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Estrogen exposure during early-life stages has been found to delay ovarian

development in female fish, even after a long-term depuration period. However,

the mechanisms underlying the disordered ovarian development remain unclear.

In this study, the larvae of tiger puffer Takifugu rubripes were exposed to 0

(control) and 10 mg/L 17b-estradiol (E2) from 20 to 90 days post-hatch (dph) and

maintained in clear seawater until 180 dph. Genetic females collected at 90 and

180 dph were identified by analyzing a sex-associated SNP. Then, the ovarian

structure, gonadosomatic index (GSI), the maximum follicle area and the mRNA

levels of genes involving in cell cycle (ckd2, ckd4, cdk6, ccna2, ccnd2, cdkn1b

and cdkn2c), meiosis initiation (sycp3, rec8, spo11, and dmc1), follicle formatiaon

(bmp2, hnrnpk, hmp15, gdf9, nobox and figla) and apoptosis (bax and bcl-2) were

analyzed between control and E2-exposed females. The results show that, no

structure difference in ovaries was observed between control and E2-treated

females at 90 dph, but the primary growth follicles in E2-treated females were

observed to be fewer in number than control at 180 dph. Both ovarian weight

and GSI of E2-treated females were significant lower than the control at 90 and

180 dph, while there was no significant different in the maximum follicle area

between control and E2-treated females at neither 90 or 180 dph. Additionally,

the E2 exposure suppressed the expression of sycp3, rec8, spo11, dmc1, bmp2,

hnrnpk and bcl-2 at 90 dph, but the mRNA levels of those genes in E2-treated

females showed no significant different with the control at 180 dph. The reduced

mRNA levels of sycp3, rec8, spo11 and dmc1 might result in disrupted meiosis,

and suppression the expression of bmp2 and hnrnpk affected follicle formation.

Then, abnormal meiosis initiation and follicle formation might further promote

apoptosis as indicated by the decrease in mRNA levels of bcl-2, which ultimately

contributed to less number of follicles and low GSI value in E2-treated females.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1131041/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1131041/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1131041/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1131041/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1131041/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1131041&domain=pdf&date_stamp=2023-02-20
mailto:liusf@ysfri.ac.cn
https://doi.org/10.3389/fmars.2023.1131041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1131041
https://www.frontiersin.org/journals/marine-science


Hu et al. 10.3389/fmars.2023.1131041
Introduction

Tiger puffer Takifugu rubripes is widely grown in East Asia and is

regarded as one of the most valuable teraodontiformes fish due to its

superb flavor and abundance of nutrients (Kikuchi et al., 2011).

Because tiger puffer testes are considered a delicacy, males have a

higher commercial value than females (Yoshikawa et al., 2020).

Thereby, artificial breeding strategy based on all-male populations is

considered as a possible solution to improve economic benefits of tiger

puffer industry. The first step in producing all-male tiger puffer is to

convert genetic males into physiological females by immersion using

high concentration of 17b-estradiol (E2) during gonadal differentiation,
thus obtaining pseudo-female individuals (Piferrer, 2001). However,

because it is unable to discriminate the sex of fish throughout the

hormone induction phase, the genetic female cannot escape being

exposed to exogenous estrogen, resulting in the suppression of its

ovaries in the later development process (Hu et al., 2017).

Oogenesis in teleost fish is divided in several successive steps:

oogonial proliferation (OP), primary growth (PG), secondary

growth (SG), maturation (MA) and ovulation (OV) (Luckenbach

et al., 2008; Garcı ́a-López et al., 2011a). It is a common

phenomenon that oogenesis in fish is disrupted by exogenous

estrogens, but the majority studies focused on the adverse effects

of exogenous estrogens on the differentiated ovaries, in which

oogenesis entered in SG or MA stages (Colli-Dula et al., 2014;

Zhang et al., 2014a; Wang et al., 2017). Hypothalamic-pituitary-

ovarian-liver (HPGL) axis plays a major role in the regulation of SG

and MA. Numerous studies indicated that exogenous estrogens

blocked the expression of genes on HPGL axis, which was one of the

prime causes of abnormal ovarian development, such as arrested

follicle growth and decreased number of follicles (Qin et al., 2014;

Lei et al., 2016; Wang et al., 2017). Different with previous studies,

the E2 exposure on the tiger puffer occurred on differentiating

ovaries, when oogenesis was only at the OP and PG phases (Hu

et al., 2017). However, some studies suggested that HPGL axis

might not participate in the two processes (Lubzens et al., 2010;

Zhang et al., 2015; Tang et al., 2016).

At OP and PG stages, oogonia proliferate mitoticly and

subsequently meiosis initiation transforms oogonia into primary

oocytes that are surrounded by mitotic somatic cells in the follicles

(Nakamura et al., 2010; Tanaka, 2014). Studies have shown that

estrogen exposure affected those processes. For example, treatment

with BPA (bisphenol A) resulted in mitotic arrest of ovarian

granulosa cells in mice (Xu et al., 2002). The expression of genes

involving in meiosis initiation was disrupted in black porgy

Acanthopagrus schlegelii exposed to E2 and yellow catfish exposed

to DES (Lau et al., 2013; Wang et al., 2017). In rare minnow, BPA

exposure suppressed the expression of bmp15 and gdf9, which are

known as the most important genes required for follicle formation

(Zhang et al., 2014b). Additionally, studies in yellow catfish

Pelteobagrus fulvidraco exposed to DES and zebrafish exposed to

EE2 also suggested that exogenous estrogen exposures leaded to

increased apoptotic follicles, and the expression of genes involving

in apoptosis pathways were altered (Luzio et al., 2016; Wang et al.,

2017). Based on these findings, we proposed a hypothesis that E2
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exposure throughout the OP and PG phases would influence the

cellular processes of oogonia proliferation, meiosis initiation, follicle

formation, or apoptosis, eventually leading to permanent ovarian

development retardation in the tiger puffer.

The ovarian differentiation of tiger puffer occurred at 40 days

past hatching (dph), and oocytes were observed at 82 dph (Hu et al.,

2015). To test the above hypothesis, tiger puffer were exposed to 10

g/L E2 from 20 to 90 dph for 2 hours each day according to the

method in the previous study (Hu et al., 2017), and then maintained

in clear seawater till 180 dph. The changes of ovarian structure and

morphometric parameters were examined. Subsequently, the

expression of genes, which have been proved to involve in cell

cycles (cdk2, cdk4, cdk6, ccna2, ccnd2, ccne2, cdkn1b, cdkn2c)

(Reddy, 1994; Craig et al., 2013), meiosis initiation (sycp3, rec8,

spo11, dmc1) (Romanienko and Camerini-Otero, 2000; Iwai et al.,

2006; Lau et al., 2013; Cahoon and Hawley, 2016), follicle

formatiaon (bmp2, hnrnpk, bmp15, gdf9, figla, nobox) (Soyal et al.,

2000; Otsuka et al., 2011; Wang et al., 2011; Bouilly et al., 2014;

Chakraborty and Roy, 2015), and follicle apoptosis (bax, bcl-2)

(Luzio et al., 2016), were investigated. The aim of this study is to

extend our understanding on the molecular mechanisms

underlying adverse effects of estrogen immersion during gonadal

differentiation on ovarian development of fish.
Materials and methods

Larvae and juveniles rearing

This study was performed at a commercial hatchery of Dalian

Tianzheng Industry Co., Ltd in Tangshan City, China. Eggs of tiger

puffer were obtained by artificial fertilization and the eggs hatched 8

to 10 days after fertilization. Newly hatched larvae were kept in a

larvae rearing tank. The larvae were supplied with live rotifers from

4 to 20 dph, and Artemia nauplius from 20 to 40 dph. From 40 dph,

metamorphosed juveniles were fed with commercial pellets (Marine

Yu Bao, Hayashikane Sangyo Co., Ltd., Japan) (Rashid et al., 2007).

Water temperature was maintained at 18-21°C during the rearing

period. At 20 dph, about 4000 larvae were randomly assigned to two

5-m3 aquaria containing ~2000 larvae each.
17b-estradiol immersion

The experiment consisted of one control group and one

treatment group. From 20 to 90 dph, juveniles in the treatment

aquaria were exposed to 10 mg/L E2 for 2h once every day. Stock

solutions were prepared by dissolving 0.5g E2 in 1000 mL absolute

ethanol to give a concentration of 0.5 mg/mL E2, and stored in the

dark at -4°C. Prior to treatment, the water volume in the aquarium of

each treatment group was reduced to 0.5 m3 and 10 mL of the E2

stock solutions was added to each aquarium to give final

concentration of 10 mg/L E2. The water volume in the control

aquarium was also reduced to 0.5 m3 and treated with 10 mL
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absolute ethanol only. After 2-h treatment, the water volume in each

aquarium was increased to 5 m3 and flowing water was restored.
Sample collection

After E2 immersion, a total of 30 juveniles were collected from

each group at 90 and 180 dph, respectively. All fish procedures were

conducted according to the guidelines established by the Institutional

Animal Care and Use Committee at Yellow Sea Fisheries Research

Institute, Chinese Academy of Fishery Science. Fish were first

anesthetized with 100 mg/L tricaine methanesulfonate (MS-222,

Sigma, St. Louis, Mo). Then, the body weight and gonad weight of

each sampled juvenile were recorded to calculate GSI [GSI = (gonad

weight/body weight) × 100]. One of the two gonads from each

juvenile were fixed in Davidson’s for at least 24h, washed in 50%

ethanol, and then stored in 70% ethanol at 4°C until histological

analysis. The other gonad were stored at -80°C for RNA extraction. In

addition, muscle tissue from each fish was also sampled and stored at

-20°C for DNA extraction.
Genetic sex identification

Among the samples, genetic females were selected according to

the method in our previous study (Hu et al., 2017). Total DNA from

muscle was extracted using a Marine Animals DNA kit (TLANamp,

Beijing, China) following the manufacturer’s instructions. DNA

quality and quantity were assessed by 1% agarose gel electrophoresis

and by UV spectrophotometry (1.8<OD260/280 <2.0), respectively.

The sense (F) 5′- TAGACACGATGCACACAAACCAC -3′ and
antisense (R) 5′- CGCAAAATGAG GCTCTC TATGGAG -3′
primers for the SNP marker using to identify genetic sex of tiger

puffer were designed with Primer Premier 5.0 software (Prenier

Biosoft, Palo Alto, CA, USA). The reaction conditions of PCR were

5min at 95°C, followed by 35 cycles of 1min at 94°C, 40 s at 58°C

and 50 s at 72°C, with a final extension at 72°C for 5min. The

products (625 bp) of PCR were then sequenced by Sangon Biotech

Co., Ltd. (Shanghai, China). In the resulted sequence traces, the

genetic female (XX) juveniles were homozygous (C/C) in the SNP

position (334 bp). 14 genetic females and 15 genetic females were

se lec ted from the contro l group and the treatment

group, respectively.
Gonadal histological analysis

Then the ovarian phenotypes of those females were identified

for histological analysis. Ovaries were dehydrated in a series of

alcohol, clarified in dimethylbenzene, and then embedded in

paraffin. Cross-sections were cut at 5-7 mm with a microtome

(Leica RM2235, Nussloch, Germany), stained with hematoxylin

and eosin, and observed and photographed using a light microscope

(Olympus DP72, Tokyo, Japan). The maximum follicle area was

measured by the microscope.
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Gene expression analysis

Total RNA from ovaries of females was extracted using

MiniBEST Universal RNA Extraction kit (Takara, Dalian, China).

RNA quality and quantity were assessed by 1% agarose gel

electrophoresis (28S:18S>1) and UV spectrophotometry

(1.8<OD260/280<2.0), respectively. To avoid contamination of

genomic DNA, total RNA was treated with DNase I (Qiagen) for

30min at 37°C. The first-stranded cDNA was synthesized using

PrimeScript™ RT reagent kit (Takara, Dalian, China) with 1 mg
total RNA according to the manufacturer’s instruction. The cDNA

was stored at -20°C.

Relative expression of the candidate genes (Table 1) were

determined by quantitative real-time PCR (qRT-PCR) in the ovaries

of females from control and treatment groups. The qRT-PCR was

performed on an ABI StepOnePluse Sequence Detection System

(Applied Biosystems, USA) in accordance with the manufacturer’s

instructions. SYBR Premix Ex Taq™ kit (Takara Bio, China) was used

for amplification, and the reaction mixture contained 10 mL of SYBR®

Premix Ex Taq™, 0.8 mL of each primer (10 mM), 0.4 mL of ROX Dye

(50×), 2 mL of cDNA sample (25 ng/mL), and 6 mL of sterile distilled

water. Initial denaturation was conducted at 95°C for 10 s, followed by

40 cycles at 95°C for 5 s and at 60°C for 30 s. A dissociation protocol

was carried out after thermocycling to determine the target specificity.

The stability of six commonly used reference genes 18s, actb, ef1a, ctsd,

gapdh, and rpl17 was evaluated using Bestkeeper (version 3.5) and

Normfinder (v 0.953) (Andersen et al., 2004; Pfaffl et al., 2004).

Evaluation revealed that rpl17 is the most stable reference gene in

this study (data not shown). Hence, we selected rpl17 as the internal

control, and the relative abundance of the target mRNA was

normalized to rpl17 by using the 2-DDCT method. All samples were

amplified in triplicates.
Statistical analysis

All data were expressed as mean ± standard error of the mean

(SEM). Date were tested for normality of distribution (Shapiroe-Wilk

test) and homogeneity of variance (Levene’s test) prior to analysis.

Independent-Sample T test was conducted using SPSS 16.0 software

(SPSS Inc., USA). Differences were considered significant when P<0.05.
Results

Effects of E2 treatment on
histological structure

At 90 dph, no structure difference in ovaries was observed

between control and E2-treated groups (Figures 1A, C). Germ cell

nests undergoing meiosis at zygotene stage and oocytes at chromatin-

nucleolus stage were observed in the ovaries, besides large number of

oogonia. A number of follicles at primary growth stage were also

observed. At 180 dph, the ovaries in control females were well

developed and full of primary growth follicles, with few oogonia
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A B
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FIGURE 1

Photomicrographs of ovary in control and E2-exposed female tiger puffer at 90 and 180 dph. (A) Ovary in control female at 90 dph; (B) Ovary in E2-
exposed female at 90 dph; (C) Ovary in control female at 180 dph; (D) Ovary in E2-exposed female at 180 dph. CNO, chromatin-necleous oocyte;
GCM, germ cells undergoing meiosis at zygotene stage; OG, oogonium; PGF, primary growth follicle.
TABLE 1 Primers and related information for targeted genes of tiger puffer.

Gene Sense Primer (5’-3’) Antisense Primer (5’-3’) Size (bp) GenBank ID

ckd2 CGTCGCTAGCCAAGCAATCA ATCTCTCGGATGGCAGTGCT 189 XM_003973094

ckd4 GGTCACCAGCGGAGGACAGATC ACAGCGTCACCACCACAGAGG 95 XM_003973099

cdk6 GCAGTCCAGTTACGCCACACC CCTCCTCTGAAGGCAAGCCAATG 149 XM_003969394

ccna2 ACAAGCCAGCCACTGTGAATGAG TCCAACCTCCACCAGCCAGTC 167 XM_011610984

ccnd2 GAGCGTCGATGTCGTCAAGAGTAG CCGCACGGAATCGCAGTATAGC 170 XM_003972778

ccne2 CCGCCTTCTGCCACTTCTCAAC GCGTCATCCACCGAACACAGG 93 XM_011618870

cdkn1b ATGCATGGCATAAGGCGTCC TCGGGCTCCCGTTTGATAGT 191 XM_003967486

cdkn2c GGGTCGACGTCAAAGGGAAC AGGTATTGGACCGTGTCCGT 145 XR_965382

sycp3 CCCAGAGATCTGAGGAGCAG TCTCGGACCATCTTCAGCTT 112 XM_003967294

rec8 CTCACCTGGACCGGCCTACG CTGGAGCCTGAGCGGAATTGC 107 XM_011618824

spo11 GCCTTATTTGAGCAGCCAAC GGTGAGGAAATCAGGAGCAA 112 XM_011602555

dmc1 CTCCACCACCAGGATCAGTT CCGGTAGAGATGGCAAATGT 111 XM_003961352

bax TCAACGACATGGAGACAGCA CCATATTGCCATCCAGCTCA 131 XM_003964782

bcl-2 CCAGCAACAAGTCTGGCAAC TGGTTGTGCAGGTCACTGAA 110 XM_011619483

bmp2 CGAGGCTGAGGAGGCTGAAGG CTGAGGTTGAACAGGAAGCGAAGG 165 XM_003971524

bmp7 CGAGAACAGCAGCACGGATCAG GGTTGGTGGCGTTCATGTAGGAG 170 XM_003963388

gdf9 TGTTGATGAGCGGCGGAATGC GGCTGTGCAGATCATTGGAGGTG 144 XM_011610724

nobox ACTCCACTCGCCGCTCCATC GGCAGTCCATCACATCCAATCCAG 93 XM_011608901

figla CGCAGCAGTCCAGGTGTGAAC AGAGCAGATTCGCCGGTCAGG 126 NM_001190361

rpl17 CCAAGAAGAGTGCCGAGTTC TGTTGACCTGGATGTGTTCG 111 XM_003965375
F
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and oocytes at chromatin-nucleolus stage (Figure 1B). Similar

findings were observed in the ovaries of E2-treated females, with

the exception that the number of initial growth follicles in E2-treated

females was lower than in controls. (Figure 1D).
Effects of E2 treatment on
morphological index

After the E2 immersion, there was no significant change in body

weight between the control and E2-treated females (Figure 2A). At 90

dph, the ovary weight (F = 0.804, P = 0.01) of E2-treated females were

significantly trailing, when compared with the control (Figure 2B). At

180 dph, the ovary weight in both control and E2-treated females

were dramatically improved, but the ovary weight (F = 3.156,

P = 0.034) of E2-exposed females were still lower than the controls.

Similar results were observed in GSI (Figure 2C). The maximum

follicle area in both control and E2-treated females was gradually

increased after the exposure, and there was no significant difference in

maximum follicle area between control and E2-treated groups at

neither 90 or 180 dph (Figure 2D).
Effects of E2 treatment on the expressions
of genes involving in cell cycle

Compared with the values expression at 90 dph, the mRNA levels

of cdk2, cdk4, ccna2, ccnd2, ccne2, cdkn1b and cdkn2c were observed

to increase at 180 dph in the ovaries of control females (Figure 3).

Compared with the controls at 90 dph, E2 treatment significantly
Frontiers in Marine Science 05
down-regulated the mRNA levels of cdk2 (F = 1.436, P = 0.000) and

ccna2 (F = 0.578, P = 0.004), significantly up-regulated the mRNA

levels of ccnd2 (F = 1.846, P = 0.012), and did not significantly alter

the mRNA levels of cdk4, cdk6, ccne2, cdkn1b and cdkn2c. At 180 dph,

the mRNA levels of ccna2 (F = 1.995, P = 0.002) in the ovaries of E2-

treated females were still significantly lower than the control values

(Figure 3D). While there was no significant difference in the mRNA

levels of cdk4, cdk6, ccne2, cdkn1b and cdkn2c between control and

E2-treated females.
Effects of E2 treatment on the expressions
of genes involving in meiosis initiation

In the ovaries of control females, decreased mRNA levels of

sycp3 (F = 1.198, P = 0.008), rec8 (F = 0.846, P = 0.013) and dmc1

(F = 1.228, P = 0.006) and unaltered mRNA levels of spo11 were

observed at 180 dph compared with the values at 90 dph (Figure 4).

E2 treatment resulted in a significant decrease in the mRNA levels

of the four genes at 90 dph. While no significant difference was

observed in the mRNA levels of all the four genes between E2-

treated and control females at 180 dph.
Effects of E2 treatment on the expressions
of genes involving in apoptosis

As for apoptosis genes, E2 treatment did not affect the mRNA

levels of bax (Figure 5A), but significantly decreased the mRNA levels

of bcl-2 (F = 2.463, P = 0.018) at 90 dph, when compared with the
A B

DC

FIGURE 2

Effects of E2 on body weight (A), ovary weight (B), GSI (C) and maximum follicle area (D) in female tiger puffer after the exposure. Values represent
mean ± SEM (n = 6). Uppercase letters indicate significant differences over time within the same group (P < 0.05). Lowercase letters indicate
significant differences between groups within the same time (P < 0.05).
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controls (Figure 5B). Correspondingly, the ratio of bax/bcl-2 (F =

0.837, P = 0.005) was significantly higher in the ovaries of E2-exposed

females than the control values at 90 dph (Figure 5C). At 180 dph, no

significant difference was observed in the expression of bax, bcl-2 and

bax/bcl-2 ratio between E2-treated and control females.
Effects of E2 treatment on the expressions
of genes involving in follicular formation

In the ovaries of control females, the mRNA levels of bmp4 and

hnrnpk were found to significantly decrease at 180 dph compared

with the values at 90 dph, while contrary expression profile were

observed in bmp15, gdf9, figla and nobox (Figure 6). Compared with

the controls at 90 dph, E2 treatment significantly suppressed the

mRNA levels of bmp2 (F = 1.826, P = 0.003; Figure 6A) and hnrnpk

(F = 1.436, P = 0.006; Figure 6B), significantly elevated the mRNA

levels of bmp15 (F = 1.180, P = 0.005; Figure 6C), gdf9 (F = 0.385,

P = 0.006; Figure 6D) and figla (F = 0.243, P = 0.002; Figure 6E), but

not alter the mRNA levels of nobox (Figure 6F). At 180 dph, the

mRNA levels of all the six genes showed no significant difference

between control and E2-treated females.
Frontiers in Marine Science 06
Discussion

As the most important female hormone, estrogens plays a key

role to trigger and maintain ovarian differentiation during early life

stage of teleost. It was reported that suppression of E2 production

during gonad differentiation might result in testicular

differentiation of female tiger puffer (Rashid et al., 2007). In this

study, on the contrary, female tiger puffer were exposed to high

concentration of E2 during gonad differentiation. The results

showed that the ovary weight and GSI of E2-exposed female were

significantly lower than the values of normal females after the

exposure. Similar results were observed in medaka Oryzias latipes

exposed to diethylstilbestrol (DES), in which decreased germ cells

were also observed in DES-exposed females (Paul-Prasanth et al.,

2011). In the present study, although it was difficult to directly

count the number of follicles, it could be estimated by measuring the

maximum follicle area. There was no significant difference in

maximum follicle area between control and E2-treated females at

90 and 180 dph. We hypothesized that E2 exposure during gonad

differentiation could limit the number of follicles since the ovary

weight of E2-treated animals was considerably lower than the

control. This was supported by the result that primary growth
A B D

E F G H

C

FIGURE 3

Effects of E2 on the mRNA levels of cdk2 (A), cdk4 (B), cdk6 (C), ccna2 (D), ccnd2 (E), ccne2 (F), cdkn1b (G) and cdkn2c (H) involving in cell cycle.
Values represent mean ± SEM (n = 4). Uppercase letters indicate significant differences over time within the same group (P < 0.05). Lowercase
letters indicate significant differences between groups within the same time (P < 0.05).
A B DC

FIGURE 4

Effects of E2 on the mRNA levels of cdk2 (A), cdk4 (B), cdk6 (C), ccna2 (D), ccnd2 (E), ccne2 (F), cdkn1b (G) and cdkn2c (H) involving in cell cycle.
Values represent mean ± SEM (n = 4). Uppercase letters indicate significant differences over time within the same group (P < 0.05). Lowercase
letters indicate significant differences between groups within the same time (P < 0.05).
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follicles in E2-treated females were fewer in number than control at

180 dph.

In order to understand how the follicle number in the ovary of

female tiger puffer was affected by the E2 exposure, we firstly

detected the mRNA levels of genes involving in germ cell

proliferation and meiosis. The results showed that E2 exposure

significantly inhibited the expression of cdk2, ccna2, sycp3, rec8,

spo11 and dmc1 at 90 dph, and the mRNA levels of ccna2 was still

significant low in the ovaries of E2-treated females even after a 90-

day depuration in clean seawater. Cdk2 and ccna2 are primarily

considered to be involved in G2-M transition in cell cycle. However,

gene knockouts in mice showed that the two genes were dispensable

for cell cycle progression (Adhikari et al., 2012; Zhang et al., 2017;

Chotiner et al., 2019). Cdk2-deficient oocytes resume meiosis and

arrest normally at metaphase II (Adhikari et al., 2012). Ccna2-

deficient oocytes was also able to progress through the G2-M

transition and meiosis I unhindered (Zhang et al., 2017). Thereby,
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suppression on the expression of cdk2 and ccna2 might not affect

cell proliferationn the ovaries of female tiger puffer. Sycp3, rec8,

spo11 and dmc1 are key genes participating in the regulation of

meiosis initiation. In mice, the loss of any of the four genes caused

oocytes and spermatocytes to be stopped at meiosis I with faulty

synaptonemal complex formation, resulting in germ cell death and

even infertility. (Pittman et al., 1998; Kouznetsova et al., 2005; Xu

et al., 2005; Ishiguro, 2019). Similar results were also observed in

male medaka in dmc1 mutation (Chen et al., 2016). Based on above

researches, the decreased mRNA levels of sycp3, rec8, spo11 and

dmc1 in this study implied that the E2 exposure may affect the

process of meiosis by suppressing the expression of those genes on

meiotic pathway and further lead in decreased oocytes in female

tiger puffer.

When the oocytes develop into chromatin nucleolus stage, the

oocyte cysts break apart, and somatic cells surround the oocytes

forming primordial follicles (Grier et al., 2007; Uribe et al., 2016).
A B C

FIGURE 5

Effects of E2 on the mRNA levels of bax (A), bcl-2 (B) and bax/bcl-2 (C) involving in apoptosis. Values represent mean ± SEM (n = 4). Uppercase letters
indicate significant differences over time within the same group (P < 0.05). Lowercase letters indicate significant differences between groups within the same
time (P < 0.05).
A B

D E F
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FIGURE 6

Effects of E2 on the mRNA levels of bmp2 (A), bmp7 (B), bmp15 (C), gdf9 (D), nobox (E) and figla (F) involving in follicle formation. Values represent
mean ± SEM (n = 4). Uppercase letters indicate significant differences over time within the same group (P < 0.05). Lowercase letters indicate
significant differences between groups within the same time (P < 0.05).
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Exposure to DES or BPA inhibited cyst breakdown and led to

abnormal follicles in female mouse (Iguchi et al., 1990; Susiarjo

et al., 2007). A recent study in BPA-exposed mice found that the

emergence of aberrant follicles was related with lower levels of

bmp15 and gdf9 expression (Wang et al., 2018), which are known as

the several of most important genes for follicle formation and

development in both mammals and fish (Juengel et al., 2002;

Garcıá-López et al., 2011b; Otsuka et al., 2011; Liu et al., 2012).

In the present study, in contrast, the E2 exposure increased the

mRNA levels of bmp15 and gdf9, but decreased the mRNA levels of

bmp2 and hnrnpk. Bmp2 promotes the processes of follicle

formation by acting on oocyte development and somatic cell

differentiation. Its knockdown inhibited primordial follicle

formation and promoted apoptosis in hamster Mesocricetus

auratus (Chakraborty and Roy, 2015). In mice, disruption of

hnrnpk caused a block in cyst breakdown and follicle assembly,

subsequently resulting in ovarian cells undergoing abnormal

apoptosis (Wang et al., 2011). Meanwhile, the inhibited

expression of bmp2 and hnrnpk suggested that the E2 treatment

disrupted follicle formation and even caused apoptosis, which was

one reason that the follicle number reduced in female tiger puffer.

Now that abnormal meiosis and follicle formation enhanced

apoptosis, we further confirmed the effects of E2 exposure on genes

on bax/cytochrome c/caspase pathway that is known as the most

popular cascade involved in apoptosis. Among those genes, bax is a

cell death gene stimulating apoptosis (Perez et al., 1999), and bcl-2 is

a cell survival gene blocking apoptosis (Ratts et al., 1995). The bax/

bcl-2 ratio is usually used as an important indicator of cell fate

(Sánchez and Smitz, 2012; Luzio et al., 2016; Yin et al., 2017). Low

bax expression or high bcl-2 expression shifted the balance of bax

and bcl-2 toward long survival of cells and apoptosis was observed

to be inhibited (Sribnick et al., 2004; Sharma and Mehra, 2008).

While elevated mRNA levels of bax and ratio of bax/bcl-2

corresponded well with the atretic follicles in yellow catfish

exposed to DES (Wang et al., 2017). In the present study, E2

treatment did not affect bax expression but suppressed the mRNA

levels of bcl-2, shifting the balance of bax/bcl-2 toward apoptosis.

This result echoed the above inferences that disordered meiosis and

follicle formation promoted apoptosis.

In conclusion, our study revealed that E2 exposure from 20

to 90 dph affected female tiger puffer ovarian development by

interfering with meiosis initiation, follicle formation, and

increasing apoptosis, resulting in fewer follicles and a lower

GSI value in E2-treated females. The findings extended to our

understanding of the molecular processes underpinning the

toxicity of exogenous estrogens on primary ovarian growth

in fish.
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