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Dissolved oxygen is an important water quality indicator that affects the health of

aquatic products in aquaculture, and its monitoring and prediction are of great

significance. To improve the prediction accuracy of dissolved oxygen water

quality series, a hybrid prediction model based on variational mode

decomposition (VMD) and a deep belief network (DBN) optimized by an

improved slime mould algorithm (SMA) is proposed in this paper. First, VMD is

used to decompose the nonlinear dissolved oxygen time series into several

relatively stable intrinsic mode function (IMF) subsequences with different

frequency scales. Then, the SMA is improved by applying elite opposition-

based learning and nonlinear convergence factors to increase its population

diversity and enhance its local search and global convergence capabilities.

Finally, the improved SMA is used to optimize the hyperparameters of the

DBN, and the aquaculture water quality prediction VMD-ISMA-DBN model is

constructed. The model is used to predict each IMF subsequence, and the ISMA

optimization algorithm is used to adaptively select the optimal hyperparameters

of the DBN model, and the prediction results of each IMF are accumulated to

obtain the final prediction result of the dissolved oxygen time series. The

dissolved oxygen data of aquaculture water from 8 marine ranches in

Shandong Province, China were used to verify the prediction performance of

the model. Compared with the stand-alone DBN model, the prediction

performance of the model has been significantly improved, MAE and MSE have

been reduced by 43.28% and 40.43% respectively, and (R2) has been increased by

8.37%. The results show that the model has higher prediction accuracy than

other commonly used intelligent models (ARIMA, RF, TCN, ELM, GRU and LSTM);

hence, it can provide a reference for the accurate prediction and intelligent

regulation of aquaculture water quality.

KEYWORDS

dissolved oxygen, aquaculture, water quality prediction, variational mode
decomposition, deep belief network, slime mould algorithm
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1 Introduction

In the field of aquaculture, the quality of water is an important

factor affecting the growth, development and reproduction of

aquatic organisms. Water quality is unstable and constantly

changing due to factors such as weather, breeding density, fish

activity and fishermen intervention. In aquaculture, it is necessary

to ensure that the dissolved oxygen content, pH value, water

temperature, salinity and other water quality indicators are within

the normal ranges. Taking the dissolved oxygen content as an

example, the suitable dissolved oxygen content for fish is above 3

mg/L. When the dissolved oxygen content is less than 3 mg/L, the

fish will stop eating, and if the dissolved oxygen content is too high,

the fish may suffer from bubble disease. Therefore, accurate

prediction and timely intervention of water quality indicators to

control the aquaculture water environment within an appropriate

range are of great significance to ensure the healthy growth of fish.

In recent years, many scholars have done a lot of research on

water quality prediction, and applied various models to improve

prediction accuracy. Existing water quality prediction models

mainly include regression analysis based on mathematical

statistics (Areerachakul et al. (2013); Brooks et al. (2016)) and

methods based on computational intelligence (Rajaee et al. (2020)).

Traditional prediction methods based on regression analysis have

high requirements on the distribution of data samples, and a large

amount of data is required for training during modeling, which

affects the efficiency and accuracy of prediction. Prediction methods

based on computational intelligence (machine learning and deep

learning) have the characteristics of autonomous learning, optimal

calculation, and strong nonlinear fitting capabilities, and are more

suitable for predictive modeling of nonlinear aquaculture water

quality data. Many scholars have carried out much research on the

application of intelligent algorithms to solve the problem of

aquaculture water quality prediction and have built a variety of

intelligent prediction models based on machine learning

algorithms. Examples include genetic programming (Jafari et al.

(2020)), general regression neural network (GRNN) (Antanasijević

et al. (2014)), autoregressive integrated moving average model

(ARIMA) (Xuan et al. (2021)), tree-based artificial intelligence

models (Tiyasha et al. (2021)), radial basis function neural

networks (Rozario and Devarajan (2021)), fuzzy neural network

(Ren et al. (2018)) and Bayesian model averaging (Kisi et al. (2020)).

Due to the excellent performance of the deep learning framework in

time series forecasting, especially in long-term forecasting, most

scholars have studied the application of deep learning methods in

water quality forecasting. Examples include convolutional neural

network (Ta and Wei (2018)), long short-term memory (Barzegar

et al. (2020)), gated recurrent unit neural network (Cao et al.

(2020)), bidirectional simple recurrent units (Chen et al. (2022))

and temporal convolutional network (Li et al. (2022b)).

The above intelligent prediction models, combined with the

advantages of strong self-adaptation and the generalization ability

of machine learning, have achieved good results in the prediction of

nonlinear water quality data. Deep belief network (DBN) has the

advantages of requiring less training time, effectively extracting data

features, reducing the feature dimension and does not easily fall into
Frontiers in Marine Science 02
local optima. DBN have been widely used in emotion recognition

(Hassan et al., 2019), time series prediction (Kuremoto et al., 2014),

text classification (Jiang et al., 2018) medical diagnosis (Khatami

et al., 2017), etc. This paper studies the application of a DBN to

accurately predict the development trend of aquaculture

water quality.

Dissolved oxygen and other water quality data in aquaculture

are affected by many factors, such as chemical reactions, biological

activities, meteorological changes, and fishermen intervention, and

have the characteristics of nonlinearity, easily changing, and noise.

To improve the accuracy and stability of prediction results, most

scholars use the method of data decomposition to process a water

quality time series as the input sample of a prediction model. The

time series decomposition algorithms include empirical mode

decomposition (EMD), ensemble empirical mode decomposition

(EEMD), complete EEMD with adaptive noise (CEEMDAN),

variational mode decomposition (VMD) and others. (Zhang et al.,

2021; Zhang et al., 2022) constructed decomposition-ensemble

frameworks based on EMD to predict water quality (suspended

sediment concentration, SSC) time series, and achieved high

prediction accuracy. Liu et al. (2016) applied EMD and a back-

propagation neural network (BPNN) to predict water temperature

in aquaculture. Huan et al. (2018) and Li et al. (2018) applied

EEMD to extract multiscale features from water quality data before

making predictions. Lu and Ma (2020) proposed two hybrid short-

term dissolved oxygen water quality prediction models,

CEEMDAN-XGBoost and CEEMMDAN-RF. Huang et al. (2021)

proposed an interval dissolved oxygen water quality prediction

method based on VMD and a deep autoregressive recurrent

neural network (DeepAR). Ren et al. (2020) applied VMD to

decompose dissolved oxygen time series as input samples for the

DBN prediction model. Pipelzadeh and Mastouri (2021)

implemented a water quality prediction model based on VMD

and model tree (MT) to predict total dissolved solids (TDS) and

electrical conductivity (EC) water quality parameters. Bi et al.

(2023) used VMD to process non-stationary water quality time

series to improve prediction accuracy. VMD determines the

frequency center and bandwidth of each component by iteratively

searching for the optimal solution of the variational mode, prevents

mode aliasing by controlling the bandwidth and has strong

robustness to sampling and denoising. This paper studies the

application of VMD to decompose aquaculture water quality

signals to reduce the influence of nonlinear and nonstationary

characteristics of the data on the performance of the prediction

model and to improve the prediction accuracy.

Most of the intelligent models based on neural networks have

shortcomings, such as difficulty in determining hidden neurons,

overlearning or under learning, and easily falling into local optima.

Moreover, the improper selection of hyperparameters of intelligent

models also reduces the prediction accuracy of the model.

Therefore, many scholars have studied and applied meta-

heuristics algorithm to optimize the hyperparameters of neural

network prediction models. Meta-heuristics algorithms mainly

include evolutionary algorithms, swarm intelligence algorithms

that simulate biological survival, and algorithms that simulate

physical phenomena. Evolutionary algorithms draw on the
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evolutionary process of organisms in nature, including basic

operations such as genetic encoding, population initialization and

crossover mutation operator. Genetic algorithm (GA) and

differential evolution algorithm (DE) are two commonly used

evolutionary algorithms (Hu et al., 2022). The optimization

algorithms inspired by physical phenomena and designed

according to the laws of physics include gravitational search

algorithm m (GSA) (Rashedi et al., 2009), gradient-based

optimizer (GBO) (Ahmadianfar et al., 2020) and atom search

optimization (ASO) (Zhao et al., 2019), etc (Emam et al., 2023).

The swarm intelligence optimization algorithm is an intelligent

algorithm that simulates the behavior of groups of fish, birds,

wolves of bacteria in nature and uses information exchange and

cooperation between groups to achieve optimization purposes

(Wang et al., 2022). Swarm intelligence algorithms that have been

widely used in recent years include monarch butterfly optimization

(MBO)(Wang et al., 2019), hunger games search (HGS) (Yang et al.,

2021), sparrow search algorithm (SSA) (Xue and Shen, 2020),

dingoes hunting strategy (DHS) (Peraza-Vázquez et al., 2021),

bald eagle search (BES) (Alsattar et al., 2020), Wild horse

optimizer (WHO) (Naruei and Keynia, 2021), whale optimization

algorithm (WOA) (Mirjalili and Lewis, 2016), colony predation

algorithm (CPA)(Yang et al., 2021), weighted mean of vectors

(INFO) (Ahmadianfar et al., 2022), harris hawks optimization

(HHO) 109 (Heidari et al., 2019) and slime mould algorithm

(SMA) (Li et al., 2020). The slime mould optimization algorithm

is an optimization algorithm proposed according to the vegetative

growth process of a slime mould. The algorithm has the advantages

of a simple structure, fast convergence speed, strong local search

ability and relatively stable effect. In this paper, the optimization

performance of the SMA is further improved, the improved SMA

(ISMA) is used to optimize the hyperparameters of the DBN

prediction model, and the optimal hyperparameter combination

is used to construct the aquaculture water quality prediction model

to achieve accurate prediction of water quality time series.

The main contributions of this paper include the following

four points:
Fron
(1) In this paper, the multiscale decomposition of the water

quality signal is carried out by VMD to reduce the

complexity of the nonlinear dissolved oxygen time series,

and the relatively stable subsequence is used to train the

prediction model to improve the prediction accuracy.

(2) To set the number of VMD modes more reasonably, this

paper calculates the mean absolute error (MAE) between

the original s ignal and the decomposed mode

reconstruction sequence and determines the mode

decomposition number according to the change trend of

the MAE value to prevent information loss and mode

aliasing.

(3) In this paper, elite opposition-based learning and improved

nonlinear convergence factors are used to improve the SMA

with multiple strategies, which improves the diversity of the

initial population of the algorithm, balances the global

search ability and local search ability of the algorithm,
tiers in Marine Science 03
and makes it have better convergence accuracy and

stability.

(4) Through the ISMA, the training process of the DBN neural

network is optimized to obtain the best parameter

combination, which makes the model structure more

reasonable and greatly improves the prediction accuracy

of the time series.
2 Material and methods

2.1 Study area and data source

In this paper, the time series of dissolved oxygen in aquaculture

water of marine ranches in Shandong Province, China, was used as

a data sample to construct an accurate water quality prediction

model. In recent years, Shandong Province has vigorously

developed the construction of marine ranching, and more than

150 high-quality marine ranching projects have been built thus far.

The authors of this paper deployed water quality sensors in 8

marine ranches on the Shandong Peninsula and established

multiple aquaculture water quality data collection networks.

Starting from June 2020, time series data, such as dissolved

oxygen, pH, salinity, and water temperature, for aquaculture

water quality indicators were collected year round, and the data

were collected every ten minutes. Figure 1 shows the approximate

locations of the marine ranches where water quality data were

collected. Table 1 shows the descriptive statistics of the dissolved

oxygen time series collected from 8 marine ranches from June 1,

2021 to July 1, 2022.
2.2 Variational mode decomposition

VMD is an adaptive, completely non recursive variational mode

signal decomposition method that determines the frequency center

and bandwidth of each component by iteratively searching for the

optimal solution of the variational model. The nonstationary time

series is decomposed into k relatively stationary intrinsic mode

function (IMF) subsequences uk(t) with different frequency scales.

The center frequency of

each subsequence is vk. The constraint condition is that the sum

of the IMF components is equal to the original signal. The specific

construction steps are as follows:

(1) Obtain the signal of each IMF component through the

Hilbert transform, calculate its unilateral spectrum, and use

exponential correction to modulate the spectrum of each mode

function to the corresponding baseband [13], as shown in the

following equation (1).

½(d (t) + j=p t)*uk(t)�e−jvkt (1)

In the above formula, uk = fu1, u2 ⋯ ukgrepresents the k IMF

components obtained by the decomposition process, and vk =

fv1, v2 ⋯ vkgrepresents the center frequency of each component,
frontiersin.org
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dt is a generalized function, that is, the Dirac delta function, jis the

imaginary unit, and exponential e−jvkt correction is used to

modulate the spectrum of each mode function to the

corresponding fundamental frequency band (Niu et al., 2020).

(2) Calculate the square of the norm of the gradient of the

demodulated signal and perform Gaussian smoothing to obtain the

bandwidth of each mode signal, as shown in the following equation

(2)

∂t ½(d (t) + j=pt)*uk(t)�e−jvkt
�� ��2

2 (2)

In the above formula, ‖ •2 ‖indicates 2-norm processing and *is

the convolution operation.

(3) When construct a variational problem, the sum of the

estimated bandwidths of each mode is the smallest, the constraint

condition is that the sum of all modes is equal to the original signal

f (t), and the corresponding constraint variational expression is

shown in equation (3).

min   
uk ,vk

  o
k

∂t ½(d (t) + j=p t)*uk(t)�e−jvkt
�� �� 2

2

( )
s : t :o

k

uk = f (t) (3)

(4) To find the optimal solution of the constrained variational

problem, the augmented Lagrangian function is introduced by
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taking advantage of the quadratic penalty term and the

Lagrangian multiplier to transform the constrained variational

problem into an unconstrained variational problem, as shown in

Equation (4).

L ukf g, vkf g, lð Þ = ao
k

∂t d tð Þ + j=p tð Þ*uk tð Þ½ �e−jvkt�� ��  22
+ ‖ f tð Þ − o

k

uk tð Þ ‖22 + 〈 l tð Þ, f tð Þ − o
k

uk tð Þ 〉
(4)

In the above formula, ais the quadratic penalty term, which can

ensure the accuracy of signal reconstruction in a Gaussian noise

environment. lis the Lagrangian multiplication operator, which can

maintain the strictness of the constraints (Dragomiretskiy and

Zosso, 2014; Yang and Liu, 2022).

(5) Use the alternating direction method of multipliers

(ADMM) to iteratively solve each IMF component uk(t)and its

corresponding center frequency vk. The formulas are (5) and (6),

respectively.

û n+1
k (w) = (f̂ (w) −o

i≠k

û i(w) + l̂ (w)=2)=(1 + 2a(w − wk)
2) (5)

vn+1k =
Z ∞

0
w ûk(w)j j2=

Z ∞

0
û k(w)j j2 (6)

where w is the frequency, f̂ (w) is the Fourier transform of the

original signal f(t), and û k(w) and l̂ (w) are the Fourier transforms

of uk(t) and l(t), respectively.
2.3 Slime mould algorithm

The SMA was proposed by Li et al. in 2020. The algorithm

mainly simulates the behavior and morphological changes in slime

moulds during foraging foraging (Li et al., 2020). The slime mould

judges the location of the food according to the concentration of the

food. The higher the concentration of food is, the stronger the

propagating waves generated by the biological oscillator in the body.

This causes an increase in the width of the veins, forming a network

of veins with different thicknesses between multiple food sources

and establishing the best path for finding food. In addition, after the
TABLE 1 Descriptive statistics of dissolved oxygen time series collected from 8 marine ranches.

Marine Ranching Mean(mg/l) STD(mg/l) Min(mg/l) Max(mg/l)

1 Laizhou 5.88 0.59 4.53 6.83

2 Longkou 6.81 1.23 2.77 12.1

3 Yantai Laishan 6.75 0.45 5.49 8.19

4 Weihai Deming 8.59 1.02 4.77 11.8

5 Rongchen Chundao 6.71 0.87 5.66 13.1

6 Qingdao Luhaifeng 5.81 2.75 1.01 11.6

7 Qingdao jiaonan 5.71 0.73 1.58 8.61

8 Rizhao 6.61 1.21 4.46 10.9
FIGURE 1

Approximate location of marine ranches where water quality data
was collected.
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slime mould obtains food, there is still a certain probability of

searching the unknown area (Zubaidi et al., 2020). The position

update formula of a slime mould individual is shown in (7).

X(t + 1) =

rand*(Ub − Lb) + Lb, rand < z

Xb(t) + Ra*(W*XA(t) − XB(t)), r < p

Rb*X(t), r ≥ p

8>><
>>: (7)

Among them,Uband Lbrepresent the upper and lower boundaries of

the search range, Rais a random oscillation ranging from -a to a and

gradually approaches 0 as the number of iterations increases, Rboscillates

from -1to 1 and finally tends to 0. Moreover, randrepresents a random

value in the [0,1] interval, z is a custom parameter that represents the

proportion of randomly distributed slime mould individuals to the

population and is generally 0.03, t is the current iteration number, and

Xb(t)represents the slime mould individual with the best fitness. X(t)

represents the position of the current iteration of the slime mould

individual, and XA(t)and XB(t)are the positions of two random

individuals. Wrepresents the weight coefficient.

The update formulas of the control parameter p, parameter aand

parameter Rbin formula (7) are formulas (8), (9) and (10), respectively.

p = tanh   S(i) − Sbj j i ∈ 1, 2⋯ n (8)

In the above formula, nis the number of slime mould populations,

and S(i)represents the fitness value of the i-th slime mould individual.

Sbis the current optimal fitness value. The tanhfunction is a nonlinear

activation function whose output value is in the interval [-1,1].

a = arctanh( − (t=Tmax) + 1) (9)

In the above formula, t is the current number of iterations, and

Tmaxis the maximum number of iterations. The arctanh(x)function

is the reverse hyperbolic tangent function.

Rb = ½−1 + t=Tmax  , 1 − t=Tmax  � (10)

The value of Rb oscillates in the interval ½−1, 1�, and the synergy

between Rb and Ra simulates the selection behavior of slime moulds.

The weight coefficient Wof slime mould individuals is related to

their fitness value. The weight formula of individuals whose fitness

value sequence is in the top 50% in the slime mould population is

provided in (11).

Wf = 1 + r* log  ((Fb − S(i))=(Fb − Fw)) + 1)  (11)

The weight coefficient formula WOof other slime mould

individuals is provided in (12).

WO = 1 + r* log  ((Fb − S(i))=(Fb − Fw)) + 1)  (12)

In Equations (11) and (12), rrepresents a random number

ranging from 0 to 1, and Fb and Fw represent the best and worst

fitness values for the current iteration, respectively.
2.4 Deep belief network

A DBN is a deep neural network composed of multiple layers of

restricted Boltzmann machines (RBMs) and one layer of a back
Frontiers in Marine Science 05
propagation (BP) neural network (Hinton and Salakhutdinov, 2006;

Hinton et al., 2006). The RBM consists of a visible layer and a

hidden layer. In the DBN structure, the hidden layer of the bottom

RBM is the visible layer of the next RBM, and the output of the last

RBM is used as the input of the BP neural network. The training

process of the DBN is carried out layer by layer, and the RBM of the

current layer can be trained only after the RBM of the previous layer

is fully trained. The structure of a simple DBN model is shown

in Figure 2.

The optimization of the DBN model consists of two steps:

unsupervised training and supervised fine-tuning. The DBN trains

each layer of RBM separately, determines the weights and offsets of

the first RBM, and uses the states of its hidden neurons as the input

vector for the second RBM. After the second RBM is fully trained,

the second RBM is stacked on top of the first RBM, and each layer of

RMB is trained in turn, making sure to extract as much feature

information as possible.

The last layer of the DBN is the BP neural network. During

supervised tuning training, the BP algorithm is used to update

the weights and biases of the model. Each layer of RBM can only

ensure that the weights and bias values in its own layer are

optimal for the feature vector mapping of this layer and not for

the feature vector mapping of the entire DBN. The BP algorithm

propagates the error information from top to bottom to each

layer of the RBM and fine-tunes the entire DBN layer by layer.

RBM is a shallow neural network with only two layers. The

training time of RBM is significantly reduced compared with the

deep neural network. The overall training of the DBN deep

neural network is simplified to the training of multiple RBMs,

which can improve the training efficiency and speed up the

convergence speed. After training, the network is fine-tuned by

the BP algorithm, so that the model converges to the local

optimum, improves the convergence accuracy, and realizes the

efficient training of the DBN neural network. The DBN prevents

falling into a local optimum through unsupervised layer-by-layer

training and improves the convergence speed and accuracy

through supervised fine-tuning.
FIGURE 2

Structure diagram of the DBN model.
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2.5 Evaluation of the predictive models

The accuracy of the prediction model is measured by calculating

the similarity between the predicted value and the actual value.

Common evaluation indicators include mean absolute error

(MAE), mean absolute percentage error (MAPE), mean squared

error (MSE), Willmott indexr (WI)(Willmott et al., 2012) and

goodness of fit (R2). In this paper, the above indicators are used

to evaluate the prediction performance of our model and other

comparative models. Assuming that the predicted value is ŷ =

fy1, y2 ⋯ yng, the actual value is y = fy1, y2,⋯ yng, and n is the

number of samples, the formulas of each indicator are as follows:

(13), (14), (15), (16) and (17).

MAE =
1
no

n

i=1
ŷ i − yij j (13)

MAPE =
1
no

n

i=1

ŷ i − yi
yi

����
���� (14)

MSE =
1
no

n

i=1
(ŷ i − yi)

2 (15)

WI = 1 −
o
n

i=1
(yi − ŷ i)

2

o
n

i=1
( yi − �yj j + ŷ i − �yj j)2

(16)

R2 = 1 −
o
n

i=1
(yi − ŷ i)

2

o
n

i=1
(yi − �y)2

(17)

where �y is the mean of all samples.
3 Simulation experiment and result
analysis

3.1 Decomposition of dissolved oxygen
time series

Aquaculture water quality data are easily affected by the external

environment, biological activities and fishermen intervention. They

have the characteristics of nonlinearity and instability and are

affected by the accuracy and performance of water quality sensor

acquisition equipment, and the data contain much noise. Therefore,

training the model directly with the original dissolved oxygen time

series limits the accuracy and stability of the prediction to a certain

extent. Through the mode decomposition of VMD, multiple IMF

subsequences with different frequency scales and relative stability

are obtained. Using each subsequence for model training can greatly

improve the prediction accuracy.

When applying VMD for mode decomposition, we can set the

number of mode decomposition components according to the data

characteristics. When the number of modes is too small, some
Frontiers in Marine Science 06
important information in the original signal will be filtered, which

will affect the accuracy of subsequent predictions. When the

number of modes is too large, the center frequencies of adjacent

mode components will be closer, resulting in mode overlap and

excessive decomposition. In this paper, when determining the

number of VMD modes, the MAE of the original signal and

the decomposed mode reconstruction sequence is used as the

optimization index, and the mode decomposition number is

determined according to the change trend of the MAE value. The

calculation of the MAE is shown in Equation (18).

MAE =
1
No

N

t=1
f (t) −o

k

uk(t)

�����
����� (18)

In the above formula, f (t)is the original signal to be

decomposed, uk(t)is the decomposed mode component, kis the

number of mode components, and Nis the length of the time series.

The VMD of 8640 dissolved oxygen data from Weihai

Demingmarine ranching from June 1, 2021, to August 1, 2021, is

taken as an example to optimize the mode decomposition number.

In this paper, the number of decomposition components is set in

the range of 2 to 10. After each decomposition step, the decomposed

IMF sequence is reconstructed, and the MAE value of the

reconstructed sequence and the original sequence are calculated.

From the variation trend of the MAE in Figure 3, it can be found

that when the number of decomposition modes is 4, the value of the

MAE tends to be stable, so the number of VMD modes of this

dissolved oxygen time series is set to 4.

Figure 4 shows the decomposition effect of this dissolved

oxygen time series.
3.2 Improved slime mould algorithm

The SMA has a simple structure and strong global search ability,

but it also has shortcomings, such as a weak shrinkage mechanism

and the tendency to easily fall into a local optimum. To make the

SMA have better convergence accuracy and more stability, this

paper uses elite opposition-based learning and a nonlinear

convergence factor to improve it and proposes a multi

strategy ISMA.

The opposition-based learning (OBL) model proposed by

Tizhoosh calculates the current solution and the opposite solution

in the process of searching for a feasible solution to a problem and

selects an item that is closer to the optimal solution for the next

iteration (Rahnamayan et al., 2008). OBL has been applied to

improve various intelligent algorithms (Gupta et al., 2020;

Shekhawat and Saxena, 2020; Tubishat et al., 2020; Wang et al.,

2021; Li et al., 2022a).

Elite OBL (EOBL) forms an elite population and its opposite

population based on the individual with the best fitness and then

selects an individual with better fitness from the two populations to

form a new population (Abualigah et al., 2021).

Assuming that at the t-th iteration, Xe
ij(t)is the elite solution of

individual Xij in the j dimension, then its opposite solution is �XE
ij (t).

Its solution formula is shown in equation (19).
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�Xe
ij(t) = l*(lj + uj) − Xe

ij(t) (19)

Among them, lis a random value in the range of 0 to 1, and lj
and ujare the minimum and maximum values of the j-th dimension

individual, respectively. If the elite opposition solution �XE
ij (t)exceeds

the boundary, it is reset by random generation, as shown in formula

(20).

�XE
ij (t) = rand(lj, uj) (19)

The performance of the slime mould optimization algorithm is

greatly affected by the quality of the initial population. A high-

quality initial population can speed up the convergence of the

algorithm and help to find the global optimal solution. This paper

applies the EOBL strategy to the initialization of the SMA

population, calculates the fitness value, obtains the elite slime

mould individuals and dynamic boundaries, and improves the

quality and diversity of the initial population.
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In the iterative optimization process of SMA, the change in

parameter ahas an important influence on balancing the global

search ability and local exploration ability. Parameter adecreases

rapidly in the early iterations, this decrease slows down inthe later

iterations, and a smaller ain the early stage is not conducive to

global exploration. Therefore, this paper proposes a new nonlinear

decreasing strategy, and the updated formula for parameter ais

shown in (21).

a = 3* cos
2((p*t=T)=2) (21)

Among them, tis the current number of iterations, and Tis the

maximum number of iterations.

As shown in Figure 5, the parameter a in this paper decreases

slowly in the early stage, which is beneficial to global exploration. In

later iterations, the speed of convergence is accelerated, which is

beneficial to the local search.
FIGURE 4

VMD of the dissolved oxygen time series.
FIGURE 3

The change curve of the MAE value.
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3.3 DBN prediction model optimized based
on the ISMA

In the construction of the DBN prediction model, several

hyperparameter settings are involved, including the number of hidden

layers, the number of nodes in each layer, the training times and learning

rate in the unsupervised pretraining stage and the momentum. If the

hyperparameter optimization is carried out by means of experimental

verification, the process is slow, and it is difficult to obtain the best

combination of hyperparameters. Therefore, this paper uses the ISMA to

optimize the hyperparameters to build the prediction model.

The construction steps of an aquaculture water quality

prediction model (VMD-ISMA-DBN) based on VMD and the

ISMA to optimize the DBN are as follows.
Fron
(1) In view of the nonlinear and nonstationary characteristics

of the dissolved oxygen series in aquaculture water quality,

VMD was used to decompose the data series into multiple

relatively stable IMF components.

(2) EOBL and a nonlinear convergence factor are applied to

improve the optimization performance of the SMA to

improve its convergence accuracy and stability.

(3) The optimization algorithm of DBN hyperparameters is

studied, and a DBN prediction model optimized by the

ISMA (ISMA-DBN) is constructed.

(4) Take each IMF subsequence decomposed by VMD as input

samples to train the ISMA-DBN model, obtain the optimal

hyperparameter combination of each sequence, and predict

each subsequence.

(5) The prediction values of each IMF subsequence are

superimposed to obtain the final prediction result of the

original sequence, and the performance of the prediction

model is verified by comparative experiments.
The structure diagram of the VMD-ISMA-DBN prediction

model is shown in Figure 6.
tiers in Marine Science 08
Using the dissolved oxygen data of the Laizhou marine ranch as

the experimental sample of the VMD-ISMA-DBN model, the four

IMF subsequences obtained by mode decomposition were trained

and predicted. The first 80% of the data were used as the training

set, and the last 20% of the data were used as the test set. Figure 7

shows the convergence curves for each IMF sequence trained using

the SMA-DBN model and the ISMA-DBN model respectively

As shown in Figure 7, in the iterative optimization process of

the four IMF subsequences, compared with SMA-DBN, ISMA-

DBN has faster convergence speed, higher convergence accuracy,

and stronger ability to avoid falling into local optimum. Table 2

shows the optimal values of the hyperparameters of the DBN model

optimized by the ISMA for each IMF sequence, including the

learning rate of the pretraining (lr_p), the number of iterations

for pretraining (epo_p), the learning rate for fine-tuning (lr_f), the

number of iterations for fine-tuning (epo_f), the momentum,

the batch size (B_S) and the number of hidden layers (nlayer).

From the data in Table 2, it can be seen that the prediction of the

two high-frequency components of IMF3 and IMF4 is relatively

difficult, and the network structure is more complex than the two

low-frequency components of IMF1 and IMF2.

Figure 8 shows the fitting effect of each IMF subsequence

predicted by the VMD-ISMA-DBN model proposed in this paper.

Figure 8 shows that after dividing the original time series into

relatively stable IMF subsequences, the complexity of the series is

reduced, and the prediction accuracy is greatly improved. The low-

frequency components with strong regularity and large amplitudes

have an accurate prediction effect. There are some errors in the

prediction of the high-frequency signal, but due to its

small amplitude, it has little effect on the final prediction after

being superimposed with the prediction result of the low-

frequency component.

The prediction results of each IMF component are

superimposed to obtain the final prediction results of the original

dissolved oxygen time series. As shown in Figure 9, the predicted

value after superposition fits well with the actual value, and the

model in this paper shows very accurate prediction performance.
FIGURE 5

Convergence curve for parameter a.
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4 Results

4.1 Ablation study

To verify the effectiveness of each component of VMD-ISMA-

DBN in improving model performance, the following five

prediction models were constructed for ablation research.
Fron
(1) A DBN is used to build a prediction model, the hyperparameters

of the model are .manually selected through experience, and the

original dissolved oxygen sequence is used as the input sample.

(2) The SMA is used to optimize the DBN model, the model

hyperparameters are selected through the optimization

algorithm, the original dissolved oxygen sequence is used

as the input sample, and the model is named SMA-DBN.

(3) Only the EOBL mechanism is used to improve the SMA;

the improved algorithm is used to optimize the DBN

model, the original dissolved oxygen sequence is used as

the input sample, and the model is named ISMA1-DBN.
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(4) The SMA is improved only by changing the convergence

factor. The DBN model is optimized with the ISMA, the

original dissolved oxygen sequence is used as the input

sample, and the model is named ISMA2-DBN.

(5) The SMA is improved by using the combination of the

EOBL mechanism and by changing the convergence factor,

and the ISMA is used to optimize the DBN. The original

sequence is used as the input sample, and the model is

named ISMA-DBN.
The above five models are compared with the VMD-ISMA-

DBNmodel proposed in this paper, and the experimental results are

shown in Figure 10.

The evaluation index values of each experimental model are

shown in Table 3.

As shown in Figure 10 and Table 3, the DBN model needs to

adjust many hyperparameters, and the prediction error is large if

adjusted purely by experience. The training process of the DBN

model is optimized by the SMA, the setting of hyperparameters is
FIGURE 6

Framework of the VMD-ISMA-DBN prediction model.
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more reasonable, and the prediction error is reduced. The two

strategies of EOBL and the improved convergence factor are

separately used to optimize the SMA. The ISMA further

optimizes the hyperparameter combination of the DBN, and the

prediction accuracy is further improved. The original dissolved

oxygen time series is preprocessed by VMD, and the decomposed

signal is smoother, which can reduce the difficulty of prediction and

significantly improve the prediction performance. The prediction

curve of the VMD-ISMA-DBN model proposed in this paper has a

better fitting effect than the other methods in the maximum value

and minimum value, and the prediction trend is closer to the actual

curve, which illustrates the more accurate prediction effect.
4.2 Comparative experiments

To further verify the prediction performance of the VMD-

ISMA-DBN model, it is compared with six other intelligent

prediction models, namely, the autoregressive integrated moving

average model (ARIMA) (Xuan et al. (2021)), random forest (RF)

regressor (Tiyasha et al. (2021)), temporal convolutional network

(TCN) (Li et al. (2022b)), extreme learning machine (ELM)
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(An et al. (2022)), gated recurrent unit (GRU) (Cao et al. (2020)

and long short-term memory (LSTM) (Barzegar et al. (2020)) The

main parameters of each model are shown in Table 4.

Figure 11 shows the prediction effect of each comparative model

and VMD-ISMA-DBN on a 12-hour dissolved oxygen time series.

It shows that the VMD-ISMA-DBN model proposed in this paper

has a better prediction effect on dissolved oxygen water quality data

than the other comparison models, and the prediction curve is more

in line with the actual time series.

The ARIMA model performs stationary preprocessing on

nonstationary sequences by means of differencing, and it cannot

capture nonlinear relationships well. For unstable and nonlinear

water quality data, the hyperparameter optimization process is

complicated, and the prediction accuracy is lower than that of

other models. The RF regressor model integrates multiple decision

trees, and overfitting may occur when it is used for the prediction of

time series with considerable noise. Due to the complexity of its

structure, it takes more time to train than other models. The ELM

has the characteristics of few training parameters and a fast training

speed. However, for aquaculture water quality data with noise

interference, the prediction effect of the ELM model is unstable.

The LSTM and GRU neural networks achieve good results in time
FIGURE 7

Convergence curves of the IMF components.
TABLE 2 Optimal hyperparameter values of the DBN for each IMF subsequence.

IMFs lr_p epo_p lr_f epo_f momentum B_S nlayer

IMF1 0.060 3 0.121 91 0.655 10 1

IMF2 0.089 4 0.144 106 0.555 24 2

IMF3 0.046 6 0.076 176 0.526 12 3

IMF4 0.020 16 0.037 184 0.971 12 3
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series prediction and solve the long-term dependency problem of

RNNs. The vanishing gradient problem may occur during the

training process. The model structure of the LSTM and GRU

models is relatively complex, and it is easy to consume much

memory when the training sequence is long. The TCN prediction

model has the advantages of a stable gradient, low training memory

requirements and accepting variable length inputs. The TCN model

achieves better performance than the LSTM and GRUmodels in the

prediction of dissolved oxygen time series. The DBN has the
Frontiers in Marine Science 11
advantages of easy expansion, fast training, and less convergence

time. In this paper, the improved SMA is used to optimize the

hyperparameters of the DBN, and VMD is used to decompose the

dissolved oxygen time series. The model in this paper achieves

higher prediction accuracy than the other comparative models.

To verify the generalization performance of the model in this

paper, the dissolved oxygen data of 6 other marine ranches were

selected for experimental verification, and different time spans were

selected to study the short-term and long-term prediction
FIGURE 8

Prediction effect of the VMD-ISMA-DBN model on IMF subsequences.
FIGURE 9

Final prediction effect of the VMD-ISMA-DBN model.
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performance of the model. The water quality data of all marine

ranches were collected every 10 minutes, and approximately 140

pieces of effective dissolved oxygen data were collected every day.

During the experiment, 80% of the data are selected as the training

set, and 20% of the data are used as the test set. Table 5 shows the

statistics of the experimental data.
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Figure 12 shows that the model in this paper achieves good

prediction performance for the dissolved oxygen time series from

the six marine ranches, and the prediction curve fits the actual data

curve well, indicating that the prediction model has strong

generalization performance and stability. Observing the

prediction effect of different time spans from 15 days to 1 year,
FIGURE 10

Results of the ablation experiments.
TABLE 3 The prediction performance evaluation index value of each model.

Model MAE MAPE MSE WI R2

DBN 0.1109 0.0129 0.0277 0.8992 0.8915

SMA-DBN 0.0929 0.0123 0.0216 0.9401 0.9319

ISMA1-DBN 0.0910 0.0118 0.0196 0.9602 0.9559

ISMA2-DBN 0.0886 0.0116 0.0200 0.9541 0.9512

ISMA-DBN 0.0881 0.0113 0.0189 0.9802 0.9672

VMD-ISMA-DBN 0.0629 0.0106 0.0165 0.9916 0.9729
FIGURE 11

Comparison of the prediction effects of each model and VMD-ISMA-DBN.
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the prediction error of the long-term series increases to a certain

extent, and the fitting effect of the data mutation decreases. The

reason for this phenomenon may be the accumulation of prediction

errors. The model in this paper eliminates the influence of data non

stationarity on the prediction effect by decomposing the water

quality data by VMD and optimizes the parameters of the DBN

model through the ISMA, which makes the hyperparameter settings

reasonable and improves the prediction accuracy. The experimental

results show that the VMD-ISMA-DBN model proposed in this

paper is suitable for the prediction of aquaculture water quality

time series.
5 Conclusion

In order to accurately predict the change trend of dissolved

oxygen time series in aquaculture water, this paper proposes a DBN
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model based on ISMA optimization, and uses the VMD algorithm

to decompose the input samples to reduce the impact of data

fluctuations on water quality prediction. Ablation study shows

that this model can significantly improve the prediction

performance of the stand-alone DBN model. Comparative

experiments show that this model has higher prediction accuracy

and better generalization performance than other commonly used

intelligent prediction models.

In this paper, a univariate recursive forecasting method is

used to establish a model, and the historical time series of

dissolved oxygen is used to predict future values. This model

does not consider the impact of environmental factors

and other water quality indicators on dissolved oxygen,

which limits the universality of the prediction model to a

certain extent.

In the future, we will study the interaction between the

spatiotemporal environment and water quality indicators, build
TABLE 5 Statistics of the experimental data.

Marine ranching Acquisition time Training set Testing set

Longkou 2021.3.1-2021.3.15 1728 432

Yantai Laishan 2021.3.1-2021.4.1 3456 864

Qingdao Luhaifeng 2021.3.1-2021.6.1 10368 2592

Rongchen Chundao 2021.3.1-2021.9.1 20736 5184

Qingdao Jiaonan 2021.3.1-2021.12.1 31104 7776

Rizhao 2021.3.1-2022.3.1 41472 10368
TABLE 4 The main parameters of each comparative model.

Model Main hyperparameters Value

ARIMA p: Number of autoregressive terms 4

d: Number of nonseasonal differences 1

q: Number of lagged forecast errors 0

ELM n: Number of input neurons 3

L: Number of hidden neurons 30

m: Number of output neurons 1

RF n estimators: Number of decision trees 30

max depth: Maximum depth of the tree 10

LSTM input size: Number of expected features in the input 6

hidden size: Dimension of the hidden layer state 10

num layers: Number of stacking layers of LSTM 2

TCN nb filters: Number of convolution kernel 20

kernel size: Size of revolution kernels 46

Optimizer: Optimizer of the model Adam

GRU hidden size: Number of hidden layer nodes 8

num layers: Number of recurrent layers 2

batch size: Number of samples per training 32
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a multivariate water quality prediction model, and study the

optimization of the hyperparameters of the deep learning

model by intelligent algorithms to further improve the

prediction accuracy.
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