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Satellite remote sensing allows large-scale global observations of aquatic

ecosystems and matter fluxes from the source through rivers and lakes to

coasts, marginal seas into the open ocean. Fuzzy logic classification of optical

water types (OWT) is increasingly used to optimally determine water properties

and enable seamless transitions between water types. However, effective

exploitation of this method requires a successful atmospheric correction (AC)

over the entire spectral range, i.e., the upstream AC is suitable for eachwater type

and always delivers classifiable remote-sensing reflectances. In this study, we

compare five different AC methods for Sentinel-3/OLCI ocean color imagery,

namely IPF, C2RCC, A4O, POLYMER, and ACOLITE-DSF (all in the 2022 current

version). We evaluate their results, i.e., remote-sensing reflectance, in terms of

spatial exploitability, individual flagging, spectral plausibility compared to in situ

data, and OWT classifiability with four different classification schemes. Especially

the results of A4O show that it is beneficial if the performance spectrum of the

atmospheric correction is tailored to an OWT system and vice versa. The study

gives hints on how to improve AC performance, e.g., with respect to

homogeneity and flagging, but also how an OWT classification system should

be designed for global deployment.

KEYWORDS

atmospheric correction, ocean color, optical water types, satellite remote sensing,
essential climate variable, Sentinel-3/OLCI
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1 Introduction

Ocean Color (OC) has been identified as an Essential Climate

Variable (ECV), because of its capability to observe various aspects

of the marine environment synoptically at global scales (GCOS,

2011; Hollmann et al., 2013). The color of the ocean is determined

by absorption and scattering interactions of sunlight with water,

free-floating particles and dissolved substances in the upper water

layer (current state of research on this is summarized by Bi et al.,

2023). Color, or more specifically the remote-sensing reflectance,

Rrs, is defined as the spectral (back-scattered) water-leaving

radiance, Lw, in proportion to the total down-welling plane

irradiance, Ed. The reference point lies directly above the sea

surface at the bottom-of-atmosphere (BOA). The spectral range

of Rrs includes not only the visible (VIS) range, which is perceived as

color often defined for wavelengths from 380 to 760 nm, but also

parts of the ultraviolet (UV) and near-infrared (NIR) spectral range;

it is primarily determined by the pure water absorption (e.g., Bi

et al., 2023). Space-borne ocean color sensors, however, measure

spectral radiances, LTOA, at the top-of-atmosphere (TOA) from the

given viewing direction. This signal is strongly influenced by light

interactions in the atmosphere, like scattering by air molecules, and

aerosols or absorption by atmospheric gases, but also by light

reflections at the sea surface (e.g., IOCCG, 2010; Frouin et al.,

2019). Moreover, whitecaps and air bubbles in water, not related to

the actual ocean color, contribute to the water-leaving signal (e.g.,

Dierssen, 2019). The process of retrieving unobstructed remote-

sensing reflectance at surface level from TOA radiance is typically

referred to as atmospheric correction (AC).

Spectral remote-sensing reflectance is the fundamental parameter

from which biogeo-optical properties and corresponding

concentrations of optically active water constituents can be derived.

The concentration of the pigment chlorophyll-a in water, Chl, is widely

used as a proxy for the phytoplankton biomass in the upper water layer;

Chl is also considered as an ECV as it is linked to the marine carbon-

cycle. The Global Climate Observing System (GCOS, 2011) defines a

target accuracy requirement for Rrs (strictly speaking for the water-

leaving radiance) of 5% specifically for the blue and green wavelengths

and 30% for Chl. This applies to so-called Case-1 (C1) waters whose

inherent optical properties (IOPs) primarily depend on phytoplankton,

its abundance and its degradation products; this is generally the case for

open oceans. In contrast, all “optically complex” waters of marginal

seas, coastal and inland water bodies are summarized as Case-2 (C2)

where additional water constituents such as non-algal particles (NAP)

and colored dissolved organic matter (CDOM) considerably influence

the water color (Morel and Prieur, 1977; Bi et al., 2023). CDOM is

primarily leached from decaying detritus and terrestrial organic matter,

but it can also be yielded from precipitation with elevated CDOM levels

in continentally influenced rainwater (Kieber et al., 2006). The accepted

uncertainties of Rrs and subsequent ocean color products are

considerably higher for Case-2 waters and GCOS recommends the

implementation of specifically tailored algorithms. Based on this

rationale, EUMETSAT for example offers two independent Chl

products (based on different AC methods) from the operational
Frontiers in Marine Science 02
Ocean and Land Color Instrument (OLCI) on board the Sentinel-3

satellites, namely CHL_OC4ME for Case-1 and CHL_NN for Case-2

waters. User consultations, however, reveal a clear priority for ocean

color algorithms that work across C1-C2 waters, or at least that

demarcate the boundary between the two; moreover, appropriate

and steady ocean color products are required for climate change

studies (Sathyendranath et al., 2017).

The usage of branching and blending of specialized algorithms

for seamless transition and case-optimized phytoplankton estimates

has increased over the course of the recent years. Smith et al. (2018)

and Kajiyama et al. (2018) for example have developed OLCI-

specific bipartite switching algorithms for regionally optimized Chl

retrievals. More holistic approaches involve a pre-classification of

Rrs spectra into several optical water types (OWT) in order to

display the full spectral diversity of oceanic, coastal, and inland

waters (e.g., Moore et al., 2001; Martin Traykovski and Sosik, 2003;

Vantrepotte et al., 2012; Shi et al., 2013; Moore et al., 2014; Mélin

and Vantrepotte, 2015; Minu et al., 2016; Eleveld et al., 2017;

Hieronymi et al., 2017; Jackson et al., 2017; Spyrakos et al., 2018;

Soomets et al., 2019; Uudeberg et al., 2020; Jia et al., 2021; Wei et al.,

2022). However, effective exploitation of this method presumes a

successful atmospheric correction over the entire spectral range.

Residual errors from imperfect atmospheric correction, which are

not reproducible by combination of mean OWT reflectance spectra,

can result in very low total memberships and therefore, prove the

unfitness of the processing constellation for this case. This leads to

the need that the upstream AC method is within the scope for each

water type and that it delivers always-sufficient total memberships.

There are various sensor-specific AC methods, which supply

remote-sensing reflectance mostly optimized for either oceanic,

coastal or inland waters, e.g., described in IOCCG (2010) or

Frouin et al. (2019). The corresponding AC performance can

differ significantly depending on the selected evaluation data,

optical water types, applied flagging, sensor properties like camera

boundaries, the presence of transparent clouds or sun glint (e.g.,

Goyens et al., 2013; Müller et al., 2015a; Müller et al., 2015b; Qin

et al., 2017; Tilstone et al., 2017; Mograne et al., 2019). Frouin et al.

(2019) listed a number of significant issues for atmospheric

correction including clouds, adjacency effects, whitecaps, the

Earth atmosphere ’s curvature, multiple scattering, and

polarization. Moreover, atmospheric corrections have serious

difficulties in cases with high CDOM or NAP concentrations in

water, i.e., very dark or bright, so called extreme Case-2 waters

(Hieronymi et al., 2016; Hieronymi et al., 2017). Absorption of

dissolved organic matter causes an exponential reduction of the

reflectance especially in the blue; this is from a TOA-reflectance

point of view, a comparable spectral effect as Rayleigh scattering by

air molecules and hence ambiguous. Absorbing or extremely

absorbing Case-2 waters (C2A, C2AX) are characterized by low

spectral Rrs with maximum in the green and in cases with very high

CDOM-content (i.e., aCDOM(440) >1 m
-1) in the yellow, red, or even

NIR spectral range. Particles in water absorb, but above all also

scatter light, which leads to increased reflectance at higher

concentrations, partly also in the NIR. The spectral absorption
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and much higher scattering of non-algae particles also have an

approximately exponential course, as does the Rayleigh influence.

At relatively high NAP concentrations of 1 g m-3, one speaks of

scattering Case-2 waters (C2S); at NAP > 100 g m-3 of extremely

scattering waters (C2SX) respectively. Furthermore, AC problems

arise in the presence of very high concentrations of phytoplankton

and floating scum with non-negligible NIR reflectance (e.g., Reinart

and Kutser, 2006). Clearly, a combination of different AC

algorithms can potentially improve an all-water-type-embracing

Rrs-retrieval; examples are given in Shi and Wang (2009); Aurin

et al. (2013); Bi et al. (2018); Liu et al. (2019), and Schroeder et al.

(2022). However, programmatic linking of fundamentally different

AC algorithms can be challenging and switching may lead to spatial

inconsistency or artefacts in the retrievals.

Several AC methods exist for ocean color imagery of Sentinel-3/

OLCI. However, their range of validity is not always clear and they

do not always fulfil all requirements for unlimited usability of

OWT-based water algorithms like the ONNS algorithm by

Hieronymi et al. (2017). In this study, we compare five

conceptually different atmospheric correction methods for

Sentinel-3/OLCI (specified in Table 1): 1) the standard (baseline)

Level-2 AC – Instrument Processing Facility (IPF), 2) the

alternative Level-2 AC C2RCC, 3) a novel atmospheric correction

for diverse optical water types (A4O) by Hieronymi et al. (in prep.),

4) POLYMER by Steinmetz et al. (2011), and 5) the Dark Spectrum

Fitting (DSF) implemented in ACOLITE by Vanhellemont and

Ruddick (2021). There are also other methods available that can be

applied to OLCI (e.g., Guanter et al., 2010; Gossn et al., 2019;

Schroeder et al., 2022), but we focus on these five ACs as

representative examples of diverse approaches. Based on optically

diverse Sentinel-3/OLCI images, we compare the capacity for data

exploitation, the spatial plausibility and homogeneity (noise), and

analyze the AC output, namely Rrs, in view of different OWT

classification schemes. Moreover, we show comparisons with in

situ match-up data. We are thereby attempting to demarcate the

scope of application for each AC method and identify potentials for

future improvements.
Frontiers in Marine Science 03
2 Applied methods and
evaluation data

2.1 Atmospheric correction methods
under consideration

2.1.1 IPF
The European Space Agency (ESA), together with the European

Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT), operates the Sentinel series of satellites from the

European Union Copernicus Programme. EUMETSAT provides

Level-2 (L2) standard water products for Sentinel-3/OLCI. Our

work refers to data of the ocean color “baseline atmospheric

correction” from the Instrument Processing Facility (IPF), which

has been operational since 2021 (OLCI Collection-3). The

reflectances provided are the basis for the estimation of the

chlorophyll-a concentration in Case-1 water, CHL_OC4ME. The

AC was developed for the open ocean and is based on work of

Gordon and Wang (1994); further developments of this method

were summarized by Gordon (2021). Significant further

developments regarding MERIS and OLCI are based on Antoine

and Morel (1998), and Antoine and Morel (1999); Moore et al.

(1999), and Nobileau and Antoine (2005). Major updates of IPF

have been introduced in the Sentinel-3/OLCI L2 report for baseline

collection (EUMETSAT, 2021); the report includes several

comparisons with in situ data and reference missions, and lists

the recommended flags. Particularly noteworthy is the recently

implemented revision of the so-called bright pixel correction

within the AC, which is applied everywhere, but brings

improvements especially in NAP-dominated coastal waters.
2.1.2 C2RCC
The OLCI L2 processing includes a second “alternative” AC

whose results are not provided, but they form the basis for the L2

Case-2 water products like chlorophyll-a concentration, CHL_NN.

The AC uses neural networks (NN) for the retrieval of Rrs and also
TABLE 1 Examined atmospheric correction methods for Sentinel-3/OLCI ocean color processing with AC-specific masking (plus INVALID and LAND
for all).

AC Full name and Version Original
scope

Flags for invalid pixel expression Additional warning flags

IPF IPF L2-WFR OLCI Collection-3
OL_L2M.003.00

C1 CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN,
COSMETIC, SATURATED, SUSPECT, HISOLZEN,
HIGHGLINT, SNOW_ICE, AC_FAIL, ADJAC,
WHITECAPS, RWNEG_[O2-O8]

TURBID_ATM, TIDAL, MEGLINT,
AC_FAIL, WHITE_SCATT, LOWRW,
HIGHRW, ANNOT, RWNEG_[O1, O9-12,
O16-18, O21]

C2R C2RCC v1.7 including IPF gains C2S, C2A RHOW_OOR, IDEPIX_CLOUD, IDEPIX_CLOUD_BUFFER,
IDEPIX_CLOUD_SHADOW, IDEPIX_SNOW_ICE,
RTOSA_OOR

RTOSA_OOS, CLOUD_RISK

A4O A4O v0.23 (2022-01-19) C1, C2S/X,
C2A/X

CLOUD_RISK, SEA_ICE FLOATING, SUSPECT, GLINT_RISK,
ADJACENCY, RTOA_EXCESS

POL POLYMER v4.14 (2021-12-17) C1, C2S,
C2A

CLOUD_BASE, OUT_OF_BOUNDS, EXCEPTION,
THICK_AEROSOL, HIGH_AIR_MASS

NEGATIVE_BB, EXTERNAL_MASK,
CASE2, INCONSISTENCY

DSF ACOLITE-DSF v2022-10-25.0 C2S/X NIR_SWIR_THRES, CIRRUS, TOA_THRESH, NEGATIVE,
EXTENT
There are sometimes additional flags for subsequent water algorithms that are not shown here.
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goes back to the MERIS heritage with works of Doerffer and Schiller

(2007). The original Case-2 Regional (C2R) algorithm, which

contains AC and water algorithms, was optimized for coastal

waters of the North Sea. The algorithm was further developed in

the CoastColour project (ESA) and is now known as C2RCC

(Brockmann et al., 2016). C2RCC is available in the Sentinel

Toolbox (SNAP). The neural networks used in the OLCI L2

processing and those of C2RCC are identical. However, there are

small differences between OLCI operational NN products and

outputs from the SNAP C2RCC processing due to some different

pre-processing steps. In this study, the IPF-derived SVC gains (from

Collection 3) are used for C2RCC processing directly on OLCI L1B

data, which is done slightly different in the OLCI L2 ground

segment NN processing (EUMETSAT, 2021). The application of

sensor-specific and AC-specific system vicarious calibration (SVC)

gains may have the biggest impact also in comparison with previous

studies; in some studies, such as Cazzaniga et al. (2023), the same

SVC gains are applied, in earlier studies than 2021, other SVC gains

were used in some cases (e.g., Giannini et al., 2021). The pixel

identification tool IdePix was used for cloud detection and

corresponding additional flagging (Brockmann et al., 2013).

Against usual recommendations to use equal processing levels for

match-up analysis, the non-normalized Rrs product of C2RCC is

used, which has a broader spectral range in the NIR necessary for

some OWT models.

2.1.3 A4O
In the course of the last few years, Hieronymi et al. (in prep.)

developed a novel atmospheric correction for diverse optical water

types (A4O). The basis was C2RCC, but with fundamental

conceptual revision to optimize classifiability with the OWT

framework implemented in the OLCI Neural Network Swarm

(ONNS) water algorithm (Hieronymi et al., 2017). The aim of

A4O is to be applicable to all natural waters, from Case-1 to

extremely scattering or absorbing Case-2 waters. Special attention

was dedicated to phytoplankton diversity. A4O applies an ensemble

of different neural networks and provides fully normalized Rrs. In

addition, there are other differences to C2RCC; these include the

specification of water temperature and salinity using global

climatological data, the treatment of ocean whitecaps, the

expansion of features in the NN training data, flagging, and an

option for spectral and spatial smoothing of the signal. The IPF-

SVC gains are also taken into account here primarily to compensate

for sensor-specific differences, i.e., the instruments on Sentinel-3A

and -3B. The invalid pixel expression refers primarily to an own

cloud masking, all visible water areas are valid in principle (non-

physical negative reflectance is never delivered). However, there are

a number of warning flags, e.g., for pixels with possible land

influence or strong sun glint signal, where results might be faulty.

It is planned to publish A4O and ONNS in SNAP in the

medium term.

2.1.4 POLYMER
POLYMER is an AC algorithm originally developed for oceanic

and coastal waters (Steinmetz et al., 2011; Steinmetz and Ramon,
Frontiers in Marine Science 04
2018). It uses a spectral fitting scheme that relies on two models: a

polynomial-like model of atmospheric reflectance and a model of

water reflectance. It was developed primarily for correcting sun-

glint contamination on images of the MERIS sensor, and has then

been applied to several multispectral and hyperspectral sensors

including OLCI. In addition to sun glint correction, it is also robust

to aerosol contamination and other atmospheric and surface effects

such as thin clouds and adjacency effects (Steinmetz and Ramon,

2018; Zhang et al., 2019). POLYMER is the only method in this

study that does not use the IPF-SVC gains because all bands are

used simultaneously for atmospheric correction. Thus, specific

gains are used, generated by a dedicated spectrally coupled

SVC scheme.

2.1.5 ACOLITE-DSF
The Dark Spectrum Fitting (DSF) algorithm as implemented in

ACOLITE, was originally developed for aquatic applications of

satellite data with high spatial resolution in the meter to

decameter scale, e.g., the Landsat series, Sentinel-2/MSI, Pléiades,

and PlanetScope (Vanhellemont and Ruddick, 2018; Vanhellemont,

2019a; Vanhellemont, 2019b; Vanhellemont, 2020). Vanhellemont

and Ruddick (2021) adapted the AC for Sentinel-3/OLCI especially

for mapping of suspended particulate matter and chlorophyll-a

concentration in turbid coastal waters. Thus, the main scope of

ACOLITE-DSF is for aquatic applications for inland and coastal

waters, but it can also be used over clearer waters and even land.

The gains from IPF-SVC are also being considered here.
2.2 Reference satellite and match-up data

2.2.1 Selected scenes for spatial analysis
Ten full-resolution OLCI (Level-1) scenes were selected for

analysis of the spatial AC performance (pixel size 300 m at nadir,

swath width approximately 1270 km). They cover a wide variety of

optical water types, regions, sun elevations, and sensor-viewing

angles relative to the sun (Table 2; Appendix Figure A1).

Approximately 47% of the observed Earth surface in the images is

covered by water. Of these water areas, 36% are flagged for cloud-

risk and 9% for sun-glint according to the A4O designation. For a

representative analysis of these scenes, common masks were used

where all 5x5 pixels around a central pixel must be valid. This is to

eliminate possible cloud artefacts, cloud shadows, sun glint, and

land adjacency effects as much as possible. The freely visible and in

principle unrestricted water areas were visually checked. However,

many of these water pixels are masked by the individual AC

methods; especially IPF masks large areas because it produces

negative Rrs values here. The selected free water areas cover 31.5

million pixels. Inland waters account for 4%. About 0.6% of the

pixels show a characteristic red edge increase of TOA reflectance

caused by floating biomass at the sea surface and are labelled as

FLOATING in A4O. Hieronymi et al. (2016) suggested a definition

for extremely scattering waters with Rrs(865) ≥ 0.005 sr-1; thus, the

coverage of bright pixels depends on the AC method and is up

to 4%.
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2.2.2 Match-up data from in situ measurements
and satellite observations
2.2.2.1 AERONET-OC

Independent validation was carried out for match-ups between

OLCI imagery and AERONET-OC in situ measurement data

(Zibordi et al., 2009) from 2016 to 2020 distributed through the

ESA OC-CCI in situ database (Valente et al., 2022). The data set was

limited to OLCI bands (± 2 nm). All Rrs measurements are

normalized following Park and Ruddick (2005). The stations are

widely distributed geographically, but often near coasts or in inland

waters (GLO – Gloria, Black Sea; GDT – Gustav Dalen Tower,

Baltic Sea; HLH – Helsinki Lighthouse, Baltic Sea; LIS – LISCO,

Long Island Sound; LUC – Lucinda, East Coast of Australia; MVC –

MVCO, US East Coast; PAL – Palgrunden, Lake in Sweden; VEN –

Venice, Adriatic Sea; WAV – Wavecis_site_csi_6, Gulf of Mexico).

Therefore, the water types are very similar and the data are not

representative of the full range of all natural waters. In the cases

where the entire spectra are available, the maximum reflectance lies

at 560 nm in 89% cases of the data, only 11% have the maximum at

490 or 510 nm; there is no in situ data included with the maximum

in blue bands<490 nm or at bands >560 nm. The vast majority of

the data counts as Case-2 water. For band-wise comparisons,

however, data from Case-1 waters are also included. Some of the

AERONET-OC data from the Baltic Sea and the Black Sea represent

distinct blooms of cyanobacteria or coccolithophores (e.g.,

Cazzaniga et al., 2021; Zibordi et al., 2022; Cazzaniga et al., 2023).

However, for a comparison of AC results at all 16 (out of 21) OLCI

bands, in situ data are often missing, especially in red and NIR

bands. In general, band-shifting methods can be used to derive

OLCI spectra from different band configurations, and the mean

percentage retrieval error in the spectral range between 400 and 600

nm is usually less than 5%, but for red and NIR bands the

uncertainties are much larger (Hieronymi, 2019). For this reason,

additional band shifting was not used in this work, since the main

purpose of the match-up comparison is to show the spectral

plausibility of the AC results.
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2.2.2.2 Other in situ data

In order to be able to rudimentary quantify the spatial scenes in

the transition from coastal water types and also to contextualize

very turbid waters that are not covered in AERONET-OC,

exemplary further in situ measurement data are considered.

Firstly, reflectance measured by Hieronymi et al. in the North

Sea/German Bight (OLCI match-up with scene #2) with a protocol

described in Tilstone et al. (2020) and normalized with Park and

Ruddick (2005). Secondly, OLCI match-ups with the PANTHYR

system (Vansteenwegen et al., 2019) that is located in turbid coastal

waters in Belgium. The data are provided by Vanhellemont and

Ruddick (2021); ACOLITE-DSF was specially designed for these

waters and a comparison with the AC candidates (albeit in different

versions for ACOLITE-DSF, IPF, and C2RCC, but without A4O)

was discussed in their original paper. Approximately half of the

PANTHYR data are considered as extremely scattering waters using

the above-mentioned definition, the other are C2S.

2.2.2.3 Match-up procedure

The Calvalus system (Fomferra et al., 2012) was used to identify

OLCI image matches with in situ data within three hours of the

satellite overpass. Altogether, there are 2545 match-ups between

2016 and 2020 for the nine AERONET-OC stations and 62 for

PANTHYR (2019-2020) for OLCI-A & B. For some stations, there

are only a few spectral bands for the comparison and the match-up

number varies for each AC according to the filtering of valid data

points. Duplicated-flagged values are not used. Mini-scenes of

about 10x10 pixels in size were selected at IPF, C2RCC, and A4O,

and 5x5 macro-pixels were extracted from them. In the case of

POLYMER and ACOLITE-DSF, the complete scenes were

processed first and the macro-pixels extracted from them.

ACOLITE-DSF can be rather sensitive to size of the scene or sub-

scene, and it is usually recommended to use a spatially limited study

area with a single aerosol retrieval. For larger scenes, as used here,

the aerosol retrieval is tiled and interpolated to the full extent.

Individual tile contents may skew the results between tile centers.
TABLE 2 Selected test scenes with large cloud-free areas that cover high optical diversity (shown in Appendix Figure A1).

Scene Sensor-Date-UTC Region Special features

#1 S3A-20160720-092821 Barents Sea High latitudes, bloom of coccolithophores

#2 S3A-20160720-093421 North Sea, Wadden Sea Moderately to extremely scattering waters, tidal areas, in situ data

#3 S3A-20170114-130626 South Atlantic Ocean, Rio de la Plata estuary Extremely scattering waters, clear oceanic waters, sun glint, South Atlantic
Anomaly

#4 S3A-20170527-015236 Yellow Sea, East China Sea, Yangtze, Lake
Taihu

Extremely scattering waters, tidal areas, large rivers, absorbing aerosols, sun glint

#5 S3A-20170529-092334 Mediterranean Sea Large areas with clear waters, sun glint

#6 S3A-20170913-080730 Black Sea, Aegean Sea Clear and absorbing waters

#7 S3A-20180715-093613 North Sea, Baltic Sea Intense bloom of cyanobacteria partly with scum

#8, #9 S3A-20200601-092517,
S3B-20200601-084546

North Sea, Baltic Sea Inter-comparison of S3A and S3B with different observation angles, absorbing
waters

#10 S3B-20200406-093801 North Sea, Baltic Sea High OWT diversity
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The aggregation of the 5x5macro-pixel followsmostly the procedure

described inMüller et al. (2015a). The valid pixel expressions of each AC

(Table 1) are applied; all valid pixels are screened for outliers per band

using a threshold of 2.5 standard deviations. From the remaining valid

pixels their mean value, m, and standard deviation, s, is calculated and

the number of valid observations (excluding the outliers) is recorded.

Based on the percentage coefficient of variation, CV, a match-up is

considered in further analysis, if the spatial homogeneity is high for the

particular band and therefore CV = s/m × 100% < 15%. Second, at least

half of the pixels in the macro-pixel must be valid. These criteria are

checked for each data point and band independently, so that AC

solutions with some noise in a part of the spectral range may lose

good match-ups here but retain part of the spectrum in other spectral

regions. The number of match-ups will therefore vary per band, which

allows some interpretation in terms of spatial noise.

To compare the performance of the AC methods, we use the

match-up statistics recommended by EUMETSAT (2022). Besides the

well-known linear regression statistics with the correlation coefficient

(r), we use the root-mean-square-error (RMSE), median absolute

deviation (mdAD), median absolute percentage deviation (mdAPD),

the spectral angle mapper (SAM), and the Chi-squared test (c²).
2.3 Optical water type frameworks

The classification of natural waters into optical water types

serves the purpose of comparability and, in the case of large-scale

satellite image processing, the selection and blending of results of
Frontiers in Marine Science 06
suitable algorithms. Basically, characteristic Rrs-spectra and their

covariance are given to define a class. An OWT algorithm tries to

combine class-specific spectra in such a way that the input Rrs-

spectrum can be reproduced, whereby weights are assigned to the

contributing classes. The number of defined classes, shape and

amplitude of the mean spectra, as well as the mathematical

determination of the class weights can vary greatly in the different

approaches (see Figure 1).

In order to evaluate results of the five AC methods with regard

to OWT, four OWT classification methods were selected with

different emphases, e.g., focusing on marine or inland waters. For

the selection of the OWT methods, it was necessary to consider the

degree of affiliation to the cluster centers. Therefore, methods based

on fuzzy logic clustering and using the Mahalanobis distance and

c²-distribution to calculate the total membership values were

chosen (Moore et al., 2001; Moore et al., 2014). Furthermore,

only hyperspectral or at least OLCI band-based OWT methods

were selected, but no methods using band ratios or concentration

thresholds. For the selection, it was also important to represent a

wide variety of spectral forms that are considered important in the

different methods. Therefore, in general, other classification

approaches could be considered that might provide more robust

results for the AC methods under consideration or that are not too

focused on either marine or inland waters. The used OWT

classification methods are:
1. J17 (Jackson et al., 2017) is an OWT method that was

developed in the frame of ESA’s Ocean Colour Climate
A B

DC

FIGURE 1

Spectral reflectance of optical water types from four frameworks by (A) Jackson et al. (2017), (B) Moore et al. (2014), (C) Hieronymi et al. (2017), and
(D) Bi et al. (2019), and Bi et al. (2021). The line denotes the original spectral centroid of each water type and the shaded ribbon denotes the
standard deviation from respective training datasets.
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Fron
Change Initiative (OC-CCI). Millions of pixels from

merged satellite data were selected for clustering. 11

spectral types for marine waters were identified, and three

additional “highly-turbid” coastal spectra fromMoore et al.

(2014) were also adopted. The original publication referred

to the OC-CCI dataset v2 with SeaWIFS bands; in 2020,

new optical water class set were defined for the dataset v5

for MERIS-referenced data with POLYMER (v4.12) as the

atmospheric correction (Sathyendranath et al., 2021). Thus,

the adapted OWT method uses 14 classes and six OLCI

bands between 412 and 665 nm.

2. M14 (Moore et al., 2014) uses hyperspectral Rrs between

400 and 800 nm that are primarily representative for coastal

regions and lakes, where the centroids were trained based

on in situmeasurements. The approach distinguishes seven

classes, but actually no blue (oceanic) waters. Their original

OWT analysis actually refers to the underwater remote-

sensing ratio, rrs, which can be transferred above-water to

Rrs.

3. H17 (Hieronymi et al., 2017) is a more holistic approach to

OWT classification as it aims to cover “most natural

waters”, from the open ocean to extremely absorbing or

scattering waters. The basis of H17 are radiative transfer

simulations with Hydrolight (Mobley, 1994), which is a

common approach with the ACmethods C2RCC and A4O.

The latter was even optimized in terms of OWT

classifiability with H17. The OWT scheme uses 11 OLCI

bands from 400 to 865 nm and distinguishes 13 classes. In

order to avoid conflict with possible negative reflectances,

the spectra are transformed by log10(Rrs + 1) and

brightness-normalized, so that the classification is based

on the shape of the spectrum alone.

4. B21 is an extended OWT framework based on the works of

Bi et al. (2019), and Bi et al. (2021), developed specifically

for inland waters. The hyperspectral training data, which

were resampled to 15 OLCI bands from 400 to 865 nm,

were mostly measured at large lakes, reservoirs, and rivers

across China. The approach differentiates 17 classes

including eutrophic and hypertrophic cases with high

biological productivity and even surface scum. The

spectra are normalized by dividing them by their integrals

because, according to their reasoning, the composition of

inland waters varies greatly, which changes the shape of the

reflectance spectrum rather than the magnitude.
The selected OWT frameworks have different approaches to

classifying the spectra. In H17 and B21 the spectra are normalized

(albeit in different ways) to highlight differences in spectral shapes

between types, while in J17 and M14 differences in the magnitude of

the spectra are taken into account. Therefore, it is expected that the

interpretation of atmospherically corrected data will depend in part

on the region observed by the satellite, as the different waters for

which these methods were initially developed are very different. For

example, B21 will not be able to represent oceanic water due to the

lack of “blue types”, while J17 will have difficulty distinguishing

eutrophic inland waters, which are not foreseen in the marine
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model of POLYMER, on which J17 is based. In addition to the

selected OWT frameworks, we also use the (OLCI) wavelength of

the Rrsmaximum as a direct and intuitive indication for water types;

a similar approach using the spectrally-weighted Apparent Visible

Wavelength has been shown to be effective for different optical

conditions (Vandermeulen et al., 2020). In general, the maximum

reflectance in clear seawater is at shorter wavelengths (more blue or

green), whereas in turbid water the maximum is shifted towards

longer wavelengths (more green, brown, and red).
2.4 Evaluation of the classifiability

In optical fuzzy logic classification, the class membership is

calculated by the cumulative c² distribution with n degrees of

freedom (band number) and the Mahalanobis distance between

the spectrum and the OWT centroid, normalized by the OWT

standard deviation (see calculation details in Moore et al., 2001). To

assess the classifiability of an AC-derived spectrum, we calculate the

total membership for the OWT classification scheme, ut. An ideal

classification result should give ut close to (or even slightly higher

than) one. At lower ut, the classification is performing poorly with a

threshold on totally non-classifiable defined as ut ≤ 10-8. Such cases

can occur either because of insufficient type representation in the

framework or because of errors of the spectral shape or intensity

itself, i.e., underperformance of atmospheric correction,

uncorrected influences from adjacency effects or bottom

reflections, etc. (Moore et al., 2014). Jackson et al. (2017) also

mentioned that ut should not be much larger than one in the ideal

classification result either, which indicates overlap and redundancy

between types. However, in this study, we allow ut to be greater than

one, because using frameworks across different water areas will

inevitably induce overlap between types. We define five levels of

classifiability as shown in Table 3. A spectrum is not classifiable if

no OWT can be assigned, whereas OWT memberships are

distributed between the classes at the other four levels. Evaluation

criteria have been discussed in various publications, e.g., Mélin et al.

(2011); Vantrepotte et al. (2012), or Hieronymi et al. (2017); the

chosen levels are arbitrary, but work reasonably well for the

evaluation of the classification. After all, the percentages of

classifiable values in the different water types as well as in the

entire data set are calculated. The higher the percentage of high or

medium values, the better the classifiability of Rrs.
TABLE 3 Classification levels related to the total membership from all
classes.

Assignable levels ut ranges

Non-classifiable ut ≤ 10−8 ≈ 0

Below-threshold 0 < ut < 10−4

Low 10−4 ≤ ut < 0:3

Medium 0:3 ≤ ut < 0:8

High ut ≥ 0:8
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3 Results

3.1 Spatial homogeneity and plausibility of
satellite data

The various atmospheric correction methods provide individual

masks at different levels indicating performance limits and

uncertainties (Table 1). Flagging is usually a trade-off between

limited validity with suspect results at some spectral bands and

still useful results in another spectral range. Many ocean color

algorithms utilize only one or a few bands for which the AC results

can be adequate. Other in-water algorithms use many bands across

the spectrum, e.g., principle component analysis or some neural

networks. For OWT applications, the whole spectrum is important.

Overcorrection of an AC manifests often in negative Rrs, usually

either in blue (especially IPF) or NIR bands; in any case, this is not a

physically plausible result and may be an invalid input to the in-

water algorithm. Looking at the whole spectrum, IPF and

POLYMER produce very large areas with negative reflectances,

both about half of the free water area (albeit the values are often very

close to zero). The IPF expression for valid pixels requires positive

reflectances at least in the central VIS range (412-665 nm), which

cannot be satisfied over large parts and is the main reason for >50%

invalid masking (Table 4). POLYMER does not have this restrictive

flagging, so everything remains valid. Depending on the processing

settings, ACOLITE-DSF does not output negative reflectances, but

its flagging results as NaN in the output files, which is the main

contributor to the 20% invalid flagging (these cases also occur in

C2SX waters, for which ACOLITE-DSF was designed, e.g., visible in

Figures 2-A5, C5). C2RCC and A4O apply neural networks to

approximate log-transformed Rrs directly from RTOA without

subtracting individual contributions from Rayleigh scattering or

glint. Resulting negative reflectances are ruled out, because of the

log-transformation and the value range of the NN training. This is
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an important advantage with regard to continuous usability of the

results with different types of water and allows Rrs estimation even

for very small values close to zero with less noise. The slightly more

sensitive cloud detection in C2RCC processing with IdePix results

in an additional 1% masking of the water areas.

Figure 2 shows extracts of satellite images (#3, #7, #2, and #1;

Table 2; Appendix Figure A1) of the AC results for Rrs(560) with

respective invalid flagging. Spatial noise usually transfers to the

ocean color products and is thus an indicator for AC performance.

In this context, the South Atlantic Anomaly (SAA) area (Figure 2A)

is special; clear spectral outliers of individual bands occur here in

isolated pixels and the peaks are usually noticeably higher at longer

wavelengths. Some AC methods succeed in smoothing the pixel

spectrum, thereby reducing spatial discontinuities. C2RCC

produces the most visible noise in this area (Figure 2-A2), which

is probably due to the use of neural networks that are very sensitive

to small spectral changes. A4O also uses NNs, but has significantly

lower spatial noise due to various processing steps, including a

dedicated spectral smoothing for suspect outliers and averaging of

the results of different NNs (Figure 2-A3). Moreover, an option is

recommended for A4O that applies a Gaussian filter over 3x3

macro-pixels, which smooths results for water areas, attenuates

cloud artefacts, and tears down camera boundaries. ACOLITE-DSF,

as applied here, interpolates atmospheric parameters over a large

spatial region, which effectively reduces the AC-induced noise level.

Looking at the spatial homogeneity criterion (CV) at different

wavelengths for homogeneous areas of 100x100 pixels (Appendix

Figure A1), we see a low and comparable noise levels of the AC-

input radiance at TOA for Case-1 and -2 waters; in the SAA area,

CV values are about twice as high (Table 4). In Case-1 water in the

SAA (scene #3, Appendix Figure A1), we see the biggest differences

of CV(Rrs) between A4O and C2RCC, with A4O having the least

noise of all the methods. In another (presumably clearer) Case-1

water sea area in the Mediterranean Sea (east of the island Sardinia,
TABLE 4 Evaluation of selected spatial features for 31.5 million free water pixels in ten test scenes for the five atmospheric correction models.

Feature LTOA IPF C2R A4O POL DSF

Invalid flagged water area 51.3 1.0 0 0 20.5

Rrs(412)< 0 18.5 0 0 0.5 0

Rrs(865)< 0 40.2 0 0 46.7 0

CV(412) in Case-1 waters 0.4 4.3 5.3 0.9 7.8 2.0

CV(560) in Case-1 waters 0.8 9.3 4.9 1.0 4.6 3.6

CV(665) in Case-1 waters 1.3 55.4 7.0 3.6 27.0 7.3

CV(412) in Case-1 waters (SAA) 0.9 9.3 16.0 5.3 17.8 9.7

CV(560) in Case-1 waters (SAA) 1.8 14.0 133.6 3.8 8.7 12.4

CV(665) in Case-1 waters (SAA) 4.0 129.1 >1000 9.5 63.0 36.1

CV(412) in Case-2 waters 0.4 >1000 15.5 2.6 33.0 2.9

CV(560) in Case-2 waters 0.6 7.6 18.9 1.5 6.2 3.6

CV(665) in Case-2 waters 1.0 24.7 16.5 1.8 11.1 10.2
The coefficients of variations of AC-derived Rrs refer to homogeneous subsets of 100x100 pixels; corresponding values of initial TOA radiance are included for comparison (see Appendix Figure
A1). All values have the unit [%].
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scene #5, Appendix Figure A1), the noise of C2RCC is significantly

lower and comparable to the other methods, IPF and POLYMER

have the highest noise in the red band at 665 nm above the valid-

match-up threshold of 15%. In this very clear blue water, Rrs(665)

becomes very small and approaches zero. In fact, the variability of

Rrs(665) in case of IPF and POLYMER is pure random noise, in
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A4O water mass structures are still clearly visible and determine CV

(665), and in C2RCC one can see weak noisy structures as well.

ACOLITE-DSF, which is not designed for such clear water,

provides an Rrs(665) image with much higher values compared to

the other ACs (factor 10 higher). Because ACOLITE-DSF does not

perform pixel-by-pixel atmospheric correction, it shows clear
FIGURE 2

Subsets from OLCI images (see Appendix Figure A1). The top row shows RGB images of L1 radiance at top-of-atmosphere (A–D); points for spectral
comparisons are marked there (see Figure 3). The five rows below show the results for Rrs(560) of the compared AC methods: IPF (A1-D1), C2RCC
(A2-D2), A4O (A3-D3), POLYMER (A4-D4), and ACOLITE-DSF (A5-D5). Areas of AC-specific invalid pixel expressions are highlighted transparently or
with NaN.
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atmospheric structures such as cirrus clouds, which are completely

decoupled from the water; in fact, the signal is not only “water-

leaving” therefore Rrs(665) is invalid by definition (but not

adequately flagged). In another uniform area in Case-2 waters (in

the southern Baltic Sea, scene #8, Appendix Figure A1), the noise

for IPF and POLYMER in blue bands is very high. In the red band,

POLYMER has higher Rrs and therefore less noise here than in

comparison with Case-1 waters. Overall, the results from A4O are

spatially the most homogeneous over the entire spectrum whereby

the noise level is only moderately increased compared to the TOA

input signal.

In the presence of undetected, partially sub-visible clouds such

as contrails, C2RCC and A4O tend to overestimate the atmospheric

contribution, i.e., Rrs is usually lower than ambient. This is less

visible for IPF and POLYMER. ACOLITE-DSF does not correct for

small-scale clouds by construction. Consequently, cloud artefacts

are reflected as amplification of Rrs, increasingly at longer

wavelengths (e.g., slightly visible in Figure 2-C5). For small-scale

broken clouds, all AC methods have large uncertainties. Spatial

inconsistencies related to high optical thicknesses, different aerosol
Frontiers in Marine Science 10
conditions, and cloud shadows are further uncertainty factors

(IOCCG, 2019).

A visual comparison of all satellite images shows that

POLYMER best dissolves the individual camera borders. A4O

and IPF reduce the borders significantly; ACOLITE-DSF and

C2RCC often have strong gradients here. POLYMER and IPF

deliver particularly good homogeneity across the image width (if

Rrs is relatively high). Moreover, POLYMER is the only one that

produces relatively homogeneous and consistent results even in

areas with high sun glint influence, which means that significantly

larger areas from a satellite image can be exploited, e.g., shown by

Müller et al., 2015a; Müller et al., 2015b (retrieved spectra from sun

glint areas were not further evaluated in this study). A4O and

C2RCC also produce results in sun glint, but both with noticeable

angular dependencies and uncertainties (corresponding warning

flags are partly raised).

However, POLYMER has a specific flaw with occasional

discontinuities due to algorithmic instability under some

circumstances. Conditions typically affected are dark waters, thick

aerosol plumes, low sun elevation, land proximity or strong ocean
A B

D E F

G H

C

FIGURE 3

(A–H) Comparison of spectral remote-sensing reflectance derived from the different AC methods for eight points marked in Figure 2. The right axis
and the corresponding grey dashed lines show the initial TOA reflectance. (E, F) include corresponding normalized in-situ measurements.
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color gradients. These situations tend to reduce the ratio of “water”

signal over “atmospheric” signal. The minimization scheme used in

POLYMER reveals those instabilities as vertical stripy artifacts, e.g.,

visible in Figure 2-A4 or in scene #7. Often these cases are

characterized by high reflectance values in the blue. Looking at

the entire cloud- and glint-free water surface of all scenes, there is an

affected area of approx. 1%, which is, however, not flagged. Coasts,

lakes, and rivers are particularly affected by the spatial

discontinuities, as they often occur close to land.

In the top row of Figure 2, some points are marked whose Rrs
spectra are shown in Figure 3. In the figure, the initial TOA

reflectances are also shown dashed with reference to uniform

right axes. AC results that are flagged invalid were displayed in

dotted lines. The figure illustrates that the solutions of the different

AC methods to the same input can be very different. Mostly A4O

marks the lower and ACOLITE-DSF the upper result margin. The

result of IPF is over large areas of the VIS in the mid-range of the

delivered solutions, but often (unnecessarily) flagged. There are

indeed some areas where the spectral shape is very similar, only the

magnitude is different (points 2, 3, 7, and 8); in this case, the

assignment to an OWT class is usually the same. Remarkably, these

cases are considered difficult for atmospheric correction, such as in

the Rio de la Plata estuary with its high sediment load or with

relatively high cyanobacteria concentrations in the Baltic Sea.

Nevertheless, both cases exhibit areas that show extreme spatial

and spectral discontinuities and incorrect estimations. A good

example of this is point 4, where due to very high concentrations

of cyanobacteria and possibly floating scum, a significant increase in

TOA reflectance occurs in the NIR. Only IPF is flagged invalid here.

ACOLITE-DSF has NaN areas near the point, where the invalid-

threshold at 1020 nm is reached (Figure 2B). Only A4O and

ACOLITE-DSF follow the TOA signal in a plausible way and

provide Rrs like those that would be expected in such situations

(e.g., Reinart and Kutser, 2006; Qi et al., 2014; Hunter et al., 2016; Bi

et al., 2023; Cazzaniga et al., 2023); the other ACs are completely

wrong spectrally. C2RCC yields a Rrs spectrum that resembles NAP-

rich water and, ironically, is well classifiable in some OWTmethods

such as H17, whereas, the A4O result is assigned in the correct class

but with partly low total memberships. C2RCC provides a

discontinuous Rrs(560) image (Figure 2-B2) in the situation with

significantly lower values than TOA requires. But on a side note,

C2RCC estimates the phytoplankton absorption from the spectrum,

from which the L2 product CHL_NN is derived, which in this case

yields high concentration values, roughly reflecting the TOA image.

Figures 2D, 3G, H show another example of a phytoplankton

bloom, namely coccolithophores, which particularly strongly scatter

in relation to the absorption; a sharp gradient is visible from the

bright turquoise bloom to the dark blue ocean. The Rrs spectra of the

five ACs are similar in both cases and show the high dynamic range

of possible values, which is thoroughly comparable with

AERONET-OC data during coccolithophore blooms (Cazzaniga

et al., 2021).

For many NAP-rich waters, such as rivers and estuaries, one can

see similar spectral patterns as in Figure 3B. Often POLYMER and

A4O are close together but slightly lower than the other ACs.

However, pixels in inland waters that have some distance to land are
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widely invalid-flagged by the AC methods, only A4O claims to be

mostly valid. The 300 m pixel size further limits the usability of

OLCI for inland waters and especially rivers. Nevertheless, many

lakes are eutrophic or hyper-eutrophic and have comparatively high

algae concentrations, often with reflectance features like shown in

Figure 3D; here only A4O provides largely plausible spectral shapes

(e.g., scene #4, Lake Taihu).

There are in situ data for points 5 and 6 showing the transition

from coast to open North Sea; in fact, there would be further match-

ups in more turbid water closer to the coast, but ACOLITE-DSF

does not provide results there (Figure 2C). It is worth noting that

this is the area for which C2RCC was originally developed. It is

therefore not surprising that C2RCC performs well here. At point 6,

all ACs show a comparable spectral shape, although significantly

lower in some cases, especially A4O (Figure 3F). ACOLITE-DSF fits

the in situ spectrum very well between 510 nm and the NIR, but at

shorter wavelengths there is a strong mismatch, possibly due to the

slightly hazy and spatially variable atmosphere. Point 5 is further

out in the open sea, where the terrestrial CDOM is largely diluted.

At this point, C2RCC, POLYMER, and IPF provide spectra that

agree quite well with the measurement (Figure 3E). ACOLITE-DSF

fits well between 560 and 620, but otherwise retrieves an

overestimated spectrum. A4O interprets the signal incorrectly as a

blue ocean spectrum, showing that A4O can have difficulties in the

transition zone. It is similar for point 1, but here with even greater

variability in the results of the different ACs (Figure 3A). Figure 3

illustrates that in general there are not always consistent results

from different atmospheric corrections, which would also be

reflected in strongly deviating ocean color products.
3.2 Match-up analysis

Figure 4 shows the comparison of Rrs at selected bands (412,

490, 560, 665, and 865 nm) from match-ups between OLCI A+B

data and in situ measurements at nine AERONET-OC stations

(colors stand for the individual stations). The results of the five AC

methods are shown per row. The contours illustrate the density of

the measurements and indicate the 10-, 50-, and 90-percentile lines.

Scatterplots do not show the interconnections between the bands,

this becomes more visible when looking at the full spectra and

evaluating the spectral angle mapper. Thus, Figure 5 shows a subset

of data from Figure 4 (from the Black Sea, Baltic Sea, and a lake)

from a spectral perspective. In addition, corresponding results of

the PANTHYR system from turbid coastal waters are shown in the

right column. Some AERONET-OC stations measure at fewer

OLCI bands, resulting in different maximum numbers of match-

ups per band; PANTHYR measures hyper-spectrally (but band

averaged data are used for the comparison).

The already mentioned findings on AC flagging and especially

the spatial homogeneity criterion (Table 4) are reflected in the

number of valid match-ups. Due to the very low noise level, A4O

yields significantly more accepted match-ups with AERONET-OC

than all other methods, in blue bands at least twice as many points

(at 412 nm N = 2255) and in the NIR, for example, 473 vs. 4 points

from IPF. Additional warning flags can often identify clear outliers,
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which are incorporated into the determination of statistical

performance, as can be well seen in Figure 5. The obvious outliers

in A4O (all associated with clouds) are few and far less than the

match-ups sorted out else (Figures 4K–O, 5I–L). Due to the very

large differences in individual match-ups, the following analysis

does not include a Common Best Quality approach (Müller

et al., 2015a).

With respect to the IPF, the retrieved Rrs agree quite well with

the AERONET-OC data, with the exception of a number of data

points with overestimation in blue bands (considering that many

negative values are not taken into account due to masking, see

Table 4). The slopes of the regression lines are very close to one. The

correlation coefficients for the bands 490 nm to 865 nm range from

0.954 to 0.979; in the blue spectral region, it is significantly lower at

0.589. For PANTHYR data, the correlations are also high, namely

>0.85 for all bands except at 412 nm, where r = 0.493. In fact, IPF’s

correlation coefficients for central VIS bands are among the highest

and RMSE/deviations are among the lowest for both datasets.

However, there are insufficient matches in the NIR to

meaningfully evaluate the performance. Compared to the other

ACs, the number of valid data is lowest for the blue, red, and NIR

bands. Mainly the invalid flagging due to negative reflectances as

well as the noise-related uncertainties are responsible for the big loss
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of match-ups. The spectral comparison reveals the partial

difficulties of IPF in short wavelengths, but on the whole the good

agreement with the measured reflectances, obviously in comparison

with the C2S/X data too (Figures 5A–D). An occasional

discontinuity of the first three bands is also visible in Figure 3;

this could have an influence on OWT applications.

The C2RCC processing in this work includes SVC gains

(sometimes not done), which are particularly effective in blue

bands. Thereby C2RCC achieves the highest correlation (0.859 for

AERONET-OC and 0.618 for PANTHYR) and smallest RMSE

(0.0014 and 0.0046) in the blue band at 412 nm (but not smallest

deviations mdAD or mdAPD). C2RCC tends to retrieve slightly

overestimated Rrs; all biases are positive. With respect to our

complex-water-dominated data set, Cazzaniga et al. (2022)

conclude similar assessments for C2RCC, but for comparisons with

clear waters, they show a general underestimate of reflectance from

C2RCC. However, the correlation coefficients are high for the entire

spectrum, even at 865 nm, in both cases r > 0.76, but the values are

more scattered than, for example, for IPF or POLYMER. The spectral

comparison shows good agreement in all orders of magnitude of the

measured values; c² and SAM are generally among the lowest

(Figures 5E–H). This implies a potentially good classifiability for

Case-2 waters, for which C2RCC was optimized.
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FIGURE 4

Comparison of satellite-derived Rrs with AERONET-OC in situ data for OLCI bands at 412, 490, 560, 665 and 865 nm for IPF (A–E), C2RCC (F–J),
A4O (K–O), POLYMER (P–T), and ACOLITE-DSF (U-Y). The colors represent different stations. The contours indicate the density distribution.
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For A4O, this is the very first comparison with AERONET-OC or

PANTHYR in situ measurements. Despite the very high number of

match-ups that were achieved by A4O, which suggests that potentially

difficult cases are included in the assessment (but not in the other

methods), clear statistical correlations can be demonstrated. All outliers

visible in Figures 5J, K (both Baltic Sea) are exclusively related to cloud

margins and often recognizable algal blooms in the vicinity.

Nonetheless, a medium to strong positive linear correlation is

achieved for all bands except the NIR, which is corrupted by some

outliers (despite that, the lowest absolute deviation is obtained in the

NIR). A4O reaches the second best correlation for blue bands with a

value of 0.763; in contrast, in the important green band at 560 nm, A4O

has the lowest correlation coefficient in comparison with the other ACs

(0.786). There is a clear tendency that values are underestimated in the

central VIS. This becomes visible in Figures 5I–L (and Figure 3) too

and is echoed in c². However, apart from few outliers and partly lower

values, A4O shows a very similar spectral shape as the measured values.

This holds also true for the turbid scattering waters (Figure 5L), but two

“false blue” spectra appear as well, similar to the coastal-ocean

transition zone in Figure 3E.
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POLYMER applies not such rigorous flagging as IPF, so the

main factor for relative loss of match-up points comes from spatial

homogeneity of low reflectances (CV). The in situ data used here are

more representative of Case-2 waters, where POLYMER’s noise in

blue bands is relatively high (Table 4), as shown by the relatively low

N at 412 nm (Figure 4P), but this is also true for NIR bands

(Figure 4T). However, POLYMER and A4O deliver the most

match-ups in the central VIS, with more than 2000 at 490 nm,

twice as many as at IPF, C2RCC, or ACOLITE-DSF. The statistical

characteristics prove the very good performance of POLYMER; but

in C2SX waters, the values are only in the average range with the

worst evaluations of all ACs in the blue band. Nevertheless, some

outliers significantly affect the metrics, well visible in the spectral

plots; these are usually associated with the mentioned strip-like

spatial inconsistencies (e.g., visible in Figure 2-A4 or scene #7 in the

Gulf of Finland). Admittedly, POLYMER has corresponding

warning flags that partly identify these cases, but also mark many

productive waters. In principle, the spectral shape from POLYMER

is well reproduced, although occasionally with recognizable

residuals from the polynomial regression in the shorter
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FIGURE 5

Satellite-derived Rrs spectra of IPF (A-D), C2RCC (E-H), A4O (I-L), POLYMER (M-P), and ACOLITE-DSF (Q-T) compared with in situ data (U-X) from
selected AERONET-OC stations (Gloria, Gustav Dalen Tower, Palgrunden) and PANTHYR (right). The statistical parameters refer to complete spectra
at ten OLCI bands.
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wavelength range. Usually, these features are not found in in situ

measurement data (Figures 5M–P), so this can become problematic

for correct OWT identification again.

This is also the first comparison of ACOLITE-DSF for OLCI

products with AERONET-OC data. Apart from the blue bands,

slightly better correlations can be obtained than with A4O, at 560

nm, r = 0.92. In general, an overestimation of reflectance is

recognizable, with the highest values for RMSE, mdAD, mdAPD,

SAM, and c² everywhere. The overestimation is caused by use of the

minimum aerosol optical thickness retrieval in an image sub-tile,

leading to an underestimation of atmospheric reflectance and hence

overestimation of water reflectance. This clearly becomes a

significant uncertainty when the water signal is very low

compared to the atmospheric signal, as it is here for the

AERONET-OC match-ups. For waters with relatively low

reflectance values in the blue (in principle, especially C2A/X),

there are clear shape problems that are critical for OWT

applications. The agreement with measured values is significantly

better for the C2S/X waters for which ACOLITE-DSF was

developed. SAM and c² are among the smallest here, this also

applies to the central visible range for RMSE, mdAD, mdAPD;

however, the correlation coefficients are among the lowest.

ACOLITE-DSF gives results close to the 1:1 line for PANTHYR

data for all bands (not shown); all other AC methods underestimate

the reflectance, sometimes significantly.
3.3 OWT classifiability

The OWT analysis of cloud- and sun-glint-free water surfaces

refers only to the individual flags for invalid AC, spatial

homogeneity is not taken into account. As already noted, invalid

masking leads to 51% and 20% data loss for IPF and ACOLITE-

DSF, respectively (Table 4). If one ignores the masks in IPF, one

actually gets very similar OWT class distributions. In principle, the

OWT methods can exploit slightly negative reflectances.

Figures 6, 7 show percentage distributions of the levels of OWT

classifiability of AC-derived Rrs using four different OWT classification

schemes. The numbers above the bars in Figure 6 (except for the last

three columns) illustrate the percentage allocation of classes with

maximum memberships in the OWT frameworks (see Figure 1 for

the spectral shapes). The numbers in the color bars indicate the

percentage of the assigned classification level (if >10%), all classifiable

contributions sum to 100%. In the example of IPF and J17 in

Figure 6A, 21% of cases with maximum membership in class 1 have

medium (0.3 ≤ ut< 0.8) total membership and 78% have only low

membership (10-4 ≤ ut< 0.3). The total fraction of spectra of class 1 is

less than 0.1% of all IPF-J17-classifiable free water pixels (for such small

fractions, the value is not written above). Figure 7 shows the

corresponding distribution of classification results but sorted by the

OLCI waveband with the maximum reflectance provided by the AC

method. Each subplot in Figures 6, 7 includes three additional bars:

“ALL” summarizes the total distribution over all pixels including non-

classifiable and flag-invalid pixels; “BLOOM” considers cases that are

flagged with the FLOATING mask of A4O with the characteristic red

edge enhancement of RTOA, this is typical for intense cyanobacteria
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blooms; and “C2SX” is for waters with Rrs(865) ≥ 0.005 (depends on

AC). C2SX and BLOOM are typical cases for coastal and inland waters.

The distributions in C2SX (yellow numbers) and BLOOM (green

numbers) refer to different numbers of total valid pixels per AC, e.g.,

only 5% of the BLOOM pixels are not flagged and therefore valid in

IPF, but 100% are valid in A4O.When interpreting, one should keep in

mind that the shape of the reflectance provided may be wrong for the

given situation, but the spectrum may be well classified in a different

class. Orange colors in Figures 6, 7 represent the level with too low

contributions of the classes to be considered “classifiable”; this shows

the potential of relaxing the threshold (10-4) and indicates too narrow

tolerance for class memberships of the OWT systems.

First, let us analyze the total distributions sorted by wavebands

with satellite-derived Rrs maximum (Figure 7). There are some

differences visible between the five AC methods, although the

absolute numbers are not equally representative since some features

occur rarely in the test scenes. However, the distributions of IPF,

C2RCC, and POLYMER are quite comparable, with roughly 20% at

412 nm, 20-30% at 490 nm, and 40% at 560 nm. A4O has about 40,

20, and 30% of these bands, resulting in roughly twice as many “blue”

spectra. ACOLITE-DSF has inmore than 67% of cases an absolute Rrs
maximum at the first band (400 nm), further 16% at 412 nm, 9% at

490 nm, and only 5% at 560 nm. Typical examples of this spectral

behavior can be seen in Figures 3, 5Q–T. This blue maximum is

characteristic of atmospheric path reflectance and indicates again the

under-correction by ACOLITE-DSF for low reflectance targets.

J17 is the OWT framework that utilizes the least bands as input,

which is favorable for obtaining higher membership values, and focuses

on ocean and coastal waters. Moreover, J17 was developed based on

satellite data that were atmospherically corrected with POLYMER. It is

therefore not surprising that POLYMER has the greatest distribution of

water types and overall good classifiability per class; the classifiability

only degrades for the turbid water classes (Figure 6M). POLYMER,

C2RCC, and A4O each achieve >70% high or medium total

memberships, indicating good classifiability. Without invalid masking,

IPF would come to a similar level; with masking, it achieves only 33%.

ACOLITE-DSF only reaches about 20%. ACOLITE-DSF mainly

produces four types of spectra, turbid (85% in OWTs 12-14) or very

clear water (9% in OWT 1), but mostly with low memberships. In the

used test scenes, the first three classes of J17, representing oligotrophic

ocean water, are almost non-represented in the other ACs (still 1% in

POLYMER). J17 lacks specific classes for C2SX and eutrophic waters

(BLOOM); if the AC produces such spectra, they are assigned elsewhere

or are not classifiable – the same holds true for the other OWT schemes.

Of the (in IPF only 5%) valid BLOOM pixels, most are well-classifiable;

however, in C2RCC, the spectra often look like scattering waters, which

are less well classifiable (only 49% good). C2SX waters occurmuchmore

frequently in the scenes, whereby particularly high spectra (such as in

Figure 5X) are not classifiable. This is one of the reasons why A4O, with

its potential underestimation of reflectance, achieves better classification

results. Given the diversity of spectral maxima, A4O consistently

provides useful memberships, even in rare cases with Rrs maximum at

bands >560 nm (Figure 7I); but also IPF and ACOLITE-DSF provide

many well classifiable spectra for these cases.

M14 focuses on coastal and inland waters with the fewest

classes. The class distributions and classifiability of valid results
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from IPF, C2RCC, A4O, and POLYMER are comparable. More

than 95% fall into OWT 2 or 3 with 48 (A4O) to 62% (C2RCC)

well-classifiable cases. ACOLITE-DSF produces a different class

distribution with 48% in OWT 3 and 41% in 6, where overall the

reflectances are less classifiable. Waters with high NAP

concentration are often non-classifiable, only A4O achieves up to

81% classifiable results. In the case of red edge enhancement

(BLOOM), A4O yields reasonably correct spectra, but achieves

only lower memberships with M14 than the sometimes certainly

incorrect results of C2RCC and POLYMER (as Figure 3D).
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H17, just like A4O and C2RCC, was developed on the basis of

Hydrolight radiative transfer simulations considering comparable

inherent optical properties for the marine model, furthermore all

three methods operate in a log-transformed form, therefore the two

ACs have advantages here. Particular emphasis is placed on the

spectral shape and the allowed variances are quite narrow in the

H17 scheme, so that even relatively small deviations can lead to

poor classification results. In fact, reflectances from IPF and

ACOLITE-DSF are practically unclassifiable with H17, but almost

all pixels with C2RCC and A4O with 74% medium or high
FIGURE 6

OWT classifiability of AC results of IPF (A-D), C2RCC (E-H), A4O (I-L), POLYMER (M-P), and ACOLITE-DSF (Q-T) for free-water pixels from ten OLCI
scenes using four OWT methods with different numbers of classes. X-axis: OWT class allocation with maximum memberships, the last three
columns each show total distribution for all pixels (31.5 million = 100%), only pixels with floating algae (BLOOM, <0.6% of all), and only extremely
scattering waters (C2SX, 4%). The percentage of classifiable pixels is noted at the top (not shown if the share is smaller than 0.1%) and related to the
total percentage share, which is indicated as a red number. Y-axis: distribution of total class membership for classifiable pixels (total memberships
>0; see Table 3). Empty spaces show that the class is not present.
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memberships are. Only half of the POLYMER reflectances can be

classified as having weights above the threshold, but total

membership remains mostly low. Insufficient memberships are

usually found in highly scattering or productive waters, or when

POLYMER provides negative reflectances in Case-1 waters. A4O

matches all defined classes, but has low memberships for productive

waters OWTs 7-8, that are masked with BLOOM. The reason for

low memberships is likely the particularly high variance of natural

Rrs at NIR bands, which is not well captured by the H17 c²-
distribution. However, it is important that the class is identified

correctly, which enables post-classification adaptation for optimal

water algorithm selection. All other ACs do not deliver such spectral

shapes; (wrong) C2RCC can be relatively well classified. The

majority of spectra provided by IPF, POLYMER, or ACOLITE-
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DSF with the maximum in the short wavelengths (<560 nm) are not

classifiable with H17, bright pixel spectra of IPF and ACOLITE-

DSF, however, are often well classifiable. This shows that low

reflectance values play a major role in the log-transformed

classification and that the associated noise-level of some bands

leads to shape variations not expected by H17.

Method B21 distinguishes most classes but has a focus on

inland and coastal waters with little regard for the ocean. In

addition, the shape is also given more consideration here, and the

allowed variations are fairly limited. None of the AC methods

succeeds in providing comprehensive spectra that can be classified

with the method of B21. For C2RCC, nevertheless, half of the pixels

are classifiable with ut above the threshold (>10-4). For all ACs, at

least 85% of the classifiable cases are distributed among the first
FIGURE 7

Same OWT classifiability of AC results as in Figure 6, but at X-axis with the OLCI wavelength of the Rrs maximum and corresponding percentage
distribution noted at the top (this distribution is independent of the OWT method and therefore the same for all).
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three OWTs; the other 14 classes are sparsely used. C2RCC, A4O,

and ACOLITE-DSF yield >90% usable spectra for BLOOM-labelled

pixels. Again, C2RCC provides a higher percentage of well-

classifiable results, but these are not in the intended classes

(OWTs 14-17). A4O provides such spectra, the majority of which

have useful memberships. Figure 7T shows slight advantages for the

classifiability of ACOLITE-DSF spectra with the maximum in

shorter wavelengths.
4 Discussions and outlook

4.1 Evaluation of AC methods

Inter-comparison results are often a snapshot in time, as both

AC and water algorithms undergo continuous evolution. This paper

refers to the most recent AC versions (as of October 2022) and is

authored by some of their main developers. It is clear that the

methods are at different maturity levels and that some have been

optimized using observational data, which is also reflected in the

effort for uncertainty products and flagging. A4O by Hieronymi

et al. is a further development of C2RCC, but is not yet publicly

available and there is no official reference for it as well. IPF is used in

operational service, but one must also appreciate the continuous

developments, where with the OLCI Collection-3 (since 2021)

improvements have been achieved, e.g., for coastal waters

(Zibordi et al., 2022). One cannot say that this is a Case-1 ocean

color specific algorithm anymore, because the comparisons with

Case-2 dominated match-up data document good agreement over

most of the spectrum (with specific problems described here). Our

comparisons with AERONET-OC and other data show better

agreements for IPF than previously reported (especially also with

regard to the previous IPF version Collection 2), e.g., Liu et al., 2021;

Tilstone et al., 2021; Vanhellemont and Ruddick, 2021; Li et al.,

2022; or Windle et al., 2022. One influencing factor is certainly the

consideration of recommended flags and the use of the same IPF-

SVC gains for all AC methods (except for POLYMER). Ideally, AC-

specific SVC gains should be used, but these are not yet available for

C2RCC, A4O, and ACOLITE-DSF; specially fitted SVC would have

the potential to significantly improve their results. In the mentioned

studies, likewise other versions of C2RCC, POLYMER, and

ACOLITE-DSF are used; nevertheless, some similar observations

can be confirmed, like the principal suitability of C2RCC and

POLYMER for Case-2 waters especially for the central visible

range. A4O and ACOLITE-DSF have partly less favorable ratings

compared to AERONET-OC data, but both procedures are

currently undergoing a greater dynamic in their development

(they have undergone several updates in 2022). For all ACs,

suitable methods must be found in the future to better identify

obvious outliers in order to achieve better spatial and statistical

evaluations. This also includes even better cloud identification.

Considering the strict invalid flagging of IPF, however, one

potentially loses considerable amounts of observational data,

which should be reconsidered.

Spatial homogeneity, which has a strong impact on the number

of match-ups, should be given more attention in future. For this
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purpose, measures to homogenize atmospheric properties at macro-

pixel level (A4O & ACOLITE-DSF) as well as the log-

transformation of the Rrs retrieval for very small values (A4O &

C2RCC) have proven to be efficient. In combination with spectral

smoothing (as in A4O), this is also advantageous for large areas

affected by the South Atlantic Anomaly. One may argue that using a

non-strict pixel-by-pixel atmospheric correction limits the high

spatial resolution (of up to 300 m), however, relevant atmospheric

and oceanographic features are usually larger in area and AC-

induced noise is a significant source of uncertainty for ocean

color products.

High accuracy over all magnitudes of retrieved Rrs is expected

over the entire spectral range for various applications. Recent

reviews summarize the requirements for ocean color remote

sensing and especially atmospheric correction, e.g., in terms of

deriving inherent optical properties of water (Werdell et al., 2018),

phytoplankton diversity (Bracher et al., 2017), carbon content

(Brewin et al., 2023), and essential biodiversity variables (Muller-

Karger et al., 2018) – and this goes beyond the OLCI bands, also for

future hyperspectral applications.

The selected AC method has often a significant influence on the

derived ocean color products, e.g., the estimate of the concentration

of carbon in water or the phytoplankton biomass with

corresponding primary production. Juhls et al. (2022) for example

compared in situ data with OLCI match-up results from IPF,

C2RCC, and POLYMER and, moreover, different models for the

estimation of CDOM absorption. This was done in order to

investigate fluxes of related dissolved organic carbon from a large

river across the turbid coastal zone into the clear Arctic Ocean, thus

in high latitudes (here, POLYMER is identified as the most

suitable). The strongest optical effect of CDOM is visible in the

blue bands, where, according to our study, C2RCC and A4O have

slight advantages also in terms of noise and spectral behavior;

ACOLITE-DSF has noticeable problems. In this example, the actual

performance may be inconsistent along the optical gradient,

especially at short wavelengths; OWT-optimized water algorithms

could potentially contribute to reducing the uncertainties (if the

classification is successful).

Concentrations of phytoplankton in the order of Chl > 1 mg m-3

are usually necessary to hyper-spectrally distinguish special pigment

absorption features and thereby phytoplankton diversity; moreover, the

central visible range (450 to 650 nm) is particularly important for that

(e.g., Xi et al., 2015; Xi et al., 2017; Bi et al., 2023). The intensity and

spectral shape of the reflectance in the case of “moderate” algal blooms

are generally well reproduced by all AC methods investigated (e.g.,

Figure 3C). Results from the current version of A4O, however, mostly

show an underestimation (which may also have to do with influences

of the angle normalization that still need to be clarified). At higher Chl

(>10 mg m-3), the red edge absorption feature becomes important in

the Chl retrieval (e.g., Gons, 1999; Ruddick et al., 2001). High

concentrations of cyanobacteria with possible scum at the water

surface, which is a frequent phenomenon in inland waters and the

Baltic Sea, are a particular challenge for AC. Spectra from IPF, C2RCC,

and POLYMER are mostly untrustworthy here and the results are

partly not sufficiently accompanied by warnings (Figure 3D). A4O,

which has a specific warning flag for this, provides a plausible spectral
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shape and indicates enhanced Rrs uncertainties in corresponding

products (which is also reasoned by the usual small-scale

heterogeneity of such blooms). The spectra from A4O can be

assigned to the designated water classes in H17 and B21, but often

with lowmemberships. In the shown example (Figure 3D), the shape of

ACOLITE-DSF is also plausible except for the first two bands that are

likely overestimated and may be impacted by smile correction artefacts

(the spectra are usually not well-classifiable in H17 or B21). However,

there is a possible advantage of the dark-spectrum-fitting approach in

the range 500-700 nm, which can be helpful for phycocyanin feature

detection (a marker for cyanobacteria).

The other example with a bloom of coccolithophores

(Figure 3G) shows comparable spectral shapes delivered by all

ACs, but also clear differences in the brightness of the retrieved

reflectance (although all results are of a realistic order of magnitude,

e.g., Cazzaniga et al., 2021). Methods to remotely sense particulate

inorganic carbon focus on optical detection of coccolithophores,

e.g., with a color index made from ratios of green, red, and NIR

bands (Mitchell et al., 2017; Brewin et al., 2023); here significant

differences would occur depending on the AC used. Regarding the

exploitation of red and NIR bands in ocean-water algorithms (also

important for the estimation of the fluorescence line height), the

spatial homogeneity and negative reflectances are improvable for

IPF and POLYMER, and the removal of artefacts from small-scale

atmospheric variability for ACOLITE-DSF.
4.2 Discussion on OWT frameworks

The distinction of optical water types is important for many

aspects of marine biology, physical oceanography, underwater

visibility, etc., and the definition of specific properties has a long

tradition (e.g., Jerlov, 1976). Current research aims to determine

reliable water quality characteristics from satellite data for the entire

aquatic continuum of land-coast-ocean. However, a balance

between effort and benefit must be found here and care must be

taken in satellite images to ensure no unwanted discontinuities

arise. There may be specific challenges for oceanographic or

limnological questions, e.g., with regard to water constituents, sun

glint, whitecaps, shallow water, or adjacency effects, but from an

optical remote sensing point of view, it does not make much sense

to reduce oneself to one application. This common disconnection

actually hinders reliable studies on matter transfer from land to the

sea, which is important for the carbon cycle, for example.

The lack of classes with characteristic optical features is a

problem for all OWT methods that were examined, e.g., classes

representative of oligotrophic ocean, very high NAP concentrations,

or hyper-eutrophic waters are often missing. On the other hand,

there may be spectral classes that are difficult to explain from an

IOP perspective. Especially inland water OWT frameworks are

often based on clustering of large in situ data collections, which

include potential measurement errors such as adjacency effects,

bottom reflections or inadequate sky-glint correction.

Consequently, classes with questionable mean reflectances can

also be defined. Some OWT frameworks are primarily used to

evaluate the quality of Rrs spectra (e.g., Wei et al., 2016). An
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independent control is the Quality Water Index Polynomial

(QWIP) method of Dierssen et al. (2022). The QWIP score for

hyperspectral data should not exceed 0.2, for multispectral data as

for OLCI the nominal threshold can be relaxed to 0.3, values above

the threshold should be subject to additional checks. In fact, the

QWIP method does not include “green types” with Rrs maximum in

the NIR, such as defined by B21. However, few classes of B21, e.g.,

their OWT 2, receive a QWIP score close to 0.2 (note that some

OWT frameworks like Spyrakos et al. (2018) define classes with

higher scores that possibly fail the QWIP quality control). The B21

OWT 2 class-mean spectrum has a local minimum at 440 nm

(Figure 1D). Our OWT analysis shows that B21-classifiable spectra

of IPF, C2RCC, A4O, and POLYMER are in this OWT 2 with less

than 1%, whereas 80% of ACOLITE-DSF spectra fall into this class.

The comparisons with AERONET-OC indicate an underestimation

of the atmospheric signal of ACOLITE-DSF in blue bands;

furthermore, there is reason to conclude that adjacency effects,

e.g., from bright clouds, play a role (Bulgarelli and Zibordi, 2018).

Indeed, QWIP can be used directly for quality control for satellite-

derived Rrs, e.g., Turner et al. (2022) compared results from

ACOLITE-DSF and POLYMER (in other versions) as well as the

standard NASA SeaDAS algorithm for OLCI (L2gen) for an estuary

at the US East Coast finding POLYMER to be the preferred

approach. Applying the QWIP score to the AC results of our

study for valid free water pixels in the scenes and assuming a

threshold of ≤0.2 gives 100% reliable Rrs for A4O and C2RCC, 99%

for POLYMER, 81% for IPF, and 45% for ACOLITE-DSF. With a

less stringent threshold of ≤0.3, ACOLITE-DSF achieves about 88%

quality-assured Rrs. With a very strict QWIP score of ≤0.1, A4O

still reaches 99.4%. This means that virtually all results from A4O,

C2RCC and POLYMER pass the QWIP quality control with slight

advantages for A4O. But as mentioned, the retrieved Rrs can actually

have the “wrong” shape.

The ability to fill all classes and generally good classifiability of

reflectances from POLYMER in the J17 framework or from A4O in

H17 shows the great advantages of matching AC and OWT

frameworks. As described, however, there is a danger of over-

valuing false spectra from the AC or measurements/simulations.

Nevertheless, it has also proven ineffective not to allow large

variances from the expected spectrum, i.e., potential errors of the

AC. Obviously good spectra from IPF or POLYMER, but also from

A4O, cannot be classified well with H17. This is especially true for

B21, where in principle the results of all ACs do not fulfil

the expectations.

A comprehensive evaluation of the OWT systems and of the

performance of different atmospheric corrections is difficult because

the actual areas of application and validity overlap sometimes only

slightly, i.e., inland waters vs. ocean. Large areas of inland waters are

invalid flagged or at least have warning flags raised, so it is not

surprising that almost all data fall into one or only a few designated

ocean classes for M14 or B21. However, some of the AC methods

give plausible and usable results for inland waters, which is partly

evident in the comparison with AERONET-OC. Leaving aside the

fact that there are also erroneous estimates of the Rrs shape, C2RCC

and A4O produce classifiable results of at least 95% of the cases in

the OWT frameworks J17, M14, and H17, where A4O covers more
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intended classes. POLYMER also achieves this classifiability rate for

J17 and M14, but only 70% for H17. Considering the recommended

flags, the suitability of IPF and ACOLITE-DSF in the investigated

classifications is insufficient. The work by Liu et al. (2021) also

compares IPF, C2RCC, POLYMER, and other OLCI ACmethods in

context with the optical water type and quality control framework

of Wei et al. (2016), which differentiates 22 classes; they conclude

that POLYMER has best performance followed by C2RCC and IPF.

Figure 3A illustrates a remaining problem, namely that

fundamentally different spectral shapes of the derived Rrs can

often occur in the transition from coast to sea, when the

freshwater CDOM concentration is diluted. In some cases, there

are features in the TOA signal that can be used to flag potential

uncertainties, e.g., a red-edge enhancement (Figure 3D). The

ambiguities of the optical effects of different components in the

water, at the air-sea interface, and in the atmosphere are relatively

large for spectrally smooth TOA reflectance with color nuances of

blue. Without systematic comparisons with suitable in situ data, we

have no means of determining which spectral shape is correct, i.e.,

which OWT is present. For this purpose, more hyperspectral

fiducial reference measurements especially with maximum Rrs at

wavelengths ≤510 nm are needed.
5 Conclusions

Five atmospheric correction methods for Sentinel-3/OLCI

ocean color imagery were compared in terms of spatial and

spectral results and individual flagging. The models under

investigation are the most recent versions of OLCI L2 baseline

atmospheric correction (IPF), C2RCC, a new method A4O,

POLYMER, and ACOLITE-DSF. The extent to which AC

methods provide useful and continuous results for a wide variety

of natural waters was investigated. For this purpose, the satellite-

derived remote-sensing reflectances were evaluated in four optical

water type schemes.

Flagging leads in some cases to major limitations in data

exploitation even for clearly visible water areas; IPF recommends

very strict criteria, resulting in 50% less coverage in our satellite

imagery. Output of Rrs with negative values is a major issue here.

However, we have also shown that many cases are inadequately

flagged by the AC methods; an example are high concentrations of

cyanobacteria at the sea surface. Only A4O has a dedicated warning

flag for floating algae, but A4O is valid here and delivers as the only

one reasonable Rrs over the entire spectrum. Nevertheless, a revision

of the individual flags with respect to spatial and spectral

inconsistencies is recommended for all AC methods. Cloud and

cloud shadow detection also need to be improved for all methods, as

corresponding deficiencies are reflected in the derived water

quality products.

Pixel-based approximation of atmospheric properties and

reflectance leads to AC-induced spatial noise. High spatial

heterogeneity, especially at low reflectance (and overcorrected

negative values), leads to considerable losses of possible match-

ups with in situmeasurement data. The noise level can be effectively

reduced by means of log-transformation in the Rrs retrieval process
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and appropriate smoothing, which is both applied in A4O. Mainly

because of its high spatial homogeneity, A4O achieves significantly

more match-ups with AERONET-OC data than all other methods,

namely at least twice as many points in the blue and NIR bands. The

number of match-ups achieved also affects the statistical evaluation

of Rrs retrieval performance. Comparison with in situ data, which

are more representative of coastal and inland waters, shows that the

spectral shape and magnitude of Rrs is essentially well reproduced

by IPF, C2RCC, and POLYMER, at least in the central visible range.

The current version of A4O mostly gives a reasonable shape of Rrs,

but often slightly lower values than observed. ACOLITE-DSF

provides good matches for bright pixel, i.e., highly scattering

waters, but has significant deficits for low water reflectance in

particular in the short wavelengths. Hyperspectral in situ data in

the 400 to 865 nm range are unfortunately not available for all water

types, especially clear oceanic and hyper-eutrophic cases are

missing; however, this would be important to have for future

OWT-related validation of AC methods.

Optical water type classification is used for the selection of

appropriate water quality algorithms and seamless blending of their

results. This requires good classifiability of the AC-derived Rrs and it

is advantageous if all spectral forms of Rrs can be reproduced.

Comparison of the five AC methods shows that A4O provides the

greatest optical flexibility. A4O provides more than 95% usable

results for three OWT frameworks, namely by Jackson et al. (2017);

Moore et al. (2014), and Hieronymi et al. (2017); furthermore, A4O

populates most classes, including hyper-eutrophic cases. C2RCC

also achieves >95% useful results for the three OWT frameworks,

but has failing retrievals for intense cyanobacterial blooms. For the

OWT method by Jackson et al. (2017), the reflectances of

POLYMER are best classifiable; this OWT scheme was developed

on the basis of such data. POLYMER also gives mostly well-

classifiable results for M14, but falls off for H17. The general

classifiability of Rrs from IPF is comparable to POLYMER, but

considering the recommended valid-pixel-expression, the

suitability of IPF for OWT classification is insufficient.

ACOLITE-DSF is very focused on waters with high

concentrations of non-algal particles; there are significant

problems at low marine reflectances, limiting broad application in

the OWT context. The results of all AC methods, for the most part,

could not be well-classified using the OWT system of Bi et al.

(2019), and Bi et al. (2021), which has its focus of application on

inland waters; yet comparisons with in situ data suggest that the

rough shape of Rrs is well reproduced by most ACs.

So far, OWT algorithms have focused too much either on

marine or limnological applications; for a comprehensive

usability, missing classes should be added. The classification

schemes of Hieronymi et al. (2017) provides a good basis, as it

includes representative classes for ocean, coastal and inland waters.

However, this method in particular shows that error tolerances

should be increased in order to achieve better classifiability of AC

results, which is the basis for a fully comprehensive exploitation of

an OWT system. The focusing of an OWT system on the spectral

shape, through log-transformed normalization, increases the

sensitivity to noise and small inaccuracies, and thus leads to

reduced classification performance. It is generally advantageous if
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the OWT classification system is aligned with the performance

spectrum of the atmospheric correction and vice versa.
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Zibordi, G., Kwiatkowska, E., Mélin, F., Talone, M., Cazzaniga, I., Dessailly, D., et al.
(2022). Assessment of OLCI-a and OLCI-b radiometric data products across European
seas. Remote Sens. Environ. 272, 112911. doi: 10.1016/j.rse.2022.112911
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Appendix 1
APPENDIX FIGURE A1

Overview of all ten OLCI scenes used (Table 2) in vertical near-side perspective. RGB images created from LTOA. Marked in red are the 100x100 pixel
areas for estimating spatial homogeneity (Table 4). The image sections in Figure 2 are shown in orange.
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