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The increasing riverine nutrient sources have significantly affected the ecological

environment of estuaries and coastal waters, resulting in deteriorating land-sea

water quality and intensified eutrophication. However, the effects of river input flux

on spatiotemporal patterns of total nitrogen (TN) and total phosphorus (TP) were

poorly understood in the Pearl River Estuary (PRE). In this study, the spatiotemporal

patterns of TN and TP concentrations and river input flux of PRE were studied

based on the seasonal nutrients monitoring data obtained for the rivers and estuary

in 2019. The results showed the spatiotemporal patterns of the TN and TP

concentrations in the eight rivers of the PRE were different, and the annual

average concentrations of TN and TP in the rivers entering the PRE were 207.18

± 105.13 and 3.51 ± 1.70 mmol/L, respectively. The annual river TN and TP fluxes

discharged into the PRE were 8.61 × 1010 and 1.55 × 109 mol/year, respectively. In

addition, the significantly decreasing trends in of TN and TP concentrations from

upper estuary to offshore seawater were observed in the PRE, which implied TN

and TP showed conservative behaviour in all season and only the dry season,

respectively. Moreover, the annual average concentrations of TN and TP in the

estuary were 70.64 ± 10.10 and 1.67 ± 0.78 mmol/L, respectively. The annual

average ratios of TN/TP for rivers, freshwater, mixed and seawater were 59.31 ±

5.98, 59.45 ± 3.75, 45.73 ± 21.27 and 330.94 ± 434.71 respectively, which were

higher than the Redfield ratios. These results indicated that the water quality in

most areas of the PRE is significantly polluted and that the TN and TP in seawater

were significantly influenced by river inputs. Therefore, monitoring and

management of unified TN and TP nutrient indicators discharge from rivers

entering the sea can be strengthened in the PRE, and eutrophication mitigation

strategy should be established and implemented across river-estuary-coast

continuum systems in the Great Bay Area.
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1 Introduction

The biogeochemical cycles of nutrients play an important role in

maintaining the ecological balance of the river-estuary-coastal system.

Nitrogen and phosphorus are important biogenic elements in water,

which provide an important material base for marine phytoplankton

life activities and are the main limiting factors for phytoplankton

growth (Conley et al., 2009; Zhang et al., 2009; Yu, 2014). The

appropriate concentration and speciation of nitrogen and

phosphorus in seawater are conducive to phytoplankton growth

(Davidson et al., 2014; Ma and Zhao, 2021; Zhou et al., 2022). In

recent years, with the rapid development of human society, many

pollutants produced from human activities have entered coastal

waters through rivers, causing coastal water pollution (Strokal et al.,

2014; Zhang et al., 2019). In particular, the excessive discharge of

anthropogenic nitrogen and phosphorus has led to widespread

eutrophication of coastal waters (Painting et al., 2007; Lu et al.,

2009; Paerl et al., 2018).

Estuaries are important areas between river and coastal water

system, which can alter nutrient fluxes to the coastal sea (Froelich,

1988; Lin et al., 2022). Estuaries are usually regarded as traps for

nutrients affected by the complex hydrodynamics and biogeochemistry

process (Chen et al., 2018; Slomp, 2011; Ke et al., 2022). For example,

the riverine and coastal wetland can reduce land-based nutrients

sources discharge into estuary and coastal water. However, under

human activities and climate change perturbations, the estuaries

systems are facing with eutrophication affected by the land-based

nitrogen and phosphorus in recent decades, such as Yangtze River

Estuary, Yellow River Estuary, Liaohe Estuary, Jiulong Estuary. (Liu

et al., 2012; Wu et al., 2019; Lin et al., 2022; Xu et al., 2022). However,

the river watersheds and estuary were traditionally regarded as two

separate systems (Chen et al., 2018; Tong et al., 2017; Lin et al., 2022).

At present, total nitrogen (TN) and total phosphorus (TP) are the water

quality indicators used for river freshwater system in China (Ministry of

Ecology and Environment, PRC, 2002; Ministry of Ecology and

Environment, PRC, 1997). In contrast, the water quality in estuary

and seawater systems were mainly assessed by dissolved inorganic

nitrogen (DIN) and dissolved inorganic phosphorus (DIP) (Ministry of

Ecology and Environment, PRC, 1997). Thus, the mismatch

monitoring indicators in nutrients were independently performed in

the river and estuary-coast systems (Zhang et al., 2020a; Zhang et al.,

2022), resulting in poor knowledge of the nutrients flux through the

river to the estuary in spatiotemporal scale.

As one of the three main estuaries in China, the Pearl River

Estuary (PRE) is composed of the Pearl River Delta network river and

residual estuaries, which cover a large sea area (1526 km2) and

contain abundant natural resources (Dupra et al., 2000). The

adjacent delta region plays an important role in China’s economic

and social development (Zhang, 2013; Dang et al., 2019). In recent

years, with the rapid economic development of the Pearl River Delta

region, various pollutants produced by human activities have been

discharged into the Pearl River system through rivers and

atmospheric deposition, and eventually into the PRE, resulting in

increasingly significant water pollution problems, especially

eutrophication (Cai et al., 2014; Dang et al., 2019; Liu et al., 2021;

Xu et al., 2022). This has led to the proliferation of plankton, such as

algae, a decline of dissolved oxygen in water, the death of many
Frontiers in Marine Science 02
marine organisms, and the deterioration of coastal water quality

(Glibert et al., 2018; Liu et al., 2020; Ke et al., 2022). The inputs of

freshwater and anthropogenic nutrients are important reasons for the

seasonal eutrophication of coastal water bodies (Paerl, 2006; Paerl

et al., 2018; Wang et al., 2018). In recent years, all aspects of nutrients,

such as N and P, have been studied for coastal waters. These studies

indicated that coastal water eutrophication is mainly caused by land-

based river input, such as urban domestic, industrial, agricultural

wastewater, and other sewage discharge (Ma et al., 2009; Zhou et al.,

2018). With the input of terrestrial pollutants, such as organic matter,

nitrogen, and phosphorus, the composition and distribution of

nutrients in coastal estuaries have significantly changed, resulting in

the aggravation of coastal water pollution (Liu, 2006; Chen et al.,

2022). Though previous studies have conducted the DIN and DIP in

the estuaries, the spatiotemporal pattern TN and TP were still limited

in the estuary system at present (Ke et al., 2022). In addition, owing to

the mismatch of nutrients monitoring indicators between rivers and

seawater, the hydrologic transport and biogeochemistry of TN and TP

in the land-sea zone were scarcely. Therefore, we examined the

response of the spatiotemporal pattern of TN and TP to the river

input flux in the PRE, which is critical for managing the nutrient

pollution in estuary and coastal waters.

Based on the climate and rainfall in the Pearl River Delta region,

this study divides the seasons in the PRE sea into dry, wet and normal

season. We collected the latest water quality monitoring data from

January to December 2019 for rivers and three seasons coastal water

adjacent to the PRE. This study mainly investigated the responses of

coastal water quality in the PRE to the TN and TP input fluxes of eight

rivers entering the sea. The objectives of the study were (1) to evaluate

the spatial pollution status of TN and TP concentrations and fluxes in

the rivers of the PRE; (2) to understand the spatiotemporal patterns of

TN and TP, DIN and DIP concentrations in the coastal waters of the

PRE; (3) to clarify the seasonal variation characteristics of TN/TP and

DIN/DIP in the PRE and (4) to identify the mixed behaviours of TN

and TP in the PRE. Such an understanding will help monitor river-

estuary-coast system nutrients, prevent, and control water

eutrophication, and provide an important basis for mitigating

coastal water pollution in the PRE.
2 Materials and methods

2.1 Study areas

The PRE is located in the south-central coastal area of Guangdong

Province, located in the northern part of the South China Sea

(Figure 1). Its primary water source is the Pearl River and several

rivers in the Pearl River Delta.The Pearl River is China’s third-longest

and second-largest river, as well as the largest water system in the

country’s south. It originates in the west of Yunnan-Guizhou Plateau

and flows through northern Vietnam and six provinces in China

(Guo, 2016). The Pearl River is mainly formed by the convergence of

three major rivers, the East, North, and West rivers, and it finally

enters the South China Sea at the Eight Gates of the PRE, with a total

length of approximately 2320 km and a total drainage area of 453690

km2 (Yuan, 2005; Department of Water Resources in Guangdong

Province, 2021; Luo, 2021). In 2019, the average annual rainfall in
frontiersin.org
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Guangdong province was 1993.6 mm (Department of Water

Resources in Guangdong Province, 2020). The PRE is the frontier

of the Pearl River Delta, which includes Guangzhou, Dongguan,

Shenzhen, Hong Kong, Zhongshan, Zhuhai, Macao, and other

coastal cities (Geeraert et al., 2021; Ke et al., 2022). With the reform

and opening up in Guangdong, the economy of the Pearl River Delta

has rapidly developed, and the river wastewater discharge from

coastal cities has become the main source of nutrients entering the

coastal waters of the PRE (Pang and Li, 2001; Huang et al., 2003).

Basic information on the rivers entering the sea in the major coastal

cities of the PRE in Guangdong Province is presented in Table 1.
2.2 Data sources and analysis methods

The locations of the water quality monitoring stations in the PRE

and its coastal waters were shown in Figure 1. Based on the different

salinity of seawater, the PRE marine monitoring stations can be divided

into three zones: Zone I, Zone II and Zone III (Zhang et al., 2022).

The Zone I was freshwater zone (S1, S2, and S5), the Zone II was mixed
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zone (S3, S4, S6, S7, S8, S9, and S11), and the Zone III was seawater

zone (S10, S12, S13, S14, and S15) (Figure 1). The data for this study

were obtained from the Department of Ecology and Environment of

Guangdong Province. The seawater monitoring data of the PRE for the

three seasons of 2019, namely dry season (May), wet season (August)

and normal season (October), were selected separately, and data from

fifteen marine monitoring stations S1-S15 were collected for each

month, for a total of 45 seawater monitoring data. The chemical

oxygen demand (COD), DO, and total suspended particles (TSP) the

method specified in the Specification of Oceanographic Survey (China

National Standardization Management Committee, 2007).The COD

was determined by alkaline potassium permanganate method. DO was

measured by iodine quantity method. The TSP was measured by weight

method. In addition, the concentrations of TN and TP were directly

determined using potassium persulfate oxidationmethod. The collected

seawater samples were first filtered through a 0.45 mm membrane, and

then the concentrations of NH4
+-N, NO2

–-N, NO3
–-N and PO4

3–-P

were determined using indophenol blue spectrophotometry,

naphthalene ethylenediamine spectrophotometry, cadmium column

r e d u c t i o n me t h o d a n d ph o s p h omo l y b d e n um b l u e
TABLE 1 Information on the rivers entering the sea flowing into the coastal waters of the PRE.

Management city River Monitoring station Symbol

Dongguan South branch of East River Shatiansisheng A

Guangzhou Guangzhou section of Pearl River Lianhuashan B

Guangzhou Guangzhou section of Pearl River Hongqili C

Guangzhou Guangzhou section of Pearl River Jiaomen D

Shenzhen Shenzhen River Shenzhen Estuary E

Zhongshan Watercourse of Hengmen Zhongshan Port wharf F

Zhuhai Watercourse of Jitimen Jitimen Bridge G

Zhuhai Watercourse of Modaomen Zhuhai Bridge H
fron
FIGURE 1

Geographical location of the PRE (A) and monitoring stations (B).
tiersin.org
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spectrophotometry, respectively, according to the methods specified in

(GB17378.4-2007) specification of oceanographic survey part IV:

seawater analysis (China National Standardization Management

Committee, 2007). Freshwater samples from estuaries were collected

according to the methods specified in (HJ91-2002) the technical

specifications for monitoring surface water and sewage (Ministry of

Ecology and Environment, PRC, 2003).
2.3 TN and TP flows and fluxes of rivers
entering the PRE

As per the monitoring data of the rivers entering the sea obtained

from the Guangdong Provincial Department of Ecology and

Environment and the monthly flow data of the main rivers entering

the PRE obtained from the Pearl River Water Resources Commission

of the Ministry of Water Resources, the nutrient fluxes of the rivers

entering the sea of the PRE in Guangdong Province were quantified.

In this study, the TN and TP fluxes of the rivers entering the sea were

estimated by referring to the calculation method of nutrient fluxes of

eight estuaries entering the sea in the Pearl River Delta of Lu et al.

(2009). The specific calculation procedure is presented in the

supplementary supporting materials of this study.
2.4 Statistical analysis of the data

Ocean Data View (4.0) software was used to draw the

spatiotemporal distribution maps of the PRE and its seawater

monitoring stations, as well as TN and TP. The Origin 2021

software was used to draw a box diagram of the spatial distribution

patterns of TN and TP in the estuary of the PRE, the spatiotemporal
Frontiers in Marine Science 04
fluxes and contribution patterns of TN and TP in the estuary, and the

seasonal variations in TN/TP and DIN/DIP in the estuary of the PRE.

Microsoft Excel 2016 was used for the statistical analysis of the

monitoring data. SPSS 22 software was used to analyse the

significant seasonal differences in the TN and TP concentrations of

the rivers and seawater entering the PRE, and Spearman correlation

significance level analysis was conducted on the environmental

factors affecting the coastal water quality. The Origin 2021 software

was also used to perform linear regression analysis on nutrients and

salinity (S) at a significant level (P < 0.05).
3 Results

3.1 Spatiotemporal concentrations and
fluxes of TN and TP in the rivers entering
the PRE

The spatial patterns of the TN and TP concentrations in the eight

rivers of the PRE were significantly different (P < 0.05) (Figure 2). The

concentrations of TN and TP in river E were found to be the highest

among the eight rivers, and concentrations of TN and TP in river E

were also found to be the highest for each season (Table S1). The

concentration of TN in the river of the PRE ranged from 117.86 to

750.00 mmol/L, with the annual average concentration being 207.18 ±

105.13 mmol/L. The highest and lowest concentrations of TN

appeared in March for river E and November for river H,

respectively (Figure 2A). According to the Environmental Quality

Standards for Surface Water of China (Table S2), the water qualities

of all rivers entering the sea exceeded standard IV, and the water

qualities observed at six river monitoring stations exceeded standard

V, accounting for 75.0% of eight river monitoring stations entering
B

C D

A

FIGURE 2

Spatiotemporal distribution patterns of TN (A, B) and TP (C, D) in rivers of the PRE from January to December. The black lines and red boxes, upper and
lower edges, black lines, red crosses inside and outside the box and dotted lines represent the median and mean, 25th percentile and 75th percentile, <
99 the percentile and > 1th percentile, minimum and maximum values and water quality standard grades for all data, respectively.
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the sea. The water quality of two river monitoring stations G and H

was found to be between standard IV and V, with an average annual

concentration of 142.50 and 137.08 mmol/L, respectively. Among the

12 months, the highest monthly average TN concentration was

recorded in March in the PRE, while the lowest monthly average

TN concentration was recorded in September, at 257.41±190.25 and

166.43±52.50 respectively, and the average TN concentration in each

month exceeded the V standard (Figure 2B). The annual average

concentration of TP was 3.51 ± 1.70 mmol/L, with concentrations

ranging from 0.65 to 12.26 mmol/L. The highest and lowest

concentrations of TP appeared in April for river E and in October

for rivers G and H, respectively (Figure 2C). The water qualities of

87.5% of river monitoring stations was between standards I and II,

with only one river monitoring station, E, having a higher average

annual concentration than standard II. In the 12 months, the highest

and lowest monthly average TP concentrations in the PRE occurred

in March and January with 4.23 ± 1.40 and 2.90 ± 1.27 respectively,

and the average TP concentration in the PRE in each month was

between the I and II standards (Figure 2D).

The fluxes of TN and TP from the rivers entering the sea of the

PRE had different spatial and temporal patterns (Figure 3). The

annual fluxes of TN and TP pollutants discharged from the rivers

into the coastal waters of the PRE were 8.61 × 1010 and 1.55 × 109

mol/year, respectively (Table S3). The monthly TN and TP fluxes of
Frontiers in Marine Science 05
the East, North, and West rivers entering the PRE exhibited similar

temporal trends. The maximum monthly fluxes of TN and TP into

the sea in the PRE were found to occur in July during the wet season,

accounting for 17.8% and 20.1% of the annual fluxes, respectively.

The minimum monthly fluxes of TN and TP into the sea occurred in

November during the normal season, accounting for only 2.7% and

2.6% of the annual fluxes, respectively. In the 12 months, the

maximum monthly flux of TN into the sea of the North River was

found in June, whereas the maximummonthly flux of TN into the sea

of the East and West rivers was found in July. In December, the

monthly flux from TN of the East River into the sea was found to be

the smallest, whereas the minimum monthly fluxes of the North and

West rivers were found in November. The maximum monthly fluxes

of TP into the sea from the three rivers occurred in July. The

minimum monthly fluxes of TP from the East and North Rivers

appeared in December, while the minimum monthly fluxes of TP for

the West River appeared in October. In addition, the spatial flux

patterns of TN and TP in the rivers entering the sea in the PRE were

defined in this study (Figure 3). Among the three rivers entering the

sea, the West River contributed the most to the annual flux of TN for

the PRE, which was 3.70 × 1010 mol/year, accounting for 43.0% of the

annual flux. The contributions of the North and West rivers to the

annual flux of TP into the sea of the PRE were found to be similar, at

5.93 × 108 and 5.92 × 108 mol/year, both accounting for 38.3% of the
frontiersin.org
FIGURE 3

Spatiotemporal fluxes and contribution patterns of TN and TP into major rivers (East, North, and West rivers) of the PRE.
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annual flux of TP. East River had the smallest contribution to the sea

flux of the PRE, contributing only 1.89 × 1010 mol TN and 3.63 ×

108 mol TP, with contribution rates of 22.0% and 23.4%, respectively.
3.2 Spatiotemporal distribution pattern of
TN and TP in the surface seawater of the
PRE

The spatiotemporal distribution patterns of TN and TP

concentrations in the coastal waters of the PRE were clarified by

investigating the water quality of the coastal waters of the PRE in 2019

(Figures 4A, B). The seasonal variation in TN concentration was not
Frontiers in Marine Science 06
found to be significant (P > 0.05), and the spatial distributions of TN

and TP concentrations in the PRE were significantly different

(Figure 4). The annual average concentration of TN in the PRE was

70.64 ± 10.10 mmol/L, with the concentration ranging from 2.73 to

191.00 mmol/L. In all three seasons, the concentration was high in the

middle of the wet season and low in the dry and normal seasons.

During the dry season, the average concentration of TN was 67.86 ±

35.87 mmol/L, which fluctuated from 8.14 to 119.29 mmol/L. TN

concentrations fluctuated between 2.73 and 191.00 mmol/L during the

wet season, with an average of 84.16 ± 47.04 mmol/L. The TN

concentration in the normal season ranged between 8.54 and

125.57 mmol/L, with the average concentration being 59.89 ± 36.34

mmol/L. In all three seasons and year, the distribution of TN
B

A

FIGURE 4

Spatiotemporal pattern of TN (A) and TP (B) in the PRE.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1129712
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ke et al. 10.3389/fmars.2023.1129712
concentration was characterised as Zone I > Zone II > Zone III, while

the TN concentration near the S2 monitoring station of Zone I was

lower than Zone II during the dry season (Figure 4A). The

concentration of TN in the PRE was generally higher in the estuary

and coastal waters, gradually decreasing from the estuary to the

open ocean.

The variation in TP concentration was found to be significant in

the three seasons (P < 0.01). The annual average concentration of TP

in the PRE was 1.67 ± 0.78 mmol/L, with the concentration varying

between 0.045 and 4.84 mmol/L. Among the three seasons, the TP

concentration in the PRE during the wet season was higher than that

during the dry season, normal seasons, and the TP concentration in

the dry season was the lowest. The average TP concentration was

0.77 ± 0.73mmol/L, and it varied from 0.045 to 2.56 mmol/L during the

dry season in the PRE. TP concentration in PRE fluctuated from 0.32

to 4.55 mmol/L in the normal season, with an average of 1.58 ± 1.04

mmol/L. TP concentration ranged from 0.60 to 4.84 mmol/L, with an

average of 2.68 ± 0.95 mmol/L in the wet season. During the dry

season, normal season, the distribution of TP concentration was

characterized as Zone I > Zone II > Zone III, while the

concentration of TP was relatively high near the S3 monitoring

station in Shenzhen Bay. In the wet season, the distribution of TP

concentrations is characterised by Zone II > Zone I > Zone III, with

higher TP concentrations were found in coastal waters of Shenzhen

Bay andMacau of Zone II, especially at the S3 monitoring station near

Shenzhen Bay where TP concentrations was at their highest. Overall,

the TP concentration in the PRE decreased from the estuary to the

open ocean.

The spatial distribution of DIN and DIP concentrations in the

PRE was significantly different (Figures 5A, B). The annual average

concentration of DIN in the PRE was 60.98 ± 13.88 mmol/L, with

concentration ranged from 1.47 to 178.41 mmol/L. In all seasons, the

concentration of DIN in the PRE was higher during the wet season

than during the dry and normal seasons. The average DIN

concentration in the PRE during the dry season was 55.86 ± 33.40

mmol/L, with the concentration varied between 1.47 and 99.06 mmol/

L. During the wet season, the concentration of DIN in the PRE

fluctuated from 2.71 to 178.41 mmol/L, with the average

concentration of 79.94 ± 44.57 mmol/L. While in the normal

season, the concentration of DIN ranged from 3.17 to 121.11 mmol/

L, with the average concentration of 47.13 ± 33.13 mmol/L. In the

three seasons and year, the spatial distribution of DIN concentrations

was characterised by Zone I > Zone II > Zone III.

The average annual concentration of DIP in the PRE was 0.59 ±

0.26 mmol/L, and the concentration varied between 0.016 and 3.16

mmol/L. In all three seasons, the DIP concentrations in the PRE were

higher during the wet and normal season than during the dry season,

with the lowest DIP concentrations during the dry season. The

average concentration of DIP during the dry season was 0.22 ± 0.22

mmol/L, with concentrations fluctuating between 0.016 and 0.84

mmol/L. During the wet season, the concentration of DIP fluctuated

from 0.048 to 3.16 mmol/L with an average concentration of 0.80 ±

0.86 mmol/L. In normal season, the DIP concentration ranged from

0.097 to 3.16 mmol/L, with the average concentration being 0.74 ±

0.72 mmol/L. In the wet season, normal season and year, the spatial

distribution of DIP concentration was characterized as Zone I > Zone

II > Zone III, while the distribution of DIP concentration in the dry
Frontiers in Marine Science 07
season was characterized as Zone II > Zone I > Zone III. The highest

DIP concentrations were found near monitoring station S3 in Zone II

during each season. In summary, the concentration distribution of

DIN and DIP in the PRE was characterised by the decreasing trends

from the estuary to the coastal water.
3.3 Spatiotemporal variation in TN/TP
in the PRE

The spatial variation of TN/TP in the PRE in different seasons

was shown (Figure 6). In dry and wet seasons, only the TN/TP ratio

of river was significantly different from those of seawater (P < 0.05).

In the annual, the TN/TP ratios of rivers, freshwater and mixed

zones were all significantly different from those of seawater (P <

0.01, P < 0.05). Regarding the average annual TN/TP ratio of PRE,

the seawater zone (330.94 ± 434.71) was significantly higher than

the river (59.31 ± 5.98), freshwater zone (59.45 ± 3.75) and mixed

zone (45.73 ± 21.27). The TN/TP ratios were significantly higher in

seawater zone (945.66 ± 728.89) than in the river (53.55 ± 7.95),

freshwater zone (61.61 ± 38.73), and mixed zone(75.79 ± 288.89)

during the dry season. The TN/TP ratios were higher in the river

(51.96 ± 12.72) and freshwater zone (54.17 ± 12.08) than in mixed

zone (29.96 ± 18.85) and seawater zone (16.48 ± 19.65) during the

wet season. In the normal season, the TN/TP ratios were higher in

the river (69.73 ± 62.05) and freshwater zone(62.56 ± 11.40) than in

mixed zone (31.43 ± 9.59) and seawater zone (30.69 ± 5.55). Except

for the TN/TP ratio of seawater zone(16.48), which was close to 16

during the wet season, the TN/TP ratios of different regions in all

seasons were significantly higher than the Redfield ratio, with the

highest ratio (945.66) observed in seawater zone during the dry

season (Redfield et al., 1963). In general, the spatial trends of TN/TP

in the different seasons of the PRE were approximately the same.

The spatial regional variation of TN/TP ratio in the wet and normal

seasons decreased from the river to seawater zone. TN/TP in the

spatial area during the dry season and annual increased from the

river to seawater zone.
3.4 Mixed behaviours of TN and TP
concentrations in the PRE

The S of seawater, like temperature and pressure, is a basic

parameter for studying the physical and chemical processes of

seawater and has an impact on the changes in its biogeochemical

properties, such as nutrient distribution and primary production

(Bharathi et al., 2022; Howarth et al., 2011). The variations of TN

and TP concentrations significantly decreased with increasing S in the

PRE (Figure 7). Significant negative correlations were observed

between TN concentration and S in the three seasons and year

(R2 = 0.926, 0.870, 0.648 and 0.619, P < 0.05, respectively), which

implied that TN showed conservative behaviours in all seasons. In

addition, the TP concentrations were negatively correlated with S only

during the dry season (R2 = 0.321; P < 0.05). However, there were no

significant correlation between TP concentrations and S in the wet

season normal season annual (P > 0.05). It dedicated that the TP

behaved conservative only in dry seasons.
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4 Discussion

4.1 Comparison of the nutrient
concentrations and composition with those
of other Chinese estuaries

In comparison with the previous investigation in the rivers of PRE

from 2005 to 2006, the TN concentration increased from 164.40

mmol/L to 207.18mmol/L, and TP concentration increased from 3.20

mmol/L to 3.51 mmol/L (Lu et al., 2009). Therefore, the increasing

speed of TN concertation increased more faster than the TP in the

riverine nutrient’s sources input. In addition, the TN, TP, DIN, and

DIP concentrations in the PRE and most estuaries and bays were
Frontiers in Marine Science 08
shown (Table 2). The TN, TP, DIN, and DIP concentrations of the

seawater observed in this study were approximately comparable to

those found in most estuaries and bays (Table 2). the average

concentrations of TN, TP, DIN, and DIP in the PRE were lower

than those in the Daliao River estuary, Jiulong River estuary, Yangtze

River estuary, and adjacent sea areas, and higher than those in the

Yellow River estuary, Dongshan Bay (Guo et al., 2012; Hu et al., 2016;

Jiang et al., 2016; Wang et al., 2016; Zhang et al., 2016). The high

nitrogen and phosphorus nutrient in the seawater along the PRE may

have been influenced by the output of a large amount of nutrients in

the Pearl River Basin. Alternatively, they may have been influenced by

human sewage discharge, especially the industrial, agricultural, and

domestic sewage discharge of coastal cities, such as Guangzhou,
B

A

FIGURE 5

Spatiotemporal pattern of DIN (A) and DIP (B) in the PRE.Spatiotemporal variation in TN/TP in the PRE.
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Shenzhen, and Zhuhai (Tang et al., 1996; Dong and Huang, 2021; Ke

et al., 2022). As per the Seawater Quality Standard of China (GB3007-

1997), the DIN concentrations at most monitoring stations in the

PRE exceeded the national fourth-class seawater standards, and DIP

concentrations reached the national second-class seawater standards

(Table S2). This indicated that the water bodies along the PRE were

significantly polluted with nutrients (Zhang et al., 2015; Zeng et al.,

2020). This may be due to the frequent human activities occurring in

the economically developed areas of the Pearl River Delta. These

activities include forestry cultivation, farmland cultivation, livestock

breeding, aquaculture, residential life, and industrial production,

which generate large amounts of nitrogen nutrients that are

discharged into the coastal waters with rivers, thus leading to high

exceedances of DIN concentrations and high TN concentrations in

seawater in most areas of the PRE (Dong and Huang, 2021; Liu, 2006;

Lu et al., 2009). In terms of nutrient composition, the annual average

ratio of TN/TP of seawater in the PRE was greater than that of the

Dongshan Bay, and the annual average ratio of DIN/DIP was lower
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than that of the Daliao River estuary but greater than that of the

Dongshan Bay (Zhang et al., 2015; Jiang et al., 2016). The high DIN/

DIP ratios mainly occurred in the coastal waters. A high DIN/DIP

ratio in seawater will affect the composition of marine biological

communities, limit the growth of phytoplankton, and destroy the

balance of the marine ecosystem (Wei et al., 2019; Zhang et al.,

2020a). However, the ratios of TN/TP and DIN/DIP in the seawater

along the PRE examined in this study were significantly higher than

the Redfield ratio, and all three seasons showed the characteristics of

nutrients unbalance, which was caused by the relatively high

concentrations of TN and DIN in the seawater relative to TP and

DIP. This may be because the flux of TN into the sea of the PRE was

significantly larger than that of TP (Figure 3). The TN/TP ratio of

seawater was higher in the dry and normal seasons than in the wet

seasons (Figure 6). This may be related to the flux of nutrient inputs

from the river, and in these two seasons, the seawater temperature is

low, the light duration is short, the growth rate of marine

phytoplankton is not fast, and the consumption of nutrients in the
FIGURE 6

Spatiotemporal variation in TN/TP in the PRE.
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seawater is not sufficiently high (Zhang et al., 2021). On one hand, the

different mixed behaviour of TN and TP from rivers input may lead to

the lower TN/TP ratio in seawater, which was caused by the TN

concentration decreased faster than the TP during the transport and

biogeochemical process. On the other hand, in summer, the daytime

is long, sunlight is sufficient, the temperature is high, the growth rate

of phytoplankton in the ocean is high, and more nutrients are

consumed, which reduces the TN/TP ratio of seawater (Zhang

et al., 2021).

The discharge of municipal sewage and industrial wastewater,

livestock breeding, and excessive use of agricultural fertiliser in the

Pearl River Delta are the main reasons for the high concentrations of

TN and TP in the estuary (Huang et al., 2010; Tan et al., 2014; Tang
Frontiers in Marine Science 10
et al., 2018). As per the Surface Water Environmental Quality

Standard, TN concentrations at six of the eight estuary monitoring

stations exceeded the national class V surface water quality standard,

and TN concentrations in the remaining two estuaries also exceeded

the national class IV surface water quality standard. The TP

concentrations of most monitored estuaries reached the national

class II surface water quality standard, and only one monitored

estuary of Shenzhen river exceeded the national class II surface

water quality standard (Figure 2). This indicated that nitrogen and

phosphorus nutrient pollution were prevalent in the PRE, particularly

when nitrogen nutrient content was significantly exceeded and

nitrogen pollution was extremely high. TN and TP in the estuary

flow into the ocean along with the river, which may be the key factor
B

A

FIGURE 7

Linear regression analysis of TN (A) and TP (B) concentrations and salinity in the PRE.
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leading to the high concentrations of TN and TP in the coastal waters

of the PRE and creating prominent nitrogen pollution problems (Niu

et al., 2020a). In addition, compared to the TN concentrations, TP

concentrations in the estuary of the PRE were relatively lower, which

may be one of the reasons for the nutrients unbalance in the coastal

waters of the PRE (Shi et al., 2019; Niu et al., 2020). Human activities

play an important role in coastal water pollution. Shenzhen River

flowed through densely populated and industrially developed

Shenzhen, bringing a large amount of industrial and domestic

sewage with high nutrient content, which resulted in high

concentrations of TN and TP in the water near Shenzhen river

estuary (Xie et al., 2017). The PRE gets its water from the Pearl

River, which is fed by the East, West, North, and many smaller rivers.

It flows through Yunnan, Guangxi, Hunan, Guangdong, and six other

provinces of China (Ke et al., 2022), carrying a large number of

nutrients produced by human life, farmland planting, livestock and

poultry breeding, and other activities into the coastal waters of the

PRE. It contributes many terrigenous nutrients to the coastal waters
Frontiers in Marine Science 11
of the PRE (Wu et al., 2019). In addition, industrial wastewater and

domestic sewage from coastal cities of the Pearl River Delta, as well as

mariculture, also significantly contribute to the excess nitrogen and

phosphorus nutrients in coastal waters of the PRE (Yao and

Chen, 2021).
4.2 Seasonal influencing factors of TN and
TP transport and biogeochemistry process
in the PRE

According the spearman correlation analysis, the factors affecting

TN and TP concentrations in the coastal waters of the PRE showed

obvious seasonal variation (Table 3). Table 3 shows that TN and S in

the coastal waters of the PRE were significantly negatively correlated

in dry season, wet season, normal season and annual (P < 0.01). This

indicated that the factors affecting the spatial variation of TN

concentrations in seawater may be the freshwater input from rivers
TABLE 2 Comparison of nutrient concentrations, TN/TP, and DIN/DIP in the PRE with other estuaries and bays of China.

Estuaries
Sampling

time

TN (mmol/L) TP (mmol/L) DIN (mmol/L) DIP (mmol/L) TN/TP DIN/DIP
References

Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean

Daliao River
Estuary

Aug. 2013
262.14–
467.14

366.43
1.62–
5.81

4.19 — 318.57 — 0.97 — — — 301.25
Zhang

et al., 2015
Nov. 2013

115.00–
417.14

248.57
5.16–
17.10

10.32 — 309.29 — 1.94 — — — 166.27

Dongshan
Bay

May 2011
1.21–
10.50

16.14
0.84–
1.94

1.23
2.36–
9.29

4.93
0.032–
0.32

0.13
9.3–
26.8

13.4
14.2–
147.6

64.3
Jiang et al.,

2016
Aug. 2011

12.00–
43.78

25.43
0.94–
3.06

1.94
2.79–
10.07

7.14
0.065–
1.35

0.52
9.5–
21.2

13.3 6.6–79.3 28.5

Jiulong River
Estuary

2010
— — — — —

73.57 — 1.258 — — — 58.5
Guo et al.,

2012

Yangtze
River
Estuary

2012
— 147.6 — 4.51 — 133.06 — 1.47 — — — —

Wang
et al., 2016

— 75.51 — 6.27 — 55.11 — 1.04 — — — —

Yellow River
Estuary

2014 — — — — — 17.79 — 0.427 — — — 51.1
Hu et al.,
2016

PRE 2019
2.73–
191.00

70.64
0.045–
4.84

1.67
1.47–
178.41

60.98
0.02–
3.16

0.59
1.13–
2119.39

42.19 ±
25.39

13.64–
1703.23

104.05 ±
84.59

This study
fro
"-" means no value.
TABLE 3 Spearman correlation relationships between TN and TP and environmental factors in the PRE.

Nutrients Season TN TP S pH DIP DIN NO3
–-N NO2

–-N NH4
+-N DO COD

TN

Dry 1.000 0.596* -0.704** -0.465 0.631* 0.893** 0.921** 0.692** 0.289 0.129 0.801**

Wet 1.000 0.244 -0.893** -0.535* 0.854** 0.996** 0.961** 0.704** 0.371 -0.241 0.500

Normal 1.000 0.757** -0.814** -0.396 0.704** 0.950** 0.942** 0.649** 0.486 0.479 0.546*

Annual 1.000 0.463** -0.801** -0.236 0.627** 0.939** 0.915** 0.650** 0.391** -0.144 0.608**

TP

Dry 0.596* 1.000 -0.666** -0.553* 0.841** 0.789** 0.778** 0.789** 0.284 0.265 0.531*

Wet 0.244 1.000 0.061 -0.493 0.543* 0.197 0.034 0.458 0.535* -0.426 -0.016

Normal 0.757** 1.000 -0.579* -0.543* 0.820** 0.682** 0.724** 0.604* 0.482 0.625* 0.400

Annual 0.463** 1.000 -0.256 -0.131 0.635** 0.546** 0.431** 0.599** 0.569** -0.399** 0.162
nti
*refers to the correlation being significant at P < 0.05 (two-tailed). **refers to the correlation being significant at P < 0.01 (two-tailed).
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and nearshore water dynamics (Li et al., 2017; Ma and Zhao, 2021; Ke

et al., 2022). A significant negative correlation was observed between

TP and S in the dry and normal seasons (P < 0.01 and < 0.05,

respectively), indicating that TP concentration in the PRE was mainly

affected by river nutrient inputs. However, no significant correlation

was observed between TP and S during the wet season and annual.

This could be because P is the limiting element in the PRE, and

phytoplankton growth and absorption, biological activities, and

biological assimilation consumes large amounts of DIP (Wu et al.,

2016; Zhang et al., 2020a). Another reason could be the dilution of

freshwater inputs to the rivers or the adsorption of P by suspended

solids in the estuaries during the wet seasons (Lu et al., 2009; Slomp,

2011; Li et al., 2017), resulting in the non-conservative behaviour of

TP in the coastal waters of the PRE. TN and TP concentrations were

positively correlated in the dry season, normal season and annual (P <

0.05 and <0.01, respectively) (Table 3), indicating that TN and TP in

the PRE had the same source and similar biological cycles (Yuan et al.,

2018; Zhang et al., 2020a). However, no significant correlation was

observed between the TN and TP concentrations in the wet season,

indicating that the source of TP may be different from that of TN.

DIN, NO3
–-N and NO2

–-N were positively correlated with TN

concentrations (P < 0.01). This indicated that DIN was the main

form of nitrogen found in the coastal waters of the PRE and that

NO3
–-N and NO2

–-N were also important components of TN. TP was

positively correlated with DIP (P < 0.01 and < 0.05), indicating that

the main form of phosphorus in the PRE seawater was DIP. TN was

positively correlated with DIP (P < 0.01 and < 0.05). Except the wet

season, TP was significantly and positively correlated with DIN,

NO3
–-N and NO2

–-N concentrations in other seasons and annual

(P < 0.01 and < 0.05).

Spatiotemporal differences in the nutrient distribution of the

coastal waters of the PRE were related to seasonal changes and

human activities. TN and TP concentrations in the estuary and TN

and TP fluxes in the PRE were both highest in the wet season when

the annual rainfall was the highest (Figure 3). At this time, TN and TP

concentrations in the coastal waters of the PRE were the highest for

the entire year (Figure 4), which were 84.16 ± 47.04 and 2.68 ±

0.95mmol/L, respectively. In the dry and normal seasons, TN and TP

concentrations and fluxes from the rivers of the PRE to the sea were

relatively low, as were the TN and TP concentrations in the coastal

waters of the PRE. It can be seen that the nutrient concentrations in

the coastal waters of the PRE were mainly related to the fluxes of TN

and TP in the rivers. This indicated that nutrient concentrations in

the coastal waters of the PRE were generally affected by the input of

wastewater from terrestrial rivers, such as wastewater from human life

and agricultural production activities (Yao and Chen, 2021; Ke et al.,

2022). In addition, during the wet season, a high rainfall will bring the

nitrogen and phosphorus fertilisers into the coastal area of the river

basin and into the sea, which is also the reason for the high

concentrations of TN and TP in the coastal waters of the PRE (Xu,

2003; Li et al., 2017; Ke et al., 2022). The effects of human activities on

the nutrient distribution characteristics of coastal water bodies cannot

be ignored. First, the excessive application of agricultural fertilisers

and livestock breeding in the Pearl River Basin produces a large

number of pollutants in the basin, which contributes significantly to

the TN and TP fluxes of the PRE into the sea (Jia et al., 2002; Lin et al.,

2004). Second, Dongguan, Guangzhou, Shenzhen, and other coastal
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cities were economically developed and densely populated cities of the

Pearl River Delta, and the concentrations of TN and TP in estuaries A,

B, D, and E of these coastal cities were relatively high (Figure 2). The

TN and TP fluxes may also be influenced by the discharge of

municipal sewage, industrial wastewater, and coastal aquaculture

wastewater (Dai et al., 2009; Xie et al., 2017). In addition,

atmospheric deposition and submarine groundwater discharge are

also sources of seawater nutrients, which may also impact the

concentrations of TN and TP in the coastal waters of the PRE

(Wang et al., 2021).
4.3 Connecting coastal water quality
improvement to PRE watershed land-based
sources reduction

Coastal water pollution in China is mainly caused by land-based

pollutants, and TN and TP carried by rivers into the sea are the main

sources of the presence of nitrogen and phosphorus nutrients in

coastal waters (Dai et al., 2019). Since the reform and opening up, the

economy of the Pearl River Delta region has been rapidly developing,

and the input flux of pollutants from land-based sources in the

watershed has annually increased the pollution of seawater near the

PRE (Tang et al., 1996). According to the Bulletin on the State of

China’s Marine Ecological Environment, in 2021, the seawater quality

in the PRE was categorised as poor category four, and the nitrogen

nutrients in the seawater were found to significantly exceed the

standard. Additionally, the PRE was listed as one of the three major

areas in the “14th five-year plan” for the comprehensive management

of key national waters (Ministry of Ecology and Environment of PRC,

2022a; Department of Ecological Environment in Guangdong

Province, 2022). Therefore, to improve the water pollution situation

of the coastal waters of the PRE, monitoring the nitrogen and

phosphorus discharges from rivers entering the sea and taking

corresponding measures to reduce nitrogen pollutant discharges

from land-based rivers at the source are key measures to take

(Dong and Huang, 2021; Huang et al., 2021). First, we should

conduct simultaneous and long-term monitoring of nutrient input

and seawater quality in the PRE, connect the improvement of coastal

water quality with the reduction in nutrient input flux from land-

based sources, strengthen the control of total pollutant load from

land-based sources in the watershed for coastal areas with high TN

and TP concentrations, and reduce the nutrient discharge of nitrogen

and phosphorus from land-based rivers (Zhang et al., 2020b; Zhang

et al., 2020c). Second, in areas with high TN and TP concentrations,

such as estuaries and waters near coastal cities, the discharge of

human domestic sewage, industrial sewage, and aquaculture sewage

from coastal cities must be considered, and effective measures, such as

establishing sewage treatment plants, creating estuarine protection

zones, reconstructing coastal wetland, and cleaning-up sediment,

should be taken to reduce land-source nitrogen and phosphorus

nutrients for reducing land-source river pollutants (Li et al., 2018;

Yu et al., 2020; Zhang et al., 2020c; Dong and Huang, 2021). In

addition, for monitoring and managing TN and TP fluxes in the land-

source rivers of the PRE, monitoring the nutrient input fluxes of the

West River and North River is critical because the larger contribution

of seawater TN and TP in the PRE was made by the West River and
frontiersin.org

https://doi.org/10.3389/fmars.2023.1129712
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ke et al. 10.3389/fmars.2023.1129712
North River tributaries of the Pearl River Basin. As per the

Environmental Quality Standard for Surface Water and the

Standard for Seawater Quality, the monitoring index of nutrients in

the rivers entering the sea and the testing index of seawater were

inconsistent, and monitoring and evaluating the water quality

conditions of estuarine areas where freshwater and seawater are

mixed is not effective. To improve the coastal water quality of the

PRE and respond to the national goal of building a beautiful bay and

improving the quality of the marine ecological environment in the

“14th five-year plan”, integrated nutrient monitoring standards for

land and sea should be established to realise the input of nitrogen and

phosphorus nutrients from land-based rivers and comprehensive

management of seawater pollution (Department of Ecology and

Environment of Guangdong Province, 2022; Ministry of Ecology

and Environment of PRC, 2022b; Zhang et al., 2020b). Integrated

land- sea monitoring standards connect coastal water quality with

total river nitrogen and phosphorus pollutant control, thus, providing

a scientific basis for the detection, evaluation, and management of

estuarine nutrient salts, which is conducive to strengthening the

control of nutrient fluxes from land-based rivers and reducing the

discharge of river nitrogen and phosphorus nutrients into the sea.
5 Conclusions

In summary, this study mainly examined the concentrations,

fluxes, and spatiotemporal distributions of TN and TP in the river

estuaries and seawater of the PRE in 2019, revealing the response of

TN and TP in the PRE to the spatiotemporal fluxes of TN and TP in

river. The spatial patterns of TN and TP concentrations in the PRE

river estuaries revealed that these were significantly varied at different

times. The annual average concentrations of TN and TP were 207.18

± 105.13 and 3.51 ± 1.70mmol/L, respectively. The annual TN and TP

fluxes of the pollutants discharged into coastal waters were 8.61 × 1010

and 1.55 × 109 mol/year, respectively. The main factor affecting the

TN and TP fluxes of the rivers entering the sea was the seasonal river

freshwater flux. During the wet season, the river input fluxes were

significantly higher than those during the dry and normal seasons. In

addition, the responses of TN and TP in the coastal waters of the PRE

to TN and TP input from the rivers to the sea were different. The

concentrations of TN and TP were the highest in the wet season and

relatively lower in the dry and normal seasons. These results indicated

that TN and TP concentrations in the surface seawater of the PRE

were mainly affected by the input of the terrigenous rivers.

Furthermore, the coastal hydrodynamic process influenced the

seasonal variation in the seawater nutrients of the PRE. TN showed

conservative behaviour in each season, and TP showed conservative

behaviour in the dry season. The concentrations of TN in most rivers

reaching the sea exceeded the national surface water standard of

Grade 5, and the concentrations of TP reached the national surface

water standard of Grade 2. DIN at most monitoring stations exceeded

the national seawater standard of Grade 4, while the DIP

concentration met the national seawater standard of Grade 2. These

results indicated that the water nutrients in the coastal waters of the

PRE were mainly affected by the input of terrigenous river nutrients,

and the eutrophication of the PRE estuary and seawater was

prominent, especially when N nutrient concentration significantly
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exceeded. Overall, the nitrogen concentration in the PRE coastal

water was relatively higher than that of phosphorus, showing the

characteristics of nutrients unbalance. These findings are useful for

effectively controlling water pollution from river discharge into the

estuary and coastal waters.
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