the spume-induced

intensification of the TC system. This can be explained as follows.

Spume increases total air-sea HFs, reinforcing the local winds and

waves specifically at the RMW. In turn, additional turbulent kinetic

energy from the atmosphere to the ocean is provided, enhancing

warm surface water mixing with cooler water from the surface to

the thermocline and promoting the upwelling of colder water to the

surface. Once the SST cooling has become enhanced because of the

strong upwelling, the temperature of the spume is also reduced,

leading to a reduction in spume-induced HFs, providing negative

feedback on the interaction between the spume and the

upper ocean.
4 Conclusion

The present study used a coupled atmosphere-ocean-wave

numerical model to investigate the impact of a bag breakup–

induced spume scheme on the atmosphere, ocean, and wave

modeling of the passage of TC Narelle. We did so by extending
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an air-sea turbulent bulk algorithm by implementing an

observation-based spume parameterization. Two different

numerical experiments were performed, one without and one

with the spume scheme, to study the impact of spume on the air-

sea interactions during TC Narelle.

When considering our simulations, we can observe substantial

improvements in the ability to model minimum SLP and maximum

wind speed as compared with observations from the World

Meteorology Organization. These improvements are consistent with

observations from ASCAT MetOp-A and Ocean Surface Topography

Mission/Jason-2. By providing additional heat to the atmosphere,

spume causes a TC system to intensify, and this is represented in

our model by a decrease in Pmin and an increase in Vmax. Furthermore,

as U10 increases, RMW reduces by approximately 10 km in the model,

suggesting a complex but critical impact of spume on the intensity,

structure, and size of the TC system.

It can also be noticed that the stronger prevailing winds induced

by spume ultimately contribute to higher sea states, and we can

observe an increase in Hs by up to 3.8 m. Since the generation of

spume is heavily influenced by the interaction between local waves

and winds, an increase in U10 and rise in Hs can result in a positive

feedback on spume production. In contrast with the positive

feedback between the spume and local winds and waves, a

negative feedback can occur between the spume and the upper

ocean. This happens because the intensification of the TC system

when including spume leads to stronger vertical mixing and
FIGURE 8

(A, D, G) are sea surface temperature (SST) without the spume scheme on 10–12 January 2013. (B, E, H) are the same as (A, D, G) but with the
spume scheme. (C, F, I) represent the azimuthal averages of SST. The direction in which TC Narelle is moving forward at different times is
demonstrated by the red arrows. The vectors are the directions of the local currents. The azimuthal minimum of SST is shown by solid lines. The
radius of maximum wind is represented by solid circles and dashed lines in spatial distributions and azimuthal averages, respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1133149
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1133149
upwelling, which in turn enhance SST cooling after the TC passes.

For instance, we can see a decrease in the minimum SST by as much

as 1.2°C in our simulations. Enhanced SST cooling can reduce the

impact of spume on air-sea HFs by reducing the temperature

difference between the ocean (and thus spume droplets) and the

atmosphere. Therefore, it can be seen that spume has significant

effects on atmospheric and oceanic environments by modulating

wind speed, Hs, and SST. Therefore, spume must be included in

operational models for TC forecasting.
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