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Aluminum andmanganese are both key parameters in the GEOTRACES program.

Data on dissolved aluminum (dAl) and dissolved manganese (dMn) relative to

their geochemical behavior remain limited in the northeastern Indian Ocean (IO;

including the Bay of Bengal (BoB) and equatorial Indian Ocean (Eq. IO)). Seawater

samples collected in the BoB and Eq. IO during the spring inter-monsoon period

(7 March to 9 April) of 2017 were analyzed to investigate the behavior and main

processes controlling the distributions of dAl and dMn in the northeastern IO.

The average concentrations of dAl and dMn in the mixed layer of the BoB were

16.6 and 6.7 nM, respectively. Amodified 1-D box-model equation was utilized to

estimate the contributions of different sources to dAl and dMn in the mixed layer.

Al released from the desorption of and/or dissolution of the lithogenic sediments

discharged by the Ganga–Brahmaputra (G-B) river system predominantly

controlled the dAl distributions in the mixed layer of the BoB, while the

desorption from the lithogenic sediments only contributed approximately

13%–21% dMn. Additional dMn input from the advection of Andaman Sea

water and photo-reduction–dissolution of particulate Mn(IV) contributed more

than 60% dMn in the mixed layer of the BoB. dAl and dMn in the surface mixed

layer of the Eq. IO were mainly affected by the mixing of dAl- and dMn-enriched

BoB surface water and low-dAl, low-dMn southern Arabian Sea surface water.

Considering water mass properties and dAl concentrations, the distributions of

dAl in the intermediate water (750–1,500 m) of northeastern IO were controlled

by the mixing of Red Sea Intermediate Water, Indonesian Intermediate Water,

and intermediate water of the BoB. Different from dAl, the apparent oxygen

utilization relationship with dMn concentrations indicated that the regeneration
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of lithogenic particles under hypoxic conditions played a more important role

than the remineralization of settling organic particles in controlling dMn

distributions in the subsurface and intermediate water body (100–1,000 m) of

the BoB and that remineralization of biogenic particles mattered to dMn in the

subsurface of the Eq. IO.
KEYWORDS
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Introduction

Aluminum (Al) and manganese (Mn) are considered key

parameters in the GEOTRACES program (GEOTRACES

Planning Group, 2006). Al is widely used as a tracer of

atmospheric deposition to the ocean (Measures and Brown, 1996;

Grand et al., 2015a). Mn is an essential micronutrient for

photosynthesis and the normal function of enzymes in cells of

phytoplankton (Gerringa et al., 2020). Furthermore, both Al and

Mn can be used for tracing water masses mixing (Measures and

Edmond, 1990; Statham et al., 1998; Zheng et al., 2022) and external

sources, e.g., continental inputs (Slemons et al., 2010; Menzel

Barraqueta et al., 2018; Kandel and Aguilar-Islas, 2021) and

hydrothermal inputs (Resing et al., 2015; Lee et al., 2018). Mn is

also used as a chemical tracer for understanding changes in the

redox environment (Lenstra et al., 2020) in the ocean due to its

variable valence.

Dissolved Al (dAl) is particle reactive, and its vertical profile

typically presents a scavenged type in many ocean regions (Bruland

et al., 2014), i.e., elevated concentrations in the surface and

decreasing and keeping uniform concentrations in the deep

ocean. Dissolved Mn (dMn) generally behaves as a scavenged

type (Landing and Bruland, 1980; Colombo et al., 2020) but

sometimes increases its concentration below the surface where

dissolved oxygen is low (Thi Dieu Vu and Sohrin, 2013; Lenstra

et al., 2020). Different from dAl, the elevated concentration of dMn

in the surface layer mainly results from the photo-reduction–

dissolution of Mn oxides (Sunda and Huntsman, 1994; Hood

et al., 2009). Atmospheric deposition (Baker et al., 2006;

Hsu et al., 2010; Kadko et al., 2020), hydrothermal venting

(Resing et al., 2015; Chen and Wu, 2019), sediment resuspension

(Wang et al., 2018; Colombo et al., 2022), and fluvial input

(dissolved species and lithogenic release; Aguilar-Islas and

Bruland, 2006; Singh et al., 2020) are all the main sources of dAl

and dMn in the ocean. Moreover, Mn can transfer its valence from

particle Mn(IV) to dissoluble Mn(II) by reductive dissolution and

enter the water body below the surface layer (Lee et al., 2018;

Lenstra et al., 2020; Colombo et al., 2022). Both dAl and dMn

concentrations have shown huge inter-oceanic distinctions due to

different biogeochemical behavior and external sources in different

oceanic basins (Obata et al., 2004; Thi Dieu Vu and Sohrin, 2013;

Rolison et al., 2015; Grand et al., 2015b; Häusler et al., 2018; Menzel
02
Barraqueta et al., 2018; Wang et al., 2018; Nakaguchi et al., 2021;

Singh and Singh, 2022). The concentration of dAl varies in a large

range (0.05 to 673.4 nM; Menzel Barraqueta et al., 2020) in the

global ocean, while dMn shows a relatively small concentration

range (0.1 to 25 nM; Shiller, 1997).

The Indian Ocean (IO) occupies approximately one-fifth of the

world’s ocean net primary production (Behrenfeld and Falkowski,

1997) and is characterized by seasonal reversal of monsoonal winds

and surface currents (Shankar et al., 2002). The IO is one of the least

understood oceans due to its physical and biogeochemical dynamics

(Hood et al., 2009). Obata et al. (2004) determined the vertical

profiles of dAl and other elements in several stations in eastern IO.

Thi Dieu Vu and Sohrin (2013) reported the basin-scale

distribution of dAl, dMn, and other trace elements in the IO.

Singh and Singh (2022) studied dAl distributions over the full

vertical water column profiles in the Arabian Sea and the western

equatorial IO. Data on dAl and dMn relative to their

biogeochemical behavior remain limited in the northeastern IO.

Grand et al. (2015b) conducted a meridional study from the Indian

sector of the Southern Ocean to the Bay of Bengal (BoB) spaced at

approximately 1° intervals, focusing on the distribution of dAl and

dissolved Fe. The atmospheric dry deposition was investigated

simultaneously (Grand et al., 2015a). Singh et al. (2020) measured

dAl from the subtropical gyre region to the northern IO, including

the BoB, the Andaman Sea, and the Arabian Sea. The huge

continental input, in the form of freshwater, suspended

sediments, and atmospheric deposition, deeply influence the

biogeochemistry of lithogenic trace metals (e.g., Al and Mn) in

the BoB and equatorial IO (Sengupta et al., 2006; Srinivas and Sarin,

2013). Moreover, due to the large riverine freshwater input,

excessive rainfall, and strong stratification, along with the oldest

central water in the north IO, the BoB is one of the four anoxic areas

in the global ocean (Kamykowski and Zentara, 1990; You and

Tomczak, 1993). Therefore, to better understand and assess the

effect of different processes on the biogeochemistry of northeastern

IO, we report the continental input and redox tracer, i.e., dAl and

dMn concentrations in the BoB and equatorial IO during the spring

inter-monsoon period (7 March to 9 April) in 2017. In this study, a

modified 1-D model equation, T-S diagram, and correlations

between dAl, dMn, and relevant hydrographic parameters are

used to figure out the principal sources and processes governing

dAl and dMn distributions in the northeastern Indian Ocean and
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add to the comprehensive understanding of dAl and dMn behavior

in the anoxic ocean.
Materials and methods

Study area and sampling

The BoB covers an area of 2.2 × 106 km2, with an average depth

of 3 km (Singh et al., 2012). The Ganga and Brahmaputra rivers

together discharge 1,050 km3/year of water, which could extend to

8°S (Nath et al., 1989), and approximately one billion tons of

sediments (Galy and France-Lanord, 2001) to the BoB. Unger

et al. (2003) conducted sediment trap experiments in the BoB and

found obvious seasonal and interannual variations in fluxes of river

sediments. The surface water of the northeastern IO receives dust

input from the Indian plains, Southeast Asia, combined with

possible long-range inputs from the Thar Desert (Srinivas et al.,

2012; Srinivas and Sarin, 2013). Moreover, the Indonesian

Throughflow (ITF) carries warm and low-salinity surface water

from the west Pacific Ocean into the east IO (Gordon, 2005), and

the South Equatorial Current (SEC) carries the ITF westward

(You, 1998).

Seawater samples were collected aboard the R/V ShiYan 3 in the

northeastern IO during the spring inter-monsoon period (7March to 9

April) of 2017. The dataset encompassed a total of 50 stations

(Figure 1), including 37 surface stations (~10 m), eight stations of

upper 500 m, and five full vertical profiles. The layer number of vertical

profiles was determined as 7-8 for stations of upper 500 m and as 14–

20 for the full ones, according to the water mass properties obtained

from the down cast reading of temperature and salinity from the

conductivity, temperature, and depth (CTD) sensor at each station. All

samples were obtained through an X-Vane sampler, which consisted of

a 5-L Niskin-X sampling bottle attached to a titanium and polyvinyl

chloride (PVC) polymer supporting frame (“II-style” secure assembly)

(Zhang et al., 2015b). The X-Vane sampler controls the Niskin-X bottle

upstream of the hydrowire, away from the contaminations of the

hydrowire and ship. Once the sampling bottle arrives at the desired

depth, the Teflon-coated messenger is used to strike the “II-style”

assembly and close the Niskin-X bottle to obtain a clean seawater

sample. Five-liter Niskin-X bottles were washed rigorously according to

the GEOTRACES cookbook (using Citranox (Alconox, White Plains,

NY, USA), Milli-Q water (Advantage 10, Millipore, Burlington, MA,

USA), 10% HCl (purified by quadruple sub-boiling point distillation in

a quartz glass still) leaching solution, and Milli-Q water in sequence)

and sealed using double plastic bags according to Zhang et al. (2015b).

The low-density polyethylene (LDPE) and high-density polyethylene

(HDPE) bottles (Nalgene, Rochester, NY, USA) and perfluoroalkoxy

alkane (Savillex, Eden Prairie, MN, USA) filtration assemblies were

cleaned using 2 M of purified HCl, ~1 M of Purified HCl, and Milli-Q

water in sequence in a class-1000 clean lab at East China Normal

University according to Zhang et al. (2015a). Samples for dissolved

measurements once recovered were then taken directly to a class-100

portable clean bench (Air Control) using the filtration system and

washed using the same procedures. Filtration was immediately carried

out through a 0.4-mm, acid-washed, 47-mm polycarbonate membrane
Frontiers in Marine Science 03
(Whatman, Kent, UK) in a class-100 clean bench. Subsamples were

collected in 250-ml Nalgene LDPE bottles, double bagged, and quickly

frozen at −20°C. Blank experiments were also carried out using Milli-Q

water that was filtrated under the same conditions for the investigation

of the contamination.
Analysis of dissolved Al and Mn

Frozen samples were sufficiently thawed and then acidified to

pH 1.7 using purified HCl. dAl and dMn concentrations were

determined at approximately 1 h after acidification. The dissolved

Al was determined using the online preconcentration flow injection

analysis (FIA) method modified from Brown and Bruland (2008).

Briefly, the main modification was loading the buffered sample onto

the column directly without conditioning the column buffer. The

determining blank with its variation and the result of reference

sample determination were satisfying (see below). The dissolved

Mn samples were analyzed using the FIA method developed by

Aguilar-Islas and Bruland (2006) in the lab. The detection limit,

defined as three times the standard deviation of the blank, was 0.18

nM for Al (n = 9) and 0.21 nM for Mn (n = 9). The precision of the

measurements of dAl and dMn was below 2% when concentration

was high (dAl, 20 nM; dMn, 8 nM; n = 11) and below 5% for low

concentration (dAl, 5 nM; dMn, 1 nM; n = 11). The column-cleaned

low background seawater was made by passing buffered South

China Sea seawater through the preconcentration column (Nobias

Chelate PA-1, Hitachi, Japan) for estimation of the procedural

blank during the sample analysis.

Multiple reference seawater samples, including Canada

Standard Reference Seawater (NASS-6), North Atlantic

GEOTRACES reference standards (GEOTRACES GS and

GEOTRACES GD), and North Pacific reference standards (SAFe-

S), were analyzed for dAl and dMn concentrations. Results of dAl

and dMnmeasurements for the abovementioned reference seawater

samples had no significant difference with consensus value (Table 1,

t-test, p > 0.01).
A 1-D box-model equation to estimate
external source contribution

A modified version of the 1-D box-model equation proposed by

Grand et al. (2015a) was utilized to estimate the dAl and dMn input

to the mixed layer, originating from atmospheric deposition and/or

fluvial sediment discharge to the BoB and the equatorial Indian

Ocean (Eq. IO). The 1-D box-model equation is given as follows:

dM  ¼  
G x MRT x fM x Sol:

Mwtx MLDc
x106,   (1)

where dM is the concentration of dissolved trace metals (in

nM), G represents the lithogenic sediment flux (in g/(m2·year)),

MRT is the mean residence time (in years) of trace metals in the

mixed layer, fM is the fraction of trace metals in the particles

(including sediments and aerosols), Sol. is the fractional solubility

of trace metals from the lithogenic sediments or atmospheric dust,
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Mwt is the atomic weight of trace metals (in g/mol),MLDc (in m) is

the depth of mixed layer retrieved from a density based on our own

CTD calculated density of the sampling locations (data in

accordance with Holte et al. (2017)), and 106 is the factor of

conversions of units.
Results

The hydrographical setting

Several studies have discussed the circulation and the structure

of water masses in the IO (Shankar et al., 2002; Schott et al., 2009;

Singh et al., 2012). The study area (Figure 1) is separated into two

sub-basins for the convenience of discussion: 1) the BoB (north of

5°N, 80–92°E) and 2) Eq. IO [5°S–5°N, including station I507 (6.5°

S, 98.3°E)]. From the data obtained, salinity on the surface was

higher in the south and west and lower in the north and east

(Figure 2B). Station I201, which was influenced by not only South

Asian Subcontinent fluvial input but also the outflow of the

Andaman Sea, possessed the lowest salinity (32.43) with a

relatively low temperature (29.6°C). Relatively low salinity (33.52)

and temperature (28.6°C) were observed at the southeastmost

station I507 compared to nearby stations. The abnormally high

salinity was also found at station I103. In section E, the zonal

distribution of salinity showed a decreasing trend from west to east,

and a high-salinity (~35.5) water tongue appeared in the subsurface

(60–120 m) (Figure 3A). Dissolved oxygen (DO) was in the range of

47 to 78 mM under the subsurface of section E (except for station

I415). In the whole section L, DO was lower than 63 mM in the

depth range from 200 to 1,250 m (Figure 4B). In the BoB, DO

reached its minimum (<16 mM) below the pycnocline, while DO

was below the surface of the Eq. IO was in the range of 31 to 78 mM,

slightly higher than that in the BoB.

The T-S diagram (Figure 5) suggested major source water masses

in this study. The tremendous Ganga–Brahmaputra (G-B) River

System freshwater and local excess of precipitation over evaporation

leads to the formation of Bay of Bengal Water (BBW), which was

characterized by low salinity (32.43–33.48, observed in this study) and

high dAl and dMn (12.3–19.9 and 5.1–8.7 nM, respectively). In

addition, the Andaman Sea is also characterized by the low salinity

for receiving freshwater from Irrawaddy and Salween rivers. Low-

salinity surface water of the Andaman Sea may be transported to the
Frontiers in Marine Science 04
BoB as well (Singh et al., 2020). The Equatorial Counter Current (ECC)

carries Arabian Sea High-Salinity Water (ASHSW), which was

characterized by high salinity and relatively low dAl and dMn (I401,

salinity = 34.96, dAl = 4.3 nM, and dMn = 1.0 nM, this study; ER-8,

salinity = 35.48, dAl = 3.0 nM, and dMn = 1.4 nM, Thi Dieu Vu and

Sohrin, 2013) eastward to the east Eq. IO. Meanwhile, the BBW is able

to spread southward to the east Eq. IO (I407–I415, salinity ~ 34.00,

Figures 2B, 3A; Sandeep et al., 2018) as well. The existence of BBW

leads to strong stratification and inhibits vertical mixing in the BoB.

The low-salinity BBW overlies North Indian Central Water (NICW),

which is aged from Indian Central Water (ICW) and occupies a major

subsurface water body in the north IO (You, 1997). NICW is the oldest

central water of the north IO (You and Tomczak, 1993) and becomes

depleted in oxygen (<25 mM, Figure 4B). The concentrations of dAl

and dMn were relatively high (dAl = 6.7 ± 4.3 (1SD) nM, dMn = 2.7 ±

1.7 (1SD) nM) in ICW and NICW. The potential temperature and
TABLE 1 Comparison of measured dAl (nM) and dMn (nM) concentrations (this study) and consensus values in SAFe and GEOTRACES reference
samples (n = 3).

Reference sample
Al Mn

Consensus value This study Consensus value This study

NASS-6 – – 9.4 ± 0.5 9.6 ± 0.9

GEOTRACES GS 27.5 ± 0.2 27.2 ± 0.3 1.62 ± 0.15 1.50 ± 0.11

GEOTRACES GD 17.7 ± 0.2 18.0 ± 0.7 – 0.21 ± 0.03

SAFe-S 1.67 ± 0.1 1.60 ± 0.2 0.82 ± 0.08 0.79 ± 0.06
dAl, dissolved aluminum; dMn, dissolved manganese. -, No available data.
FIGURE 1

Maps presenting sampling stations during the cruise carried out in
the spring inter-monsoon period of 2017. Maps also show
schematic surface water circulation (blue arrow, deduced using the
Ocean Surface Current Analysis Real-time (OSCAR) third-degree (1/
3 × 1/3 degree) resolution ocean surface current data (ESR, 2009)
during the sampling in the study region. NMC, Northeast Monsoon
Current; SECC, Southern Equatorial Counter Current; SEC, Southern
Equatorial Current; ECC, Equatorial Counter Current; ITF, Indonesian
Throughflow.
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A B

DC

FIGURE 2

Horizontal distributions of (A) temperature, (B) salinity, (C) dAl, and (D) dMn in the surface of the northeastern IO. dAl, dissolved aluminum; dMn,
dissolved manganese; IO, Indian Ocean.
A B

DC

FIGURE 3

(A) Salinity, (B) DO, (C) dAl concentrations, and (D) dMn concentrations in the water column of section E DO, dissolved oxygen; dAl, dissolved
aluminum; dMn, dissolved manganese.
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salinity of intermediate water body in this study (s0 in the range of

27.1–27.6 kg/m3, depth within 750–1,500 m) are ~6.1°C–6.7°C and

~34.87–34.95, respectively. The intermediate water body of the study

area is mainly from two water masses, i.e., Red Sea Intermediate Water

(RSIW; q ~ 8.2–12.0°C, salinity ~ 35.37–35.63, You, 1998) and

Indonesian Intermediate Water (IIW; q ~ 4.7–8.2°C, salinity ~

34.63–34.69, You, 1998) through T-S diagram.
Frontiers in Marine Science 06
Horizontal distributions of dissolved Al and
Mn in the northeastern IO

The differences between the average value of concentrations in the

mixed layer (20–30 m in the BoB, 30–35 m in the Eq. IO; dAl = 9.7 ±

5.0 (1SD) nM, dMn = 3.2 ± 2.3 (1SD) nM, n = 62) and surface layer

(10 m; dAl = 9.2 ± 4.8 (1SD) nM, dMn = 3.2 ± 2.4 (1SD) nM, n = 50)
A B

DC

FIGURE 4

(A) Salinity, (B) DO, (C) dAl concentrations, and (D) dMn concentrations in the water column of section L. For better visualization of data, these four
parameters’ distributions are shown separately for the upper 500-m water column and the remaining water column (>500 m). DO, dissolved
oxygen; dAl, dissolved aluminum; dMn, dissolved manganese.
A B

FIGURE 5

T-S diagrams of (A) dissolved Al and (B) dissolved Mn concentrations from stations in the northeastern IO. The gray solid curves were isopycnals
with s0 values (kg/m3) denoted. The definitions of different water masses were based on You (1997); You (1998), You (2000), Lewis and Luther III
(2000), Sardessai et al. (2010), and Grand et al. (2015b). BBW, Bay of Bengal Water; ASHSW, Arabian Sea High Salinity Water; ICW, Indian Central
Water; NICW, North Indian Central Water; IIW, Indonesia Intermediate Water; RSIW, Red Sea Intermediate Water; CDW, Circumpolar Deep Water.
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were both within 10% for dAl and dMn in this study, indicating that

the differences of concentrations of dAl and dMn were not significant

between the surface layer and mixed layer in the study area. The

distributions of dAl and dMn in the northern IO showed an increase

from south to north and from west to east (Figures 2C, D). Station I201

possessed the highest dAl and dMn concentrations (19.9 and 8.7 nM,

respectively) in the whole study area. Relatively high values of dAl and

dMn (16.4 and 4.2 nM, respectively) were observed at the

southeastmost station I507 compared to nearby stations. The

abnormal low dAl and dMn were found at station I103, which will

be discussed in the following section.

The dAl and dMn concentrations in the surface layer of the BoB

were in the range of 12.3–19.9 and 6.1–8.7 nM, respectively. The

mean dAl (16.7 ± 2.2 nM, n = 10) in the surface layer of the BoB in

this study was comparable to that of PA-9 (14.7 nM, 8.00°N, 89.00°

E, Obata et al., 2004) and was one- to twofold lower than the results

from Singh et al. (9.2–48.3 nM, 2020). The northernmost station of

Singh et al. (2020) was located at 20°N, 10° north of our station,

indicating that the relatively high dAl concentration may come

from the influence of freshwater input from the G-B River System.

The ranges of dAl and dMn concentrations observed in the surface

layer of the Eq. IO were 3.5–13.2 and 0.8–5.6 nM, respectively. The

results of dAl and dMn were comparable to those of Singh et al.

(2.5–15.4 nM, 2020) and Twining et al. (2.0–3.2 nM,

2019), respectively.
Vertical distributions of dissolved Al and
Mn in the northern Indian Ocean

In section E, zonal distributions of dAl and dMn showed an

increasing trend along with a decrease in salinity from west to east

(Figure 3). A water tongue characterized by low dAl and dMn

concentrations (<7.5 and<2 nM, respectively) appeared in the

subsurface of section E, where dMn met its minimum value (<1

nM) at ~75 m. Both dAl and dMn in section E normally showed

scavenging-type vertical profiles, i.e., enrichment in the surface

water and decreasing with increasing depth. dMn in station I415

showed subsurface enrichment (~3 nM) at depths of 350 and 500 m.

In whole section L, distributions of dAl and dMn were regional

discrepancies with DO (Figure 4). In the BoB, dAl exceeded 7.5 nM,

even up to 12, and dMn could reach 6 nM, approaching the surface

value. dAl and dMn concentrations were lower than 7.5 and 3 nM,

respectively, in the Eq. IO. A similar distribution pattern between

dAl and dMn was evident in the range of 500 to 1,000 m in section

L, namely, maximum (dAl and dMn reaching up to ~10 and ~6 nM,

respectively) in the BoB and minimum (dAl ~ 5 nM, dMn ~ 3 nM)

in the Eq. IO. Both dAl and dMn concentrations showed

remarkably uniform distributions below 1,000 m, which were

consistent with the results of Singh et al. (2020) and Obata et al.

(2004). The mean dAl concentration in the BoB was 4.7 nM, and an

increasing dAl concentration (5.7 nM in station I106) toward the

seafloor was observed. Simultaneously, in the Eq. IO, the mean dAl

concentration was 3 nM below 1,000 m, lower than that in the BoB.

dMn concentration was lower than 2 nM below 1,000 m, and the
Frontiers in Marine Science 07
mean values were 0.9 and 0.5 nM in the BoB and the Eq.

IO, respectively.
Discussion

Validation of dAl and dMn data with
published results

Indian GEOTRACES station, GI-01/06 (11.01°N, 87.00°E,

sampled in March 2014, Singh et al., 2020) in the BoB, was

112 km north of station I205 (10.00°N, 87.00°E, sampled in

March 2017) in this study (Figure 1). Both stations were sampled

during the spring inter-monsoon period. The dAl concentrations

had significant differences (t-test, p< 0.05) in the upper 1,000 m but

mostly overlapped in the deeper water (>1,000 m) (Figure 6A).

Considering the long time span (3 years) between occupations of

two stations, these differences may be attributed to variations of G-B

River System freshwater discharge and lithogenic sediment fluxes to

the BoB (Unger et al., 2003), which predominantly control the

dissolved Fe (Chinni et al., 2019) and dAl (Singh et al., 2020)

distributions, and will be discussed later in Section 4.2.

Japanese GEOTRACES station, ER-3 (0°, 80°E, sampled in

November 2011, Thi Dieu Vu and Sohrin, 2013), almost overlaps

station I401 (0.01°S, 79.92°E) (Figure 1). Salinity at two stations had

significant differences (t-test, p< 0.05) in the upper water column

(<200 m), and Mn distributions showed a significant difference in the

upper 500 m water body (t-test, p< 0.05, Figure 6B). The northeastern

IO is characterized by the seasonal reversal of monsoonal winds and

surface currents (Shankar et al., 2002). ER-3 was sampled in November

2009, while I401 was in March 2017. March is the first month of the

end of the Northeast Monsoon. The Northeast Monsoon Current

carries fresher BoB water into the Arabian Sea. November is the first

month of the start of the Northeast Monsoon, and the currents still

exist but feature the Southwest Monsoon Current, which flows

eastward from the Arabian Sea to the BoB (Shankar et al., 2002;

Schott et al., 2009). Currents flowing differently and interannual

differences contributed to significant differences in salinity and dMn

concentrations in the depth of upper 500 m. Such difference was also

observed above 1,000 m when full vertical profile station I415 was

compared with station ER-3. dMn showed more sensitivity toward

seasonal variations than dAl because dMn was not only seriously

affected by riverine inputs (Aguilar-Islas and Bruland, 2006) but also

influenced by ambient oxidation conditions (Lenstra et al., 2020). High

dMn concentration in the BoB subsurface layer caused by regeneration

under a low oxygen environment and the water mass mixing resulted

in a relatively high dMn value in station I415 than that of ER-3 in the

upper 1,000 m water body. Although the two stations were 12

longitudes apart, dMn concentrations showed comparable results in

the deeper waters (>1,500 m). In general, dAl and dMn concentrations

showed variations on account of different sampling seasons and years

in the upper water column (<1,000 m) at nearby stations and were

comparable in the deep water. The factors that may influence dAl and

dMn distributions in different areas and water depths are discussed in

the following section.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1128657
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yang et al. 10.3389/fmars.2023.1128657
Potential external sources of the mixed
layer of BoB

Tremendous fluvial input (including freshwater and lithogenic

sediments), along with atmospheric deposition and its subsequent

dissolution, plays significant roles in regulating the dAl and dMn

distributions in the BoB. Therefore, the 1-D box-model Equation 1

was used to estimate potential sources of dAl and dMn in the mixed

layer of the BoB. As shown in Table 2; Grand et al. (2015a)

calculated the residence time of dAl in the surface mixed layer to

be 1.1 years in the northeastern IO (north of 5°S), while 0.01–0.47

years in the Arabian Sea was given by Singh and Singh (2022). The

residence time of dMn varies in different areas (Table 2). For

consistency, the same Al residence time (i.e., 1.1 years) and the

mean value of Mn residence time of other studies (i.e., 1.0 years)

were used to calculate different source contributions.

Mn was categorized as a crustal-derived element, same as Al

(Hsu et al., 2010), while the solubility of the two elements differed

(Table 2). The solubility of dAl used in the study was chosen as

3.6%, the same as that of Grand et al. (2015a) and Singh et al.

(2020). The solubility of Mn from atmospheric dust was all

relatively high in different areas and was chosen as 50%.

Atmospheric Al dry deposition flux (0.3 mg Al·m−2·day−1;

Srinivas and Sarin, 2013) over the south BoB was chosen to

calculate the atmospheric deposition of Al. After substituting all

parameters above into Equation (1), the estimate of dust input

supported dAl in the south BoB was found to be 1.8–2.7 nM.

Similarly, 7.8 mg Mn·m−2·day−1 (Srinivas and Sarin, 2013) was used,

and the results showed that approximately 0.3–0.4 nM of dMn was

contributed by atmospheric deposition to the mixed layer of

the BoB.
Frontiers in Marine Science 08
The average concentration of dAl of the G-B River System was

taken as 57 nM (salinity ≈ 29.4, Singh et al., 2020). Grand et al.

(2015a) and Singh et al. (2020) both found that mixed layer dAl and

salinity were negatively correlated in the BoB where salinity > 31.

Based on the riverine freshwater charge (1,300 km3/year, Sengupta

et al., 2006), the area of the BoB (2.2 × 1012 m2, Singh et al., 2020),

and an average depth of mixed layer (20–30 m, this study), 1.3–1.9

nM enrichment of dAl in the mixed layer of the BoB was calculated

due to discharge of the G-B River System. Relatively few studies

focused on the distribution of dMn in the BoB nowadays. The value

of 20 nM was chosen as the endmember of riverine freshwater input

for dMn (unpublished data, measured at the G-B river estuary), and

0.2–0.4 nM of dMn was calculated from the G-B river system

contributing to the BoB.

Singh et al. (2020) estimated the Al fraction in the sediment

input to the BoB to be 8% by weight, which was similar to the Al

composition in the upper continental crust (8.04%, Taylor and

Mclennan, 1985) and the suspended sediments of Brahmaputra

River (7.9%, Singh and France-Lanord, 2002). The Mn composition

by weight was 673 ppm in the suspended sediments of the

Brahmaputra River (Singh and France-Lanord, 2002) and 600

ppm in the upper crust (Taylor and Mclennan, 1985). The same

Al concentration (8%) and Mn (650 ppm by weight) were used to

calculate sediment input to the BoB. The solubility of Al from

lithogenic sediments was chosen as 2.4% referring to Singh et al.

(2020). Considering the atmospheric mineral dust to be originating

from the upper crust and the results from Tessier et al. (1979) that

labile particulate species occupied the percentage of total particulate

concentration through five fractions processed, the solubility of Mn

in the lithogenic sediments was assumed to be 50%. Substituting

lithogenic sediment load (sediment trap in the south BoB, 4.3
A B

FIGURE 6

(A) Comparisons of salinity (blue) and dAl (red) at the full vertical profile of dAl of Indian GEOTRACES stations GI-01/06 (hollow square, Singh et al.,
2020) and I205 (dot, this study). (B) Comparisons of salinity (blue) and dMn (red) at Japanese GEOTRACES stations ER-3 (hollow square, Thi Dieu Vu
and Sohrin, 2013), I401 (triangle, this study), and I415 (dot, this study). dAl, dissolved aluminum; dMn, dissolved manganese.
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g·m−2·year−1, Unger et al., 2003) into Equation (1), dAl released in

the mixed water of the south BoB from the sediments was estimated

to be 11.2–16.8 nM. This estimated Al release from suspended

sediment was an order magnitude larger than that from G-B river

freshwater (1.3–1.9 nM). dMn from lithogenic sediment release was

in the range of 0.9 to 1.4 nM.

Al released from lithogenic sediments predominately controlled

the concentration of dAl (16.6 nM, average value), accounting for

more than 67% of bulk inventory, and freshwater discharge played a

secondary role in intense scavenging at the estuary. Atmospheric Al

dry deposition contributed approximately 14% dAl in the mixed

layer of the south BoB. There was no correlation between dAl and

dMn (r = 0.02, Figure 7, right) in the mixed layer of the south BoB,

indicating different controlling processes of dAl and dMn. Each

source accounted for dMn (6.7 nM, average value) differed from

that of dAl. Lithogenic sediments release supported only

approximately 13%–21% dMn. Both freshwater input and
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atmospheric Mn dry deposition input contributed ~5% dMn. The

three aforementioned sources sustained ~33% dMn in the mixed

layer of the BoB at most. Additional dMn input from the advection

of dMn-rich, low-salinity surface waters from the Andaman Sea

may be another significant source (Singh et al., 2020). Moreover,

numerous insoluble Mn(IV) oxides could be converted into

dissolved Mn(II) for photo-reduction (Sunda and Huntsman,

1994). Meanwhile, a high dissolution efficiency of dust-derived

Mn resulting from photochemical reduction was also observed by

Sunda and Huntsman (1988) and Thi Dieu Vu and Sohrin (2013),

indicating another important source for dMn in the

surface seawater.

The range of different source contributions above was mainly

from the indeterminacy of mixed layer depth. Other variable

parameters could also cause uncertainties in the contribution

calculation. For example, the G-B River System discharge used in

this study was 1,300 km3/year and had existing 13% interannual
FIGURE 7

dAl and dMn variations with salinity in the mixed layer for stations in BoB (left). dMn variation with dAl in the mixed layer of BoB (right). dAl, dissolved
aluminum; dMn, dissolved manganese; BoB, Bay of Bengal.
TABLE 2 Values of each parameter chosen in the BoB.

Area Pacific
Ocean

East
China
Sea

Atlantic
Ocean

South
Pacific
Ocean*

Bay of
Bengal

South
China
Sea**

North
Pacific

Ocean***

Arabian
Sea

Value chosen
in this study

Sol. (%) Al 3.7 5–10 4.1 ± 3.9 3.6 3.6

Mn 45.1 50 52.9 ± 31.1 35.9 ± 11.9 50

MRT
(year)

Al 1.1 ± 0.8 0.01–0.47 1.1

Mn 0.73 ± 0.1 1.4–5.2 0.22–1.8 1.0

Reference
Buck
et al.,
2013

Hsu et al.,
2010

López-Garcıá
et al., 2017

Kadko et al.,
2020

Grand
et al.,
2015a

Wang et al.,
2018

Martin and
Knauer, 1980

Singh and
Singh, 2022
* From coast to open ocean in the south Pacific Ocean.
** The mixed layer of the South China Sea.
*** The depth of 1–150 m of the central north Pacific Ocean.-
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variations (Dai and Trenberth, 2002; Jian et al., 2009), bringing 13%

contribution calculation result uncertainty. Nevertheless, even if

considering this uncertainty, lithogenic sediment release may still

play a predominant role in dAl distributions in the mixed layer of

the BoB. Unlike dAl, sources other than lithogenic sediments were

of great importance in controlling dMn contributions.
Frontiers in Marine Science 10
Water mass mixing in the northeastern IO

Significant low dAl and dMn concentrations compared to the

nearby stations were observed at stations I103 and I504,

accompanied by high salinity and low temperature (Figure 2). An

upwelling isopycnal, which the two stations possessed (Figure 4A),
FIGURE 9

dAl variation with salinity for s0 within 27.1–27.6 kg/m3 from stations in this study. ER-3, ER-5, and ER-6 from Thi Dieu Vu and Sohrin (2013) and PA-
2 and PA-7 from Obata et al. (2004). The error bar means the range of dAl concentration. The inset map shows the locations of stations ahead, and
the light blue line represents intermediate water (s0 within 27.1–27.6 kg/m3) circulation pattern in the northeastern IO (adapted from You, 1998). dAl,
dissolved aluminum; BoB, Bay of Bengal.
FIGURE 8

dAl (up) and dMn (down) variations with salinity for the mixed layer of stations in the Eq. IO (all stations located in 5°S–5°N). Data point for BoBmean

was the average value in the mixed layer of south BoB. Data point for station ER-8 (4.02°N, 69.00°W, Thi Dieu Vu and Sohrin, 2013) in the southern
Arabian Sea was also plotted as an endmember. dAl, dissolved aluminum; dMn, dissolved manganese; Eq. IO, equatorial Indian Ocean; BoB, Bay of
Bengal.
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was significant for a cold-core eddy. The decrease in dAl and dMn

concentrations with an increase in salinity of these two stations

could be attributed to cold-core eddies pumping sub-surface water

into the surface.

The Eq. IO was relatively far from the continent, where the

atmospheric deposition was the main external source of dAl and

dMn in the mixed layer. Substituting solubility, residence time,

atmospheric dry deposition flux (36.0 mg Al·m−2·year−1 and 936.0

mg Mn·m−2·year−1; Srinivas and Sarin, 2013), and depth of mixed

layer (30–35 m, this study) into Equation 1, atmospheric Al and Mn

dry deposition to the mixed layer of the Eq. IO was calculated as

1.5–1.8 and 0.2–0.3 nM, respectively, accounting for 20%–24% dAl

and 10%–14% dMn concentrations (7.4 and 2.1 nM, respectively) in

the mixed layer of the Eq. IO. Atmospheric dust deposition may not

play a significant role. Nevertheless, zonal distributions of dAl and

dMn showed an increasing trend from west to east in section E

(Figures 3C, D). Meanwhile, significantly correlated variations

(Figure 8) were found between dAl, dMn, and salinity in the

mixed layer of the Eq. IO (stations located in 5°S–5°N). Average

values in two locations, i.e., the south BoB of this study (salinity =

33.20, dAl = 16.6 nM, dMn = 6.7 nM) and ER-8 (4.02°N, 69.00°W,

salinity = 35.49, dAl = 3.0 nM, dMn = 1.4 nM, Thi Dieu Vu and

Sohrin, 2013), apparently bounded the upper and lower ends of

linear dAl and dMn variations with salinity in the Eq. IO region,

suggesting that the dAl and dMn distributions in the surface water

of the Eq. IO were predominantly controlled by the advective

mixing of low-salinity, dAl-rich, and dMn-rich south BBW and

relatively high-salinity, dAl-poor, and dMn-poor ASHSW.

Station I507 (6.49°S, 98.33°N) in the southeast of the study area

was influenced by the ITF (5°S-15°S, You and Tomczak, 1993;

Makarim et al., 2019) and possessed relatively high dAl

concentrations in the upper water column (<500 m). The ITF

carries 10 Sv (1 Sv = 106 m3/s) low-temperature, low-salinity,

oxygen-rich, and Al-rich water westward into the IO (Gordon,
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2005) and can be transported to the west IO by the SEC (Grand

et al., 2015a). The ITF played significant roles in governing the dAl

and dMn concentrations in the surface water, especially below the

surface mixed layer, where the Al and Mn release from the settling

mineral particles was deemed negligible (Measures et al., 2010;

Grand et al., 2015b). Elevated 228Ra activities (>100 dpm/m3;

Nozaki and Yamamoto, 2001) were observed in the surface

waters at PA-7 (Figure 1, 10.01°S, 103.00°E, Obata et al., 2004),

where high dAl concentrations (10.0 and 9.8 nM) appeared in the

mixed layer and upper water column (100–500 m), respectively,

suggested that the ITF, carrying coastal and shelf sources of trace

elements, may have a significant contribution to dAl and dMn in

the surface waters of the east IO.

The T-S diagram (Figure 5) indicated that intermediate water

(s0 within 27.1–27.6 kg/m3, depth in the range of 750–1,500 m) in

the study area was mainly mixed by IIW and RSIW. IIW,

characterized by relatively low salinity and high oxygen, largely

contributes approximately 30%–50% of its water into the BoB. On

the contrary, RSIW is characterized by high salinity and low oxygen

and contributes approximately 40% of its water into the BoB. The

main component of the intermediate water body of stations ER-5

and ER-6 from Thi Dieu Vu and Sohrin (2013) was hypothesized as

the RSIW. Stations PA-2 and PA-7 from Obata et al. (2004) were on

the pathway of IIW spreading northward. Both IIW and RSIWwere

characterized by low dAl (Obata et al., 2004; Thi Dieu Vu and

Sohrin, 2013), and when moving into the BoB as a western

boundary current through the east of Sri Lanka and flowed

clockwise, they exited the bay, carrying high dAl and dMn

concentrations (Figure 9, I205 and I106) of intermediate water of

the BoB southward along Sumatra and Java (Figure 9; You, 1998).

The intermediate water body of stations I103, I415, and I504 from

this study and ER-3 from Thi Dieu Vu and Sohrin (2013) were

considered the results of IIW and RSIW, together with BoB

intermediate water body mixing, and therefore, plots for salinity
A B

FIGURE 10

(A) dMn variation with AOU in the BoB. Red dots represent layers above (including) 100 m. Blue triangles represent layers from 100 to 1,000 m; the
two triangle dots in the ellipse come from 120 and 200 m of station I110, where the advection of dMn-rich Andaman Sea was obvious. Blue dash is
the linear line of AOU and dMn between 100 and 1,000 m, and blue font is its fitting equation. (B) dMn variation with AOU in the Eq. IO, with value
of dMn:dAl on each dot (showing as a color bar). The dots on the left of black solid line represent layers above (including) 100 m, while on the right
are in the range of 100–1,000 m. Red dash is the linear line of AOU and dMn between 100 and 1,000 m, and red font is its fitting equation. dMn,
dissolved manganese; AOU, apparent oxygen utilization; BoB, Bay of Bengal; dAl, dissolved aluminum.
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and dAl concentrations of these stations located in the dashed

triangle constituted IIW, RSIW, and BoB intermediate water body

(Figure 9). Based on the fact that northeastern IO is with low oxygen

and that the BoB is anoxic (Figure 4B), remineralization and/or

regeneration under a low-oxygen environment also mattered

during the transporting of IIW and RSIW and in the subsurface

water of the BoB, which will be discussed in the following section.
Remineralization versus reduction
regeneration in anoxic zone

The poor ventilation of waters associated with the existence of

NICW resulted in hypoxic conditions (DO below 32 mM, Figure 4B)

in the subsurface and intermediate waters body of the BoB, along

with high dAl and dMn concentrations simultaneously (Figures 4C,

D). High or increased dAl concentration in the subsurface (100–

1,000 m) was observed (Figure 4C). dAl in the depth of 100–1,000 m

behaved non-conservatively with a poor relationship between dAl

and salinity (r< 0.22, figure not shown), while dAl showed no

correlation (r< 0.24, figure not shown) with apparent oxygen

utilization (AOU) either. Singh et al. (2020) also observed the

increase in dAl levels in the subsurface water and that dAl

concentrations showed an overall decrease with increasing

nutrients in the thermocline waters (100–800 m), and they

concluded as regards the supply from the continental margin.

A tight correlation (Figure 10A, blue triangle dots, r = 0.87)

between dMn and AOU in the subsurface water depth (100–1,000

m) of the BoB indicated that remineralization and/or regeneration

mattered in regulating the biogeochemical behavior of dMn in a

hypoxic environment. Two triangle dots in the ellipse came from

120 and 200 m of station I110, which could be attributed to the

advection of dMn-rich Andaman Sea (Figures 2B, D), along with

resuspended sediments from the margin shelf (Singh et al., 2020).

AOU has been used to quantify the remineralized part of nutrients

for its function as a tracer of organic matter remineralization

(Anderson and Sarmiento, 1995; Chen and Wu, 2019). The slope

achieved from the dMn : AOU linear relationship in this study was

0.0334 nM/mM, which could be converted to Mn:P = 5.01 nM/mM
and Mn:C = 47.3 mM/M by applying the most commonly used

Redfield ratio AOU:P:C = 150:1:106 (Redfield, 1958; Tyrrell, 2019).

These two ratios far exceed the range in phytoplankton Mn:P =

0.16–0.81 nM/mM and Mn:C = 0.6–1.8 in mM/M reported and

summarized in Twining et al. (2010) and Twining et al. (2019),

respectively. This indicated that remineralization of biogenic

particulate, compared to a reduction of Mn(IV) from lithogenic

particles and/or resuspended sediments from the margin in hypoxic

conditions, could be deemed as negligible for the distribution of

dMn in the BoB while ignoring the effects of vertical mixing.

The low DO in the subsurface of the Eq. IO was the result of

NICW expanding southward and eastward and suppressed by the

ITF near 5°S–10°S (Grand et al., 2015b). The relatively tight

correlation (r = 0.79, figure not shown) between dAl and salinity in
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the subsurface (100–1,000 m) of the Eq. IO suggested inconspicuous

regeneration of dAl. On the contrary, the value of dMn:dAl

(Figure 10B) increased nearly up to ~0.8 at some layers of the Eq.

IO, indicating the existence of regeneration of dMn. However, a poor

relationship (Figure 10B, r = 0.36) between dMn and AOU indicated

a vague contribution of AOU under a low oxygen environment to the

distribution of dMn. Similarly, no subsurface Mn maximum was

observed in the oxygen minimum zone (OMZ;<100 mM,

somewhere< 10 mM) layer in the tropical and equatorial Pacific

Ocean (Chen andWu, 2019). The average AOU value in the depth of

100–500 m of the Eq. IO was 203.3 mM. Therefore, 0.2–1.1 nM of Mn

was calculated by remineralization through the Redfield ratio AOU:P

= 150:1 (Tyrrell, 2019) and Mn:P = 0.16–0.81 nM/mM in the cell

(Twining et al., 2010). The mean value of dMn in the subsurface

(100–500 m) water of Section E in the Eq. IO was 1.8 nM (ranging

from 0.8 to 3.7 nM). Therefore, the remineralization of settling

organic particles contributed 11%–61% dMn in the subsurface

water of the Eq. IO, which was different from that in the

subsurface water of the BoB. The macronutrients and dissolved Fe

were extremely low on the surface of IO tropical water, resulting in

low production in the region (Wiggert et al., 2006; Grand et al.,

2015b; Chinni et al., 2019). Low production in the upper water body

(POC export flux (234Th based): 1.0 mmol C·m2·day−1; Station 10,

3.5°S, 84.0°E, Anand et al., 2017) resulted in less particle settlement

and in situ reduction of Mn(IV) from settling, and suspended

particles did not likely occur in the subsurface water body.
Conclusions

This study provided a comprehensive dataset on the

distributions and sources of dissolved aluminum and manganese

in the northeastern Indian Ocean in the spring inter-monsoon

period of 2017. The mean values of dAl and dMn in the mixed layer

of the BoB were 16.6 and 6.7 nM, respectively. The release of

lithogenic sediments predominately controlled the concentration of

dAl and was of great importance in dMn distributions in the mixed

layer of the BoB. Additional dMn input from the advection of

Andaman Sea water and photo-reduction–dissolution of particulate

Mn also played significant roles. Different from that in the BoB, dAl

and dMn distributions in the mixed layer of the Eq. IO were

predominantly controlled by the advective mixing of low-salinity,

dAl-rich, and dMn-rich south BBW and high-salinity, dAl-poor,

and dMn-poor ASHSW. The intermediate water (750–1,500 m) of

northeastern IO was mainly formed by the migration and mixing of

low-dAl, low-dMn RSIW and IIW and BoB intermediate water

characterized with high dAl and dMn concentrations. Regeneration

of lithogenic particles under hypoxic conditions controlled the

distribution of dMn in the subsurface (100–1,000 m) of the BoB.

On the contrary, the remineralization of settling organic particles

mattered in the subsurface (100–500 m) water of the Eq. IO. The

influence of low salinity, dAl-rich, and dMn-rich ITF was also

observed in the southernmost area of the study.
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